Journal home Browse Featured articles

Featured articles

  • Select all
  • RESEARCH ARTICLE
    Wei-Xia Wu, Chen-Pu Li, Yan-Li Song, Ying-Rong Han, Zhi-Gang Zheng
    Frontiers of Physics, 2021, 16(3): 31500. https://doi.org/10.1007/s11467-021-1057-x

    Considering a double-headed Brownian motor moving with both translational and rotational degrees of freedom, we investigate the directed transport properties of the system in a traveling-wave potential. It is found that the traveling wave provides the essential condition of the directed transport for the system, and at an appropriate angular frequency, the positive current can be optimized. A general current reversal appears by modulating the angular frequency of the traveling wave, noise intensity, external driving force and the rod length. By transforming the dynamical equation in traveling-wave potential into that in a tilted potential, the mechanism of current reversal is analyzed. For both cases of Gaussian and Lévy noises, the currents show similar dependence on the parameters. Moreover, the current in the tilted potential shows a typical stochastic resonance effect. The external driving force has also a resonance-like effect on the current in the tilted potential. But the current in the traveling-wave potential exhibits the reverse behaviors of that in the tilted potential. Besides, the currents obviously depend on the stability index of the Lévy noise under certain conditions.

  • RESEARCH ARTICLE
    Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu
    Frontiers of Physics, 2020, 15(6): 61501. https://doi.org/10.1007/s11467-020-1010-4

    One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.

  • RESEARCH HIGHLIGHT
    Linran Fan
    Frontiers of Physics, 2021, 16(2): 21501. https://doi.org/10.1007/s11467-020-1023-z
  • RESEARCH ARTICLE
    Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng
    Frontiers of Physics, 2021, 16(1): 11501. https://doi.org/10.1007/s11467-020-1005-1

    Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side. Besides the unconditional security, people also seek for high key generation rate, but MDI-QKD has relatively low key generation rate. In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of freedom (DOFs) of single photons to generate keys. Compared with other high-dimension MDI-QKD protocols encoding in one DOF, our protocol is more flexible, for our protocol generating keys in independent subsystems and the detection failure or error in a DOF not affecting the information encoding in other DOFs. Based on above features, our MDI-QKD protocol may have potential application in future quantum communication field.

  • RESEARCH ARTICLE
    Xiao-Jun Tan, You-Jin Deng, Jesper Lykke Jacobsen
    Frontiers of Physics, 2020, 15(4): 41501. https://doi.org/10.1007/s11467-020-0972-6

    We study N-cluster correlation functions in four- and five-dimensional (4D and 5D) bond percolation by extensive Monte Carlo simulation. We reformulate the transfer Monte Carlo algorithm for percolation [Phys. Rev. E72, 016126 (2005)] using the disjoint-set data structure, and simulate a cylindrical geometry Ld−1 × ∞, with the linear size up to L = 512 for 4D and 128 for 5D. We determine with a high precision all possible N-cluster exponents, for N =2 and 3, and the universal amplitude for a logarithmic correlation function. From the symmetric correlator with N=2, we obtain the correlationlength critical exponent as 1/ν=1.4610(12) for 4D and 1/ν=1.737(2) for 5D, significantly improving over the existing results. Estimates for the other exponents and the universal logarithmic amplitude have not been reported before to our knowledge. Our work demonstrates the validity of logarithmic conformal field theory and adds to the growing knowledge for high-dimensional percolation.

  • TOPICAL REVIEW
    Wei-Dong Zhou, Yu-Hui Guo, Ran-Ran Zhang
    Frontiers of Physics, 2020, 15(5): 52201. https://doi.org/10.1007/s11467-020-0969-1

    Recently, laser ablation assisted spark induced breakdown spectroscopy (LA-SIBS) has been growing rapidly and continue to be extended to a broad range of materials analysis. Characterized by employing a specifically designed high voltage and pulse discharge circuit to generate a spark and used to enhance plasma emission produced by laser ablation, allows direct analysis of materials without prior sample preparation. This paper reviews recent development and application of laser ablation assisted spark induced breakdown spectroscopy for material analysis. Following a summary of fundamentals and instrumentation of the LA-SIBS analytical technique, the development and applications of laser ablation assisted spark induced breakdown spectroscopy for the analysis of conducting materials and insulating materials is described.

  • RESEARCH ARTICLE
    Xiao-Dong Wu, Yi-Jun Wang, Duan Huang, Ying Guo
    Frontiers of Physics, 2020, 15(3): 31601. https://doi.org/10.1007/s11467-020-0954-8

    We propose a novel scheme for measurement-device-independent (MDI) continuous-variable quantum key distribution (CVQKD) by simultaneously conducting classical communication and QKD, which is called “simultaneous MDI-CVQKD” protocol. In such protocol, each sender (Alice, Bob) can superimpose random numbers for QKD on classical information by taking advantage of the same weak coherent pulse and an untrusted third party (Charlie) decodes it by using the same coherent detectors, which could be appealing in practice due to that multiple purposes can be realized by employing only single communication system. What is more, the proposed protocol is MDI, which is immune to all possible side-channel attacks on practical detectors. Security results illustrate that the simultaneous MDI-CVQKD protocol can secure against arbitrary collective attacks. In addition, we employ phasesensitive optical amplifiers to compensate the imperfection existing in practical detectors. With this technology, even common practical detectors can be used for detection through choosing a suitable optical amplifier gain. Furthermore, we also take the finite-size effect into consideration and show that the whole raw keys can be taken advantage of to generate the final secret key instead of sacrificing part of them for parameter estimation. Therefore, an enhanced performance of the simultaneous MDI-CVQKD protocol can be obtained in finite-size regime.

  • RESEARCH ARTICLE
    Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Shi-Hai Dong
    Frontiers of Physics, 2020, 15(1): 11602. https://doi.org/10.1007/s11467-019-0940-1

    Using the single-mode approximation, we first calculate entanglement measures such as negativity (1–3 and 1–1 tangles) and von Neumann entropy for a tetrapartite W-Class system in noninertial frame and then analyze the whole entanglement measures, the residual π4 and geometric Π4 average of tangles. Notice that the difference between π4 and Π4 is very small or disappears with the increasing accelerated observers. The entanglement properties are compared among the different cases from one accelerated observer to four accelerated observers. The results show that there still exists entanglement for the complete system even when acceleration r tends to infinity. The degree of entanglement is disappeared for the 1–1 tangle case when the acceleration r>0.472473. We reexamine the Unruh effect in noninertial frames. It is shown that the entanglement system in which only one qubit is accelerated is more robust than those entangled systems in which two or three or four qubits are accelerated. It is also found that the von Neumann entropy S of the total system always increases with the increasing accelerated observers, but the Sκξ and Sκζδ with two and three involved noninertial qubits first increases and then decreases with the acceleration parameter r, but they are equal to constants 1 and 0.811278 respectively for zero involved noninertial qubit.

  • RESEARCH ARTICLE
    Lei-Xia Liang, Yan-Yan Zheng, Yuan-Xia Zhang, Mei Zhang
    Frontiers of Physics, 2020, 15(2): 21601. https://doi.org/10.1007/s11467-019-0931-2

    We propose a scheme for error-detected generation of an N-photon cluster state with a quantum dot (QD) embedded in a single-sided optical microcavity (QD-cavity system). The basic structure of this scheme is an error-detected controlled-phase (C-phase) gate on the hybrid electron–photon system. In this scheme, the fidelity of N-photon cluster state generation can be reached unity even if low-Q cavity and cavity leakage are considered. By using error detecting, the generation of an N-photon cluster state can be performed by repeating until success, which also leads to a high success probability, compared with other schemes assisted by the QD-cavity system. The error-detected generation of an N-photon cluster state in the highly controllable way may benefit on the quantum network in the future.

  • RESEARCH ARTICLE
    Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang
    Frontiers of Physics, 2019, 14(5): 52601. https://doi.org/10.1007/s11467-019-0922-3

    Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system. Particularly, we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.