Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Infectious diseases are the common enemies of mankind. In the course of historical development, they persistently threaten human health and safety. Even today, despite the developments in medical science, we cannot escape the fear and suffering caused by infectious diseases. Whether in ancient or modern times, the source of infection, route of transmission, and a susceptible population are the three key conditions for the prevalence and spread of infectious diseases. All factors closely related to these three conditions can affect the prevalence of infectious diseases. China is one of the cradles of world civilization. The ancient people accumulated a great deal of experience and lessons in the long struggle against infectious diseases. In the face of the current threat posed by widespread infectious disease, it is imperative to review and summarize ancient Chinese ideas and health policies on epidemic prevention and control to inspire contemporary efforts in the prevention and control of infectious disease. The combination of prevention-oriented epidemic prevention ideology and traditional medicine provides valuable insights, especially for impoverished and medically underserved regions.
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.