A brief review of co-doping

Jingzhao Zhang, Kinfai Tse, Manhoi Wong, Yiou Zhang, Junyi Zhu

PDF(641 KB)
PDF(641 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 117405. DOI: 10.1007/s11467-016-0577-2
REVIEW ARTICLE
REVIEW ARTICLE

A brief review of co-doping

Author information +
History +

Abstract

Dopants and defects are important in semiconductor and magnetic devices. Strategies for controlling doping and defects have been the focus of semiconductor physics research during the past decades and remain critical even today. Co-doping is a promising strategy that can be used for effectively tuning the dopant populations, electronic properties, and magnetic properties. It can enhance the solubility of dopants and improve the stability of desired defects. During the past 20 years, significant experimental and theoretical efforts have been devoted to studying the characteristics of co-doping. In this article, we first review the historical development of co-doping. Then, we review a variety of research performed on co-doping, based on the compensating nature of co-dopants. Finally, we review the effects of contamination and surfactants that can explain the general mechanisms of co-doping.

Keywords

co-doping / fully compensated / partially compensated / non-compensated / unintentional doping / surfactant

Cite this article

Download citation ▾
Jingzhao Zhang, Kinfai Tse, Manhoi Wong, Yiou Zhang, Junyi Zhu. A brief review of co-doping. Front. Phys., 2016, 11(6): 117405 https://doi.org/10.1007/s11467-016-0577-2

References

[1]
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Firstprinciples calculations for point defects in solids, Rev. Mod. Phys. 86(1), 253 (2014)
CrossRef ADS Google scholar
[2]
S. Wei, Overcoming the doping bottleneck in semiconductors, Comput. Mater. Sci. 30(3–4), 337 (2004)
CrossRef ADS Google scholar
[3]
H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto, and N. Orita, Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: Prediction versus experiment, J. Phys.: Condens. Matter 13(40), 8901 (2001)
CrossRef ADS Google scholar
[4]
U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, Hole conductivity and compensation in epitaxial GaN:Mg layers, Phys. Rev. B 62(16), 10867 (2000)
CrossRef ADS Google scholar
[5]
R. Korotkov, J. Gregie, and B. Wessels, Electrical properties of p-type GaN:Mg codoped with oxygen, Appl. Phys. Lett. 78(2), 222 (2001)
CrossRef ADS Google scholar
[6]
G. Kipshidze, V. Kuryatkov, B. Borisov, Y. Kudryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, Mg and O codoping in p-type GaN and AlxGa1−xN (0<x<0.08), Appl. Phys. Lett. 80(16), 2910 (2002)
CrossRef ADS Google scholar
[7]
B. Gudden, On electrical conduction in semiconductors, Sitzungsberichte der Physikalisch-medizinischen Sozietat zu Erlangen, 62, 289 (1930)
[8]
P. R. Morris, A history of the world semiconductor industry, IET Digital Library (1990)
CrossRef ADS Google scholar
[9]
A. H. Wilson, The theory of electronic semi-conductors, Proceedings of the Royal Society A, 133(822), 458 (1931)
CrossRef ADS Google scholar
[10]
L. Grondahl and P. H. Geiger, A new electronic rectifier, Transactions of the American Institute of Electrical Engineers, 46, 357 (1927)
CrossRef ADS Google scholar
[11]
C. E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, Am. J. Sci. s3-26 (156), 465 (1883)
[12]
J. Preston, The selenium rectifier photocell: Manufacture, properties, and use in photometry, Journal of the Institution of Electrical Engineers 79(478), 424 (1936)
CrossRef ADS Google scholar
[13]
B. Davydov, The rectifying action of semiconductors, Technical Physics of the USSR 5, 87 (1938)
[14]
J. R. Woodyard, Nonlinear circuit device utilizing germanium, US2530110[P] (1950)
[15]
W. Shockley, The theory of p–n junctions in semiconductors and p–n junction transistors, Bell Syst. Tech. J. 28(3), 435 (1949)
CrossRef ADS Google scholar
[16]
H. Choi, The boundaries of industrial research: Making transistors at RCA, 1948–1960, Technol. Cult. 48(4), 758 (2007)
CrossRef ADS Google scholar
[17]
G. Teal, M. Sparks, and E. Buehler, Growth of germanium single crystals containing p–n junctions, Phys. Rev. 81(4), 637 (1951)
CrossRef ADS Google scholar
[18]
M. Sparks, Method of making p–n junctions, US2631356A[P] (1953)
[19]
C. S. Fuller, Diffusion of donor and acceptor elements into germanium, Phys. Rev. 86(1), 136 (1952)
CrossRef ADS Google scholar
[20]
C. Fuller and J. Ditzenberger, Diffusion of lithium into germanium and silicon, Phys. Rev. 91(1), 193 (1953)
CrossRef ADS Google scholar
[21]
H. Reiss, Chemical effects due to the ionization of impurities in semiconductors, J. Chem. Phys. 21(7), 1209 (1953)
CrossRef ADS Google scholar
[22]
H. Reiss, C. Fuller, and A. Pietruszkiewicz, Solubility of lithium in doped and undoped silicon, evidence for compound formation, J. Chem. Phys. 25(4), 650 (1956)
CrossRef ADS Google scholar
[23]
H. Reiss, C. Fuller, and F. Morin, Chemical interactions among defects in germanium and silicon, Bell Syst. Tech. J. 35(3), 535 (1956)
CrossRef ADS Google scholar
[24]
F. Kröger and H. Vink, Relations between the concentrations of imperfections in crystalline solids, Solid State Phys. 3, 307 (1956)
CrossRef ADS Google scholar
[25]
F. Kröger and H. Vink, Relations between the concentrations of imperfections in solids, J. Phys. Chem. Solids 5(3), 208 (1958)
CrossRef ADS Google scholar
[26]
J. Maita, Ion pairing in silicon, J. Phys. Chem. Solids 4(1–2), 68 (1958)
CrossRef ADS Google scholar
[27]
H. Reiss and C. Fuller, The effect of ion pair and ion triplet formation on the solubility of lithium in germanium — effect of gallium and zinc, J. Phys. Chem. Solids 4(1–2), 58 (1958)
CrossRef ADS Google scholar
[28]
R. Korotkov, J. Gregie, and B. Wessels, Codoping of wide gap epitaxial III-Nitride semiconductors, Opto-Electron. Rev. 4, 243 (2002)
[29]
W. Shockley and J. Moll, Solubility of flaws in heavilydoped semiconductors, Phys. Rev. 119(5), 1480 (1960)
CrossRef ADS Google scholar
[30]
E. Mahlab, V. Volterra, W. Low, and A. Yariv, Orthorhombic electron spin resonance spectrum of U3 in CaF2, Phys. Rev. 131(3), 920 (1963)
CrossRef ADS Google scholar
[31]
P. Weller and J. Scardefield, Doping of alkaline earth halide single crystals, J. Electrochem. Soc. 111(8), 1009 (1964)
CrossRef ADS Google scholar
[32]
M. Taylor, An experimental study of the efficiency of optical energy transfer between Cr3 and Nd3 ions in yttrium aluminium garnet, Proc. Phys. Soc. 90(2), 487 (1967)
CrossRef ADS Google scholar
[33]
G. Blasse and A. Bril, Energy transfer from trivalent rare earth ions to Cr3, Phys. Lett. A 25(1), 29 (1967)
CrossRef ADS Google scholar
[34]
J. Axe and P. Weller, Fluorescence and energy transfer in Y2O3:Eu3, J. Chem. Phys. 40(10), 3066 (1964)
CrossRef ADS Google scholar
[35]
M. Brown, J. Whiting, and W. Shand, Ion-ion interactions in rare-earth-doped LaF3, J. Chem. Phys. 43(1), 1 (1965)
CrossRef ADS Google scholar
[36]
H. Rast, H. Caspers, and S. Miller, Fluorescence and energy transfer between Nd3 and Yb3 in LaF3, J. Chem. Phys. 47(10), 3874 (1967)
CrossRef ADS Google scholar
[37]
C. Asawa, Long-delayed fluorescence of Nd3 in pure LaCl3 and in LaCl3 containing Ce3, Phys. Rev. 155(2), 188 (1967)
CrossRef ADS Google scholar
[38]
E. J. Sharp, M. J. Weber, and G. Cleek, Energy transfer and fluorescence quenching in Eu-and Nd-doped silicate glasses, J. Appl. Phys. 41(1), 364 (1970)
CrossRef ADS Google scholar
[39]
N. Melamed, C. Hirayama, and P. French, Laser action in uranyl-sensitized Nd-doped glass, Appl. Phys. Lett. 6(3), 43 (1965)
CrossRef ADS Google scholar
[40]
E. Snitzer and R. Woodcock, 9C8- Saturable absorption of color centers in Nd3+ and Nd3+-Yb3+ laser glass, IEEE J. Quantum Electron. 2(9), 627 (1966)
CrossRef ADS Google scholar
[41]
H. Gandy, R. Ginther, and J. Weller, Internal Q switching of Ho3-Stimulated emission in iron-containing glasses, Appl. Phys. Lett. 9(8), 277 (1966)
CrossRef ADS Google scholar
[42]
L. Erickson and A. Szabo, Behavior of saturableabsorber giant-pulse lasers in the limit of large absorber cross section, J. Appl. Phys. 38(6), 2540 (1967)
CrossRef ADS Google scholar
[43]
P. F. Weller, Optical spectra of ytterbium in CdF2, J. Electrochem. Soc. 114(6), 609 (1967)
CrossRef ADS Google scholar
[44]
J. L. Wolf and P. P. Yaney, The enhancement of the 6P(7/2) fluorescence of Gd(3) in SrF2 containing Ce(3+) as a codopant, Rept. No. UDRI-TR-69-34 (1970)
[45]
A. Lyall, H. Seiger, and R. Shair, Lithium-nickel Halide Secondary Battery Investigation (1966)
[46]
M. Balkanski and W. Nazarewicz, Infrared study of localized vibrations in silicon due to boron and lithium, J. Phys. Chem. Solids 27(4), 671 (1966)
CrossRef ADS Google scholar
[47]
B. Faughnan and Z. Kiss, Photoinduced reversible charge-transfer processes in transition-metal-doped single-crystal SrTiO3 and TiO2, Phys. Rev. Lett. 21(18), 1331 (1968)
CrossRef ADS Google scholar
[48]
B. W. Faughnan and Z. J. Kiss, Optical and EPR studies of photochromic SrTiO3 doped with Fe/Mo and Ni/Mo, IEEE J. Quantum Electron. 5, 17 (1969)
CrossRef ADS Google scholar
[49]
D. Thomas, M. Gershenzon, and F. Trumbore, Pair spectra and “edge” emission in gallium phosphide, Phys. Rev. 133(1A), A269 (1964)
CrossRef ADS Google scholar
[50]
L. Foster and J. Scardefield, Oxygen doping of solutiongrown gaP, J. Electrochem. Soc. 116(4), 494 (1969)
CrossRef ADS Google scholar
[51]
H. Komiya, Optical spectra of Tm3 ions in ZnSe:Tm, Li and ZnSe:Tm, Cu crystals, J. Phys. Soc. Jpn. 27(4), 893 (1969)
CrossRef ADS Google scholar
[52]
S. Ibuki, H. Komiya, M. Nakada, H. Masui, and H. Kimura, Investigation of rare earth ions in ZnSe, J. Lumin. 1–2, 797 (1970)
CrossRef ADS Google scholar
[53]
H. Kukimoto, S. Shionoya, T. Koda, and R. Hioki, Infrared absorption due to donor states in ZnS crystals, J. Phys. Chem. Solids 29(6), 935 (1968)
CrossRef ADS Google scholar
[54]
J. Apperson, G. Garlick, W. Lamb, and B. Lunn, Luminescence properties of rare earth activated cadmium sulphide in the range 4000 to 15000 cm−1, Physica Status Solidi (b) 34, 537 (1969)
CrossRef ADS Google scholar
[55]
L. Miller, Properties of Elemental and Compound Semiconductors, New York: Interscience, 1960, p. 303
[56]
C. Fuller, F. Doleiden, and K. Wolfstirn, Reactions of group III acceptors with oxygen in silicon crystals, J. Phys. Chem. Solids 13(3-4), 187 (1960)
CrossRef ADS Google scholar
[57]
R. Chrenko, R. McDonald, and E. Pell, Vibrational spectra of lithium-oxygen and lithium-boron complexes in silicon, Phys. Rev. 138(6A), A1775 (1965)
CrossRef ADS Google scholar
[58]
A. Cosand and W. Spitzer, Localized vibrational modes of Li and P impurities in germanium, Appl. Phys. Lett. 11(9), 279 (1967)
CrossRef ADS Google scholar
[59]
J. Lawrence, The cooperative diffusion effect, J. Appl. Phys. 37(11), 4106 (1966)
CrossRef ADS Google scholar
[60]
W. Wilcox, T. LaChapelle, and D. Forbes, Gold in silicon: Effect on resistivity and diffusion in heavily-doped layers, J. Electrochem. Soc. 111(12), 1377 (1964)
CrossRef ADS Google scholar
[61]
M. Joshi and S. Dash, Distribution and precipitation of gold in phosphorus-diffused silicon, J. Appl. Phys. 37(6), 2453 (1966)
CrossRef ADS Google scholar
[62]
W. Bullis, Properties of gold in silicon, Solid-State Electron. 9(2), 143 (1966)
CrossRef ADS Google scholar
[63]
R. D. Baxter, R. Bate, and F. Reid, Ion-pairing between lithium and the residual acceptors in GaSb, J. Phys. Chem. Solids 26(1), 41 (1965)
CrossRef ADS Google scholar
[64]
W. Hayes, Localized vibrations of lithium complexes in gallium arsenide, Phys. Rev. 138(4A), A1227 (1965)
CrossRef ADS Google scholar
[65]
L. Riseberg and W. Holton, Nd ion site distribution and spectral line broadening in YA1G:Lu, Nd laser materials, J. Appl. Phys. 43(4), 1876 (1972)
CrossRef ADS Google scholar
[66]
R. Hotz, Thermal transient effects in repetitively pulsed flashlamp-pumped YAG:Nd and YAG:Nd, Lu laser material, Appl. Opt. 12(8), 1834 (1973)
CrossRef ADS Google scholar
[67]
J. Kvapil, J. Kvapil, and B. Perner, O centre formation in yag crystals doped with rare earth ions, Kristall und Technik 10(2), 161 (1975)
CrossRef ADS Google scholar
[68]
J. Falk, L. Huff, and J. Taynai, Solar-pumped, modelocked, frequency-doubled Nd:YAG laser, IEEE J. Quantum Electron. 11(9), 836 (1975)
CrossRef ADS Google scholar
[69]
Y. K. Voronko and A. Sobol, Classification and analysis of the impurity ion clusters in Y3AI5O12, Physica Status Solidi (a) 27, 257 (1975)
CrossRef ADS Google scholar
[70]
R. A. Hewes and J. F. Sarver, Infrared excitation processes for the visible luminescence of Er3, Ho3, and Tm3 in Yb3-sensitized rare-earth trifluorides, Phys. Rev. 182(2), 427 (1969)
CrossRef ADS Google scholar
[71]
G. Ban and H. Hersh, Degradation of some IR upconverting phosphors by ionizing radiation, J. Electron. Mater. 1(2), 320 (1972)
CrossRef ADS Google scholar
[72]
S. Zenbutu, R. Nakata, M. Sumita, and E. Higuchi, EPR study of characteristics of Fe3 ions with cubic symmetry in CaF2 crystals, Jpn. J. Appl. Phys. 10(11), 1497 (1971)
CrossRef ADS Google scholar
[73]
P. P. Yaney, D. M. Schaeffer, and J. L. Wolf, Fluorescence and absorption studies of Sr0.999−xGd0.001CexF2.001+x, Phys. Rev. B 11(7), 2460 (1975)
CrossRef ADS Google scholar
[74]
G. Miner, T. Graham, and G. Johnston, Effect of a Ce3 codopant on the Gd3 EPR spectrum of SrF2 at room temperature, J. Chem. Phys. 57(3), 1263 (1972)
CrossRef ADS Google scholar
[75]
P. Dean, Isoelectronic trap Li-Li-O in GaP, Phys. Rev. B 4(8), 2596 (1971)
CrossRef ADS Google scholar
[76]
J. Wiley, Donor-acceptor pairing in the system GaP(Zn, O), J. Phys. Chem. Solids 32(9), 2053 (1971)
CrossRef ADS Google scholar
[77]
V. Swaminathan and L. Greene, Pair spectra, edge emission, and the shallow acceptors in melt-grown ZnSe, Phys. Rev. B 14(12), 5351 (1976)
CrossRef ADS Google scholar
[78]
H. Woodbury, Anomalous mobility behavior in CdS and CdTe: Electrical evidence for impurity pairs, Phys. Rev. B 9(12), 5188 (1974)
CrossRef ADS Google scholar
[79]
K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass, J. Appl. Phys. 59(10), 3430 (1986)
CrossRef ADS Google scholar
[80]
Y. Ishii, K. Arai, H. Namikawa, M. Tanaka, A. Negishi, and T. Handa, Preparation of cerium-activated silica glasses: Phosphorus and aluminum codoping effects on absorption and fluorescence properties, J. Am. Ceram. Soc. 70(2), 72 (1987)
CrossRef ADS Google scholar
[81]
S. G. Kosinski, D. M. Krol, T. Duncan, D. Douglas, J. MacChesney, and J. Simpson, Raman and NMR spectroscopy of SiO2 glasses co-doped with Al2O3 and P2O5, J. Non-Cryst. Solids 105(1–2), 45 (1988)
CrossRef ADS Google scholar
[82]
C. A. Millar, B. Ainslie, I. Miller, and S. Craig, Concentration and co-doping dependence of the 4F3/2 to 4/I11/2 lasing behavior of Nd3+ silica fibers, Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 72(2), 113-5 (1995)
[83]
V. Rakovics, R. Fornari, C. Paorici, L. Zanotti, and C. Mucchino, Indium-silicon co-doping effects in LECGrown gallium arsenide crystals, Acta Phys. Hung. 61, 255 (1987)
[84]
H. Miyairi, T. Inada, M. Eguchi, and T. Fukuda, Growth and properties of InP single crystals grown by the magnetic field applied LEC method, J. Cryst. Growth 79(1–3), 291 (1986)
CrossRef ADS Google scholar
[85]
B. Lambert, Y. Toudic, G. Grandpierre, M. Gauneau, and B. Deveaud, Semi-insulating InP co-doped with Ti and Hg, Semicond. Sci. Technol. 2(2), 78 (1987)
CrossRef ADS Google scholar
[86]
Y. Toudic, R. Coquille, M. Gauneau, G. Grandpierre, L. Le Marechal, and B. Lambert, Growth of double doped semi-insulating indium phosphide single crystals, J. Cryst. Growth 83(2), 184 (1987)
CrossRef ADS Google scholar
[87]
A. Katsui, Thermal stability of (Ti Zn)-co-doped semiinsulating InP single crystals, J. Cryst. Growth 89(4), 612 (1988)
CrossRef ADS Google scholar
[88]
R. Fornari, J. Kumar, M. Curti, and G. Zuccalli, Growth and properties of bulk indium phosphide doubly doped with cadmium and sulphur, J. Cryst. Growth 96(4), 795 (1989)
CrossRef ADS Google scholar
[89]
A. G. Dentai and C. H. JoynerJr, Semiconductor devices employing Ti-doped Group III-V epitaxial layer, US4774554[P] (1988)
[90]
J. Zhu, N. Johnson, and C. Herring, Negative-charge state of hydrogen in silicon, Phys. Rev. B 41(17), 12354 (1990)
CrossRef ADS Google scholar
[91]
E. Ö. Sveinbjörnsson and O. Engström, Reaction kinetics of hydrogen-gold complexes in silicon, Phys. Rev. B 52(7), 4884 (1995)
CrossRef ADS Google scholar
[92]
A. A. Istratov, C. Flink, H. Hieslmair, E. R. Weber, and T. Heiser, Intrinsic diffusion coefficient of interstitial copper in silicon, Phys. Rev. Lett. 81(6), 1243 (1998)
CrossRef ADS Google scholar
[93]
S. McHugo, R. McDonald, A. Smith, D. Hurley, and E. Weber, Iron solubility in highly boron-doped silicon, Appl. Phys. Lett. 73(10), 1424 (1998)
CrossRef ADS Google scholar
[94]
A. Istratov, H. Hieslmair, and E. Weber, Iron and its complexes in silicon, Appl. Phys. A 69(1), 13 (1999)
CrossRef ADS Google scholar
[95]
J. Neugebauer and C. G. Van de Walle, Hydrogen in GaN: Novel aspects of a common impurity, Phys. Rev. Lett. 75(24), 4452 (1995)
CrossRef ADS Google scholar
[96]
P. Bogusl?awski, E. L. Briggs, and J. Bernholc, Amphoteric properties of substitutional carbon impurity in GaN and AlN, Appl. Phys. Lett. 69(2), 233 (1996)
CrossRef ADS Google scholar
[97]
D. Chadi, Doping in ZnSe, ZnTe, MgSe, and MgTe wideband- gap semiconductors, Phys. Rev. Lett. 72(4), 534 (1994)
CrossRef ADS Google scholar
[98]
S. Zhang, S. Wei, and A. Zunger, Overcoming doping bottlenecks in semiconductors and wide-gap materials, Physica B273–274, 976 (1999)
CrossRef ADS Google scholar
[99]
W. Walukiewicz, Intrinsic limitations to the doping of wide-gap semiconductors, Physica B 302–303, 123 (2001)
CrossRef ADS Google scholar
[100]
S. Zhang, The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: A review, J. Phys.: Condens. Matter 14(34), R881 (2002)
CrossRef ADS Google scholar
[101]
Y. Gai, J. Li, S. Li, J. Xia, and S. Wei, Design of narrowgap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
CrossRef ADS Google scholar
[102]
J. Zhang, C. Pan, P. Fang, J. Wei, and R. Xiong, Mo C codoped TiO2 using thermal oxidation for enhancing photocatalytic activity, ACS Appl. Mater. Interfaces 2(4), 1173 (2010)
CrossRef ADS Google scholar
[103]
R. Long and N. J. English, Tailoring the electronic structure of TiO2 by cation codoping from hybrid density functional theory calculations, Phys. Rev. B 83(15), 155209 (2011)
CrossRef ADS Google scholar
[104]
O. Khaselev and J. A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280(5362), 425 (1998)
CrossRef ADS Google scholar
[105]
R. Long and N. J. English, Band gap engineering of (N, Ta)-codoped TiO2: A first-principles calculation, Chem. Phys. Lett. 478(4–6), 175 (2009)
CrossRef ADS Google scholar
[106]
R. Long and N. J. English, Synergistic effects on band gap-narrowing in titania by codoping from firstprinciples calculations, Chem. Mater. 22(5), 1616 (2010)
CrossRef ADS Google scholar
[107]
T. M. Breault and B. M. Bartlett, Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: Electronic structure and photocatalytic degradation of methylene blue dye, J. Phys. Chem. C 116(10), 5986 (2012)
CrossRef ADS Google scholar
[108]
P. Dong, B. Liu, Y. Wang, H. Pei, and S. Yin, Enhanced photocatalytic activity of (Mo, C)-codoped anatase TiO2 nanoparticles for degradation of methyl orange under simulated solar irradiation, J. Mater. Res. 25(12), 2392 (2010)
CrossRef ADS Google scholar
[109]
E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. D. MacElroy, J. A. Sullivan, and K. R. Thampi, Carbon-doped TiO2 and carbon, tungstencodoped Tio2 through sol–gel processes in the presence of melamine borate: Reflections through photocatalysis, J. Phys. Chem. C 116(31), 16511 (2012)
CrossRef ADS Google scholar
[110]
Q. Xiao and L. Gao, One-step hydrothermal synthesis of C, W-codoped mesoporous TiO2 with enhanced visible light photocatalytic activity, J. Alloys Compd. 551, 286 (2013)
CrossRef ADS Google scholar
[111]
J. Xu, C. Chen, X. Xiao, L. Liao, L. Miao, W. Wu, F. Mei, A. L. Stepanov, G. Cai, Y. Liu, Z. Dai, F. Ren, C. Jiang, and J. Liu, Synergistic effect of V/N codoping by ion implantation on the electronic and optical properties of TiO2, J. Appl. Phys. 115(14), 143106 (2014)
CrossRef ADS Google scholar
[112]
X. Ma, Y. Wu, Y. Lu, J. Xu, Y. Wang, and Y. Zhu, Effect of compensated codoping on the photoelectrochemical properties of anatase TiO2 photocatalyst, J. Phys. Chem. C 115(34), 16963 (2011)
CrossRef ADS Google scholar
[113]
R. Long and N. J. English, Band gap engineering of double-cation-impurity-doped anatase-titania for visible-light photocatalysts: A hybrid density functional theory approach, Phys. Chem. Chem. Phys. 13(30), 13698 (2011)
CrossRef ADS Google scholar
[114]
R. Long and N. J. English, Electronic structure of cation-codoped TiO2 for visible-light photocatalyst applications from hybrid density functional theory calculations, Appl. Phys. Lett. 98(14), 142103 (2011)
CrossRef ADS Google scholar
[115]
H. Irie, Y. Watanabe, and K. Hashimoto, Nitrogenconcentration dependence on photocatalytic activity of TiO2−xNx powders, J. Phys. Chem. B 107(23), 5483 (2003)
CrossRef ADS Google scholar
[116]
J. Neugebauer and C. G. Van de Walle, Role of hydrogen in doping of GaN, Appl. Phys. Lett. 68(13), 1829 (1996)
CrossRef ADS Google scholar
[117]
S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Thermal annealing effects on p-type Mg-doped GaN films, Jpn. J. Appl. Phys. 31, L139 (1992)
CrossRef ADS Google scholar
[118]
W. Zhu, X. Qiu, V. Iancu, X. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres, and Z. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
CrossRef ADS Google scholar
[119]
F. Wu, H. Lan, Z. Zhang, and P. Cui, Quantum efficiency of intermediate-band solar cells based on noncompensated np codoped TiO2, J. Chem. Phys. 137(10), 104702 (2012)
CrossRef ADS Google scholar
[120]
X. Li, G. Wu, G. Zhong, W. Li, G. Lu, C. Yang, X. Xiao, and Z. Zhang, Single element non-compensate np codoped CuAlSe2 as candidate materials for intermediateband solar cells (2015)
[121]
M. Han, X. Zhang, Y. Zhang, and Z. Zeng, The group VA element non-compensated n–p codoping in CuGaS2 for intermediate band materials, Sol. Energy Mater. Sol. Cells 144, 664 (2016)
CrossRef ADS Google scholar
[122]
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef ADS Google scholar
[123]
M. Grätzel, Photoelectrochemical cells, Nature 414 (6861), 338 (2001)
CrossRef ADS Google scholar
[124]
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
CrossRef ADS Google scholar
[125]
A. Luque and A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Phys. Rev. Lett. 78(26), 5014 (1997)
CrossRef ADS Google scholar
[126]
M. E. Kurtoglu, T. Longenbach, K. Sohlberg, and Y. Gogotsi, Strong coupling of Cr and N in Cr–N-doped TiO2 and its effect on photocatalytic activity, J. Phys. Chem. C 115(35), 17392 (2011)
CrossRef ADS Google scholar
[127]
Y. Li, W. Wang, X. Qiu, L. Song, M. P. IIIMeyer, G. Paranthaman, Z. Eres, Zhang, and B. Gu, Comparing Cr, and N only doping with (Cr, N)-codoping for enhancing visible light reactivity of TiO2, Appl. Catal. B 110, 148 (2011)
CrossRef ADS Google scholar
[128]
M. Chiodi, C. P. Cheney, P. Vilmercati, E. Cavaliere, N. Mannella, H. H. Weitering, and L. Gavioli, Enhanced dopant solubility and visible-light absorption in Cr–N codoped TiO2 nanoclusters, J. Phys. Chem. C 116(1), 311 (2012)
CrossRef ADS Google scholar
[129]
J. Jaćimović, R. Gaal, A. Magrez, L. Forró, M. Regmi, and G. Eres, Electrical property measurements of Cr-N codoped TiO2 epitaxial thin films grown by pulsed laser deposition, Appl. Phys. Lett. 102(17), 172108 (2013)
CrossRef ADS Google scholar
[130]
Y. Wang, Z. Cheng, S. Tan, X. Shao, B. Wang, and J. Hou, Characterization of Cr–N codoped anatase TiO2(001) thin films epitaxially grown on SrTiO3(001) substrate, Surf. Sci. 616, 93 (2013)
CrossRef ADS Google scholar
[131]
C. P. Cheney, P. Vilmercati, E. W. Martin, M. Chiodi, L. Gavioli, M. Regmi, G. Eres, T. A. Callcott, H. H. Weitering, and N. Mannella, Origins of electronic band gap reduction in Cr/N codoped TiO2, Phys. Rev. Lett. 112(3), 036404 (2014)
CrossRef ADS Google scholar
[132]
W. Lu, H. Nguyen, C. Wu, K. Chang, and M. Yoshimura, Modulation of physical and photocatalytic properties of (Cr, N) codoped TiO2 nanorods using soft solution processing, J. Appl. Phys. 115(14), 144305 (2014)
CrossRef ADS Google scholar
[133]
Z. Bi, M. P. Paranthaman, B. Guo, R. R. Unocic, C. A. IIIMeyer, X. Bridges, Sun, and S. Dai, High performance Cr, N-codoped mesoporous TiO2 microspheres for lithium-ion batteries, J. Mater. Chem. A 2(6), 1818 (2014)
CrossRef ADS Google scholar
[134]
M. Khan, J. Xu, N. Chen, and W. Cao, First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2, J. Alloys Compd. 513, 539 (2012)
CrossRef ADS Google scholar
[135]
J. Zhang, J. Xi, and Z. Ji, Mo N codoped TiO2 sheets with dominant {001} facets for enhancing visible-light photocatalytic activity, J. Mater. Chem. 22(34), 17700 (2012)
CrossRef ADS Google scholar
[136]
M. Li, J. Zhang, and Y. Zhang, Electronic structure and photocatalytic activity of N/Mo doped anatase TiO2, Catal. Commun. 29, 175 (2012)
CrossRef ADS Google scholar
[137]
W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys. 32(3), 510 (1961)
CrossRef ADS Google scholar
[138]
A. Luque and A. Marti, A metallic intermediate band high efficiency solar cell, Prog. Photovolt. Res. Appl. 9(2), 73 (2001)
CrossRef ADS Google scholar
[139]
H. Katayama-Yoshida, R. Kato, and T. Yamamoto, New valence control and spin control method in GaN and AlN by codoping and transition atom doping, J. Cryst. Growth 231(3), 428 (2001)
CrossRef ADS Google scholar
[140]
J. Li and J. Kang, Polarization effect on p-type doping efficiency in Mg–Si codoped wurtzite GaN from first-principles calculations, Phys. Rev. B 71(3), 035216 (2005)
CrossRef ADS Google scholar
[141]
K. H. Ploog and O. Brandt, Doping of group III nitrides, J. Vac. Sci. Technol. A 16(3), 1609 (1998)
CrossRef ADS Google scholar
[142]
K. S. Kim, C. S. Oh, M. S. Han, C. S. Kim, G. M. Yang, J. W. Yang, C. Hong, C. J. Youn, K. Y. Lim, and H. J. Lee, Co-doping characteristics of Si and Zn with Mg in p-type GaN, MRS Proceedings 595, F99W3.84 (1999)
[143]
T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, and A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation, J. Mater. Sci. 41(11), 3527 (2006)
CrossRef ADS Google scholar
[144]
H. Pan, B. Gu, G. Eres, and Z. Zhang, Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion, J. Chem. Phys. 132(10), 104501 (2010)
CrossRef ADS Google scholar
[145]
Z. Xu, Q. Zheng, and G. Su, Charged states and band-gap narrowing in codoped ZnO nanowires for enhanced photoelectrochemical responses: Density functional first-principles calculations, Phys. Rev. B 85(7), 075402 (2012)
CrossRef ADS Google scholar
[146]
S. Kishimoto, T. Hasegawa, H. Kinto, O. Matsumoto, and S. Iida, Effect and comparison of co-doping of Ag, AgIn, and AgCl in ZnS:N/GaAs layers prepared by vapor-phase epitaxy, J. Cryst. Growth214–215, 556 (2000)
CrossRef ADS Google scholar
[147]
T. Yamamoto, S. Kishimoto, and S. Iida, Control of valence states for ZnS by triple-codoping method, Physica B308–310, 916 (2001)
CrossRef ADS Google scholar
[148]
M. Muruganandham and Y. Kusumoto, Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst, J. Phys. Chem. C113(36), 16144 (2009)
CrossRef ADS Google scholar
[149]
H. Sun, X. Zhao, L. Zhang, and W. Fan, Origin of the enhanced visible photocatalytic activity in (N, C)- codoped ZnS studied from density functional theory, J. Phys. Chem. C 115(5), 2218 (2011)
CrossRef ADS Google scholar
[150]
W. Yin, S. Wei, M. M. Al-Jassim, and Y. Yan, Doublehole- mediated coupling of dopants and its impact on band gap engineering in TiO2, Phys. Rev. Lett. 106(6), 066801 (2011)
CrossRef ADS Google scholar
[151]
P. Wang, Z. Liu, F. Lin, G. Zhou, J. Wu, W. Duan, B. Gu, and S. Zhang, Optimizing photoelectrochemical properties of TiO2 by chemical codoping, Phys. Rev. B 82(19), 193103 (2010)
CrossRef ADS Google scholar
[152]
J. Li, S. Wei, S. Li, and J. Xia, Design of shallow acceptors in ZnO: First-principles band-structure calculations, Phys. Rev. B 74(8), 081201 (2006)
CrossRef ADS Google scholar
[153]
X. Zhang, X. Li, T. Chen, C. Zhang, and W. Yu, ptype conduction in wide-gap Zn1−xMgxO films grown by ultrasonic spray pyrolysis, Appl. Phys. Lett. 87, 2101 (2005)
[154]
T. Kataoka, Y. Yamazaki, V. Singh, Y. Sakamoto, A. Fujimori, Y. Takeda, T. Ohkochi, S. Fujimori, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, M. Kapilashrami, L. Belova, and K. V. Rao, Ferromagnetism in ZnO codoped with Mn and N studied by soft X-ray magnetic circular dichroism, Appl. Phys. Lett. 99(13), 132508 (2011)
CrossRef ADS Google scholar
[155]
L. Shen, R. Wu, H. Pan, G. Peng, M. Yang, Z. Sha, and Y. Feng, Mechanism of ferromagnetism in nitrogendoped ZnO: First-principle calculations, Phys. Rev. B 78(7), 073306 (2008)
CrossRef ADS Google scholar
[156]
H. Jung, C. Song, S. Wang, K. Arai, Y. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a d-doping technique, Appl. Phys. Lett. 70(9), 1143 (1997)
CrossRef ADS Google scholar
[157]
M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev. 11(3), 401 (2007)
CrossRef ADS Google scholar
[158]
M. Sathish, B. Viswanathan, R. Viswanath, and C. S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst, Chem. Mater. 17(25), 6349 (2005)
CrossRef ADS Google scholar
[159]
H. Sun, Y. Bai, Y. Cheng, W. Jin, and N. Xu, Preparation and characterization of visible-light-driven carbonsulfur- codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45(14), 4971 (2006)
CrossRef ADS Google scholar
[160]
L. Jia, C. Wu, Y. Li, S. Han, Z. Li, B. Chi, J. Pu, and L. Jian, Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping, Appl. Phys. Lett. 98(21), 211903 (2011)
CrossRef ADS Google scholar
[161]
D. B. Hamal and K. J. Klabunde, Valence state and catalytic role of cobalt ions in cobalt TiO2 nanoparticle photocatalysts for acetaldehyde degradation under visible light, J. Phys. Chem. C 115(35), 17359 (2011)
CrossRef ADS Google scholar
[162]
A. N. Mangham, N. Govind, M. E. Bowden, V. Shutthanandan, A. G. Joly, M. A. Henderson, and S. A. Chambers, Photochemical properties, composition, and structure in molecular beam epitaxy grown Fe “doped” and (Fe, N) codoped rutile TiO2(110), J. Phys. Chem. C 115(31), 15416 (2011)
CrossRef ADS Google scholar
[163]
C. Park, S. Zhang, and S. Wei, Origin of p-type dopingdifficulty in ZnO: The impurity perspective, Phys. Rev. B 66(7), 073202 (2002)
CrossRef ADS Google scholar
[164]
K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Chemical manipulation of high-Tc ferromagnetism in ZnO diluted magnetic semiconductors, Phys. Rev. Lett. 94(14), 147209 (2005)
CrossRef ADS Google scholar
[165]
K. R. Kittilstved and D. R. Gamelin, Manipulating polar ferromagnetism in transition metal doped ZnO: Why manganese is different from cobalt, J. Appl. Phys. 99, 08M112 (2006)
[166]
L. Zhao, P. Lu, Z. Yu, X. Guo, Y. Shen, H. Ye, G. Yuan, and L. Zhang, The electronic and magnetic properties of (Mn, N)-codoped ZnO from first principles, J. Appl. Phys. 108(11), 113924 (2010)
CrossRef ADS Google scholar
[167]
K. Wu, S. Gu, K. Tang, J. Ye, S. Zhu, M. Zhou, Y. Huang, M. Xu, R. Zhang, and Y. Zheng, Temperaturedependent magnetization in (Mn, N)-codoped ZnObased diluted magnetic semiconductors, J. Magn. Magn. Mater. 324(8), 1649 (2012)
CrossRef ADS Google scholar
[168]
J. Gaines, R. Drenten, K. Haberern, T. Marshall, P. Mensz, and J. Petruzzello, Blue-green injection lasers containing pseudomorphic Zn1−xMgxSySe1−y cladding layers and operating up to 394 K, Appl. Phys. Lett. 62(20), 2462 (1993)
CrossRef ADS Google scholar
[169]
P. Mensz, S. Herko, K. Haberern, J. Gaines, and C. Ponzoni, Electrical characterization of p-type ZnSe:N andZn1−xMgxSySe1−y:N thin films, Appl. Phys. Lett. 63(20), 2800 (1993)
CrossRef ADS Google scholar
[170]
S. M. Myers, M. Baskes, H. Birnbaum, J. W. Corbett, G. DeLeo, S. Estreicher, E. E. Haller, P. Jena, N. M. Johnson, R. Kirchheim, S. J. Pearton, and M. J. Stavola, Hydrogen interactions with defects in crystallinesolids, Rev. Mod. Phys. 64(2), 559 (1992)
CrossRef ADS Google scholar
[171]
T. Kuech and J. Redwing, Carbon doping in metalorganic vapor phase epitaxy, J. Cryst. Growth 145(1–4), 382 (1994)
CrossRef ADS Google scholar
[172]
M. McCluskey, N. Johnson, C. G. Van de Walle, D. P. Bour, M. Kneissl, and W. Walukiewicz, Metastability of oxygen donors in AlGaN, Phys. Rev. Lett. 80(18), 4008 (1998)
CrossRef ADS Google scholar
[173]
J. I. Pankove and N. M. Johnson (<Eds/>.), Hydrogen in Semiconductors, Hydrogen in SiliconVolume34 (1991)
[174]
C. G. Van de Walle and J. Neugebauer, Hydrogen in semiconductors, Annu. Rev. Mater. Res. 36(1), 179 (2006)
CrossRef ADS Google scholar
[175]
S. Nakamura, Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes, Rev. Mod. Phys. 87(4), 1139 (2015)
CrossRef ADS Google scholar
[176]
H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Ptype conduction in Mg-doped GaN treated with lowenergy electron beam irradiation (LEEBI), Jpn. J. Appl. Phys. 28, L2112 (1989)
CrossRef ADS Google scholar
[177]
S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Hole compensation mechanism of p-type GaN films, Jpn. J. Appl. Phys. 31, 1258 (1992)
CrossRef ADS Google scholar
[178]
A. Marinopoulos, Incorporation and migration of hydrogen in yttria-stabilized cubic zirconia: Insights from semilocal and hybrid-functional calculations, Phys. Rev. B 86(15), 155144 (2012)
CrossRef ADS Google scholar
[179]
S. K. Estreicher, Hydrogen-related defects in crystalline semiconductors: A theorist’s perspective, Mater. Sci. Eng. Rep. 14(7–8), 319 (1995)
CrossRef ADS Google scholar
[180]
M. Stutzmann and J. Chevallier (<Eds/>.), Hydrogen in semiconductors: Bulk and surface properties, Physica B 170, 1 (1991)
[181]
S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in crystalline semiconductors, Appl. Phys. A 43(3), 153 (1987)
CrossRef ADS Google scholar
[182]
A. J. Morris, C. J. Pickard, and R. Needs, Hydrogen/ silicon complexes in silicon from computational searches, Phys. Rev. B 78(18), 184102 (2008)
CrossRef ADS Google scholar
[183]
A. J. Morris, C. J. Pickard, and R. Needs, Hydrogen/ nitrogen/oxygen defect complexes in silicon from computational searches, Phys. Rev. B 80(14), 144112 (2009)
CrossRef ADS Google scholar
[184]
A. Peles, A. Janotti, and C. Van de Walle, Electrical activity of hydrogen impurities in GaSb: First-principles calculations, Phys. Rev. B 78(3), 035204 (2008)
CrossRef ADS Google scholar
[185]
V. Darakchieva, K. Lorenz, N. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. Hsiao, L. Chen, W. Schaff, L. W. Tu, T. Yamaguchi, and Y. Nanishi, Hydrogen in InN: A ubiquitous phenomenon in molecular beam epitaxy grown material, Appl. Phys. Lett. 96(8), 081907 (2010)
CrossRef ADS Google scholar
[186]
D. Dagnelund, X. Wang, C. Tu, A. Polimeni, M. Capizzi, W. Chen, and I. Buyanova, Effect of postgrowth hydrogen treatment on defects in GaNP, Appl. Phys. Lett. 98(14), 141920 (2011)
CrossRef ADS Google scholar
[187]
D. Dagnelund, I. Vorona, G. Nosenko, X. Wang, C. Tu, H. Yonezu, A. Polimeni, M. Capizzi, W. Chen, and I. Buyanova, Effects of hydrogenation on non-radiative defects in GaNP and GaNAs alloys: An optically detected magnetic resonance study, J. Appl. Phys. 111(2), 023501 (2012)
CrossRef ADS Google scholar
[188]
N. Balakrishnan, G. Pettinari, O. Makarovsky, L. Turyanska, M. Fay, M. De Luca, A. Polimeni, M. Capizzi, F. Martelli, S. Rubini, and A. Patanè, Band-gap profiling by laser writing of hydrogen-containing III-N-Vs, Phys. Rev. B 86(15), 155307 (2012)
CrossRef ADS Google scholar
[189]
M. Feneberg, N. T. Son, and A. Kakanakova-Georgieva, Exciton luminescence in AlN triggered by hydrogen and thermal annealing, Appl. Phys. Lett. 106(24), 242101 (2015)
CrossRef ADS Google scholar
[190]
M. Choi, A. Janotti, and C. G. Van de Walle, Hydrogen passivation of impurities in Al2O3, ACS Appl. Mater. Interfaces 6(6), 4149 (2014)
CrossRef ADS Google scholar
[191]
R. Vidya, P. Ravindran, and H. Fjellvåg, Understanding H-defect complexes in ZnO, arXiv: 1309. 5217 (2013)
[192]
X. Li, B. Keyes, S. Asher, S. Zhang, S. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, Hydrogen passivation effect in nitrogen-doped ZnO thin films, Appl. Phys. Lett. 86(12), 122107 (2005)
CrossRef ADS Google scholar
[193]
X. Li, S. E. Asher, S. Limpijumnong, B. M. Keyes, C. L. Perkins, T. M. Barnes, H. R. Moutinho, J. M. Luther, S. Zhang, S. Wei, and T. J. Coutts, Impurity effects in ZnO and nitrogen-doped ZnO thin films fabricated by MOCVD, J. Cryst. Growth 287(1), 94 (2006)
CrossRef ADS Google scholar
[194]
S. Lin, H. He, Y. Lu, and Z. Ye, Mechanism of Nadoped p-type ZnO films: Suppressing Na interstitials by codoping with H and Na of appropriate concentrations, J. Appl. Phys. 106(9), 093508 (2009)
CrossRef ADS Google scholar
[195]
F. Filippone, G. Mattioli, P. Alippi, and A. AmoreBonapasta, Properties of hydrogen and hydrogen– vacancy complexes in the rutile phase of titanium dioxide, Phys. Rev. B 80(24), 245203 (2009)
CrossRef ADS Google scholar
[196]
H. Pan, Y. Zhang, V. B. Shenoy, and H. Gao, Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2, J. Phys. Chem. C 115(24), 12224 (2011)
CrossRef ADS Google scholar
[197]
C. Park and D. Chadi, Hydrogen-mediated spin-spin interaction in ZnCoO, Phys. Rev. Lett. 94(12), 127204 (2005)
CrossRef ADS Google scholar
[198]
M. Assadi, Y. Zhang, and S. Li, Hydrogen multicenter bond mediated magnetism in Co doped ZnO, J. Phys.: Condens. Matter 22(15), 156001 (2010)
CrossRef ADS Google scholar
[199]
K. Wu, S. Gu, K. Tang, J. Ye, S. Zhu, M. Zhou, Y. Huang, M. Xu, R. Zhang, and Y. Zheng, Hydrogen diffusion behavior and its effect on magnetic properties in (Mn, N)-codoped ZnO, Physica B 454, 115 (2014)
CrossRef ADS Google scholar
[200]
S. Nehra and M. Singh, Role of hydrogen in CdTe–Mn thin film bilayer structure, J. Alloys Compd. 488(1), 356 (2009)
CrossRef ADS Google scholar
[201]
S. Nehra, M. Jangid, S. Srivastava, A. Kumar, B. Tripathi, M. Singh, and Y. Vijay, Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films, Int. J. Hydrogen Energy 34(17), 7306 (2009)
CrossRef ADS Google scholar
[202]
S. Nehra and M. Singh, Effect of vacuum annealing and hydrogenation on ZnSe/Mn multilayer diluted magnetic semiconductor thin films, Vacuum 85(7), 719 (2011)
CrossRef ADS Google scholar
[203]
R. Nazarov, T. Hickel, and J. Neugebauer, Firstprinciples study of the thermodynamics of hydrogenvacancy interaction in fcc iron, Phys. Rev. B 82(22), 224104 (2010)
CrossRef ADS Google scholar
[204]
Y. Tateyama and T. Ohno, Stability and clusterization of hydrogen-vacancy complexes in-Fe: An ab initio study, Phys. Rev. B 67(17), 174105 (2003)
CrossRef ADS Google scholar
[205]
G. Lu and E. Kaxiras, Hydrogen embrittlement of aluminum: the crucial role of vacancies, Phys. Rev. Lett. 94(15), 155501 (2005)
CrossRef ADS Google scholar
[206]
O. Y. Vekilova, D. Bazhanov, S. Simak, and I. Abrikosov, First-principles study of vacancy-hydrogen interaction in Pd, Phys. Rev. B 80(2), 024101 (2009)
CrossRef ADS Google scholar
[207]
W. Theis, K. Bajaj, C. Litton, and W. Spitzer, Direct evidence for the site of substitutional carbon impurity in GaAs, Appl. Phys. Lett. 41(1), 70 (1982)
CrossRef ADS Google scholar
[208]
J. Geisz, D. Friedman, J. Olson, S. R. Kurtz, and B. Keyes, Photocurrent of 1eV GaInNAs lattice-matched to GaAs, J. Cryst. Growth 195(1–4), 401 (1998)
CrossRef ADS Google scholar
[209]
C. Seager, A. Wright, J. Yu, and W. Götz, Role of carbon in GaN, J. Appl. Phys. 92(11), 6553 (2002)
CrossRef ADS Google scholar
[210]
M. McCluskey, E. Haller, and P. Becla, Carbon acceptors and carbon-hydrogen complexes in AlSb, Phys. Rev. B 65(4), 045201 (2001)
CrossRef ADS Google scholar
[211]
M. Strassburg, J. Senawiratne, N. Dietz, U. Haboeck, A. Hoffmann, V. Noveski, R. Dalmau, R. Schlesser, and Z. Sitar, The growth and optical properties of large, high-quality AlN single crystals, J. Appl. Phys. 96(10), 5870 (2004)
CrossRef ADS Google scholar
[212]
J. Lyons, A. Janotti, and C. Van de Walle, Carbon impurities and the yellow luminescence in GaN, Appl. Phys. Lett. 97(15), 152108 (2010)
CrossRef ADS Google scholar
[213]
J. Lyons, A. Janotti, and C. Van de Walle, Effects of carbon on the electrical and optical properties of InN, GaN, and AlN, Phys. Rev. B 89(3), 035204 (2014)
CrossRef ADS Google scholar
[214]
S. G. Christenson, W. Xie, Y. Sun, and S. Zhang, Carbon as a source for yellow luminescence in GaN: Isolated CN defect or its complexes, J. Appl. Phys. 118(13), 135708 (2015)
CrossRef ADS Google scholar
[215]
K. Tang, S. Gu, S. Zhu, J. Liu, H. Chen, J. Ye, R. Zhang, and Y. Zheng, Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO, Appl. Phys. Lett. 95(19), 192106 (2009)
CrossRef ADS Google scholar
[216]
A. Marzouki, A. Lusson, F. Jomard, A. Sayari, P. Galtier, M. Oueslati, and V. Sallet, SIMS and Raman characterizations of ZnO:N thin films grown by MOCVD, J. Cryst. Growth 312(21), 3063 (2010)
CrossRef ADS Google scholar
[217]
J. Liu, S. Gu, S. Zhu, K. Tang, X. Liu, H. Chen, and Y. Zheng, The influences of O/Zn ratio and growth temperature on carbon impurity incorporation in ZnO grown by metal-organic chemical vapor deposition, J. Cryst. Growth 312(19), 2710 (2010)
CrossRef ADS Google scholar
[218]
A. Marzouki, A. Sayari, F. Jomard, V. Sallet, A. Lusson, and M. Oueslati, Carrier gas and VI/II ratio effects on carbon clusters incorporation into ZnO films grown by MOCVD, Mater. Sci. Semicond. Process. 16(3), 1022 (2013)
CrossRef ADS Google scholar
[219]
H. Mao, S. Gu, J. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, and Y. Zheng, Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors, J. Mater. Res. 30(07), 935 (2015)
CrossRef ADS Google scholar
[220]
K. Tang, S. Gu, S. Zhu, W. Liu, J. Ye, J. Zhu, R. Zhang, Y. Zheng, and X. Sun, Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition, Appl. Phys. Lett. 93(13), 132107 (2008)
CrossRef ADS Google scholar
[221]
H. Chen, S. Gu, W. Liu, S. Zhu, and Y. Zheng, Influence of unintentional doped carbon on growth and properties of N-doped ZnO films, J. Appl. Phys. 104(11), 113511 (2008)
CrossRef ADS Google scholar
[222]
N. Nickel, F. Friedrich, J. Rommeluère, and P. Galtier, Vibrational spectroscopy of undoped and nitrogendoped ZnO grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 87(21), 211905 (2005)
CrossRef ADS Google scholar
[223]
X. Li, S. E. Asher, S. Limpijumnong, S. Zhang, S. Wei, T. M. Barnes, T. J. Coutts, and R. Noufi, Unintentional doping and compensation effects of carbon in metalorganic chemical-vapor deposition fabricated ZnO thin films, J. Vac. Sci. Technol. A 24(4), 1213 (2006)
CrossRef ADS Google scholar
[224]
L. L. Kerr, X. Li, M. Canepa, and A. J. Sommer, Raman analysis of nitrogen doped ZnO, Thin Solid Films 515(13), 5282 (2007)
CrossRef ADS Google scholar
[225]
S. Limpijumnong, X. Li, S. Wei, and S. Zhang, Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO, Appl. Phys. Lett. 86(21), 211910 (2005)
CrossRef ADS Google scholar
[226]
K. Wu, S. Gu, K. Tang, S. Zhu, J. Ye, R. Zhang, and Y. Zheng, Influences of unintentionally doped carbon on magnetic properties in Mn–N co-doped ZnO, Thin Solid Films 519(8), 2499 (2011)
CrossRef ADS Google scholar
[227]
S. Tan, X. Sun, Z. Yu, P. Wu, G. Lo, and D. Kwong, p-type conduction in unintentional carbon-doped ZnO thin films, Appl. Phys. Lett. 91(7), 072101 (2007)
CrossRef ADS Google scholar
[228]
M. Yoshikawa, S. Ueda, K. Maruyama, and H. Takigawa, The behavior of oxygen in HgCdTe, J. Vac. Sci. Technol. A 3(1), 153 (1985)
CrossRef ADS Google scholar
[229]
M. Toth, K. Fleischer, and M. Phillips, Direct experimental evidence for the role of oxygen in the luminescent properties of GaN, Phys. Rev. B 59(3), 1575 (1999)
CrossRef ADS Google scholar
[230]
H. W. Jang, J. M. Baik, M. Lee, H. Shin, and J. Lee, Incorporation of oxygen donors in AlGaN, J. Electrochem. Soc. 151(8), G536 (2004)
CrossRef ADS Google scholar
[231]
S. Das Bakshi, J. Sumner, M. J. Kappers, and R. A. Oliver, The influence of coalescence time on unintentional doping in GaN/sapphire, J. Cryst. Growth 311(2), 232 (2009)
CrossRef ADS Google scholar
[232]
B. Mitchell, D. Timmerman, Z. Wiaxing, J. Takatsu, M. Matsuda, K. Lorenz, E. Alves, A. Koizumi, Y. Fujiwara, and V. Dierolf, The role of oxygen on the nature and stability of Eu centers in Eu doped gallium nitride, APS March Meeting 2015, abstract #F14.007
[233]
C. King, R. Johnson, T. Chiu, J. Sung, and M. Morris, Suppression of arsenic autodoping with rapid thermal epitaxy for low power bipolar complementary metal oxide semiconductor, J. Electrochem. Soc. 142(7), 2430 (1995)
CrossRef ADS Google scholar
[234]
Van de Wallea, G. Chris, and J. Neugebauer, Arsenic impurities in GaN, Appl. Phys. Lett. 8, 76 (2000)
[235]
H. Kim, F. J. Fälth, and T. G. Andersson, Unintentional incorporation of B, As, and O impurities in GaN grown by molecular beam epitaxy, J. Electron. Mater. 30(10), 1343 (2001)
CrossRef ADS Google scholar
[236]
R. Vidya, P. Ravindran, H. Fjellvåg, B. Svensson, E. Monakhov, M. Ganchenkova, and R. Nieminen, Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations, Phys. Rev. B 83(4), 045206 (2011)
CrossRef ADS Google scholar
[237]
Y. Lu, S. Russo, and Y. Feng, Effect of nitrogen and intrinsic defect complexes on conversion efficiency of ZnO for hydrogen generation from water, Phys. Chem. Chem. Phys. 13(35), 15973 (2011)
CrossRef ADS Google scholar
[238]
S. Chen, J. Yang, X. Gong, A. Walsh, and S. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, Phys. Rev. B 81(24), 245204 (2010)
CrossRef ADS Google scholar
[239]
M. Copel, M. Reuter, E. Kaxiras, and R. Tromp, Surfactants in epitaxial growth, Phys. Rev. Lett. 63(6), 632 (1989)
CrossRef ADS Google scholar
[240]
H. Van der Vegt, H. Van Pinxteren, M. Lohmeier, E. Vlieg, and J. Thornton, Surfactant-induced layer-bylayer growth of Ag on Ag(111), Phys. Rev. Lett. 68(22), 3335 (1992)
CrossRef ADS Google scholar
[241]
G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, and G. Comsa, Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth, Phys. Rev. Lett. 71(6), 895 (1993)
CrossRef ADS Google scholar
[242]
J. Meyer, J. Vrijmoeth, H. Van der Vegt, E. Vlieg, and R. Behm, Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51(20), 14790 (1995)
CrossRef ADS Google scholar
[243]
B. Voigtländer, A. Zinner, T. Weber, and H. P. Bonzel, Modification of growth kinetics in surfactant-mediated epitaxy, Phys. Rev. B 51(12), 7583 (1995)
CrossRef ADS Google scholar
[244]
S. Tanaka, S. Iwai, and Y. Aoyagi, Self-assembling GaN quantum dots on AlxGa1−xN surfaces using a surfactant, Appl. Phys. Lett. 69(26), 4096 (1996)
CrossRef ADS Google scholar
[245]
E. Rudkevich, F. Liu, D. Savage, T. Kuech, L. Mc- Caughan, and M. Lagally, Hydrogen induced Si surface segregation on Ge-covered Si(001), Phys. Rev. Lett. 81(16), 3467 (1998)
CrossRef ADS Google scholar
[246]
M. Pillai, S. Kim, S. Ho, and S. Barnett, Growth of InxGa1−xAs/GaAs heterostructures using Bi as a surfactant, J. Vac. Sci. Technol. B 18(3), 1232 (2000)
CrossRef ADS Google scholar
[247]
C. Fetzer, R. Lee, J. Shurtleff, G. Stringfellow, S. Lee, and T. Seong, The use of a surfactant (Sb) to induce triple period ordering in GaInP, Appl. Phys. Lett. 76(11), 1440 (2000)
CrossRef ADS Google scholar
[248]
A. Howard and G. Stringfellow, Effects of low surfactant Sb coverage on Zn and C incorporation in GaP, J. Appl. Phys. 102(7), 074920 (2007)
CrossRef ADS Google scholar
[249]
J. Zhu, F. Liu, and G. Stringfellow, Dual-surfactant effect to enhance p-type doping in III-V semiconductor thin films,Phys. Rev. Lett. 101(19), 196103 (2008)
CrossRef ADS Google scholar
[250]
A. Howard and G. Stringfellow, Effects of dimethylhydrazine on Zn, C, and H doping of GaP, J. Cryst. Growth 310(11), 2702 (2008)
CrossRef ADS Google scholar
[251]
L. Zhang, Y. Yan, and S. Wei, Enhancing dopant solubility via epitaxial surfactant growth, Phys. Rev. B 80(7), 073305 (2009)
CrossRef ADS Google scholar
[252]
J. Zhu, F. Liu, and G. Stringfellow, Enhanced cationsubstituted p-type doping in GaP from dual surfactant effects, J. Cryst. Growth 312(2), 174 (2010)
CrossRef ADS Google scholar
[253]
A. Howard, D. Chapman, and G. Stringfellow, Effects of surfactants Sb and Bi on the incorporation of zinc and carbon in III/V materials grown by organometallic vapor-phase epitaxy, J. Appl. Phys. 100(4), 044904 (2006)
CrossRef ADS Google scholar
[254]
T. Sato, M. Mitsuhara, R. Iga, S. Kanazawa, and Y. Inoue, Influence of Sb surfactant on carrier concentration in heavily Zn-doped InGaAs grown by metalorganic vapor phase epitaxy, J. Cryst. Growth 315(1), 64 (2011)
CrossRef ADS Google scholar
[255]
J. Zhu and S. Wei, Overcoming doping bottleneck by using surfactant and strain, Front. Mater. Sci. 5(4), 335 (2011)
CrossRef ADS Google scholar
[256]
V. Wagener, M. Wagener, and J. Botha, Electrical characteristics of cadmium doped InAs grown by metalorganic vapor phase epitaxy, J. Appl. Phys. 111(2), 023707 (2012)
CrossRef ADS Google scholar
[257]
S. Kahwaji, R. Gordon, E. Crozier, S. Roorda, M. Robertson, J. Zhu, and T. Monchesky, Surfactantmediated growth of ferromagnetic Mn d-doped Si, Phys. Rev. B 88(17), 174419 (2013)
CrossRef ADS Google scholar
[258]
J. Zhu, F. Liu, G. Stringfellow, and S. Wei, Strainenhanced doping in semiconductors: Effects of dopant size and charge state, Phys. Rev. Lett. 105(19), 195503 (2010)
CrossRef ADS Google scholar
[259]
J. Zhu and S. Wei, Tuning doping site and type by strain: Enhanced p-type doping in Li doped ZnO, Solid State Commun. 151(20), 1437 (2011)
CrossRef ADS Google scholar
[260]
B. Deng, Y. Zhang, S. Zhang, Y. Wang, K. He, and J. Zhu, Realization of stable ferromagnetic order in topological insulator: Co-doping enhanced magnetism in 4f transition metal doped Bi2Se3, arXiv: 1511.08646 (2015)
[261]
J. L. Merrell, F. Liu, and G. B. Stringfellow, Effect of surfactant Sb on In incorporation and thin film morphology of InGaN layers grown by organometallic vapor phase epitaxy, J. Cryst. Growth 375, 90 (2013)
CrossRef ADS Google scholar
[262]
Y. Zhang and J. Zhu, Surfactant antimony enhanced indium incorporation on InGaN (0001) surface: A DFT study, J. Cryst. Growth 438, 43 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 The Author(s) 2016. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(641 KB)

Accesses

Citations

Detail

Sections
Recommended

/