Journal home Browse Featured articles

Featured articles

  • Select all
  • RESEARCH ARTICLE
    Ze-Guo Wang, Shi-Jie Wei, Gui-Lu Long
    Frontiers of Physics, 2022, 17(4): 41501. https://doi.org/10.1007/s11467-021-1141-2

    Advanced Encryption Standard (AES) is one of the most widely used block ciphers nowadays, and has been established as an encryption standard in 2001. Here we design AES-128 and the sample-AES (S-AES) quantum circuits for deciphering. In the quantum circuit of AES-128, we perform an affine transformation for the SubBytes part to solve the problem that the initial state of the output qubits in SubBytes is not the |0>⊗8 state. After that, we are able to encode the new round sub-key on the qubits encoding the previous round sub-key, and this improvement reduces the number of qubits used by 224 compared with Langenberg et al.’s implementation. For S-AES, a complete quantum circuit is presented with only 48 qubits, which is already within the reach of existing noisy intermediate-scale quantum computers.

  • RESEARCH ARTICLE
    Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren
    Frontiers of Physics, 2022, 17(3): 31501. https://doi.org/10.1007/s11467-021-1120-7

    In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.

  • RESEARCH ARTICLE
    Pei-Shun Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng
    Frontiers of Physics, 2022, 17(2): 21501. https://doi.org/10.1007/s11467-021-1103-8

    The entangled coherent states (ECSs) have been widely used to realize quantum information processing tasks. However, the ECSs may suffer from photon loss and decoherence due to the inherent noise in quantum channel, which may degrade the fidelity of ECSs. To overcome these obstacles, we present a measurement-based entanglement purification protocol (MBEPP) for ECSs to distill some highquality ECSs from a large number of low-quality copies. We first show the principle of this MBEPP without considering the photon loss. After that, we prove that this MBEPP is feasible to correct the error resulted from the photon loss. Additionally, this MBEPP only requires to operate the Bell state measurement without performing local two-qubit gates on the noisy pairs and the purified high-quality ECSs can be preserved for other applications. This MBEPP may have application potential in the implementation of long-distance quantum communication.

  • RESEARCH ARTICLE
    Qi-Ping Su, Hanyu Zhang, Chui-Ping Yang
    Frontiers of Physics, 2021, 16(6): 61501. https://doi.org/10.1007/s11467-021-1098-1

    We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.

  • RESEARCH ARTICLE
    Wei-Xia Wu, Chen-Pu Li, Yan-Li Song, Ying-Rong Han, Zhi-Gang Zheng
    Frontiers of Physics, 2021, 16(3): 31500. https://doi.org/10.1007/s11467-021-1057-x

    Considering a double-headed Brownian motor moving with both translational and rotational degrees of freedom, we investigate the directed transport properties of the system in a traveling-wave potential. It is found that the traveling wave provides the essential condition of the directed transport for the system, and at an appropriate angular frequency, the positive current can be optimized. A general current reversal appears by modulating the angular frequency of the traveling wave, noise intensity, external driving force and the rod length. By transforming the dynamical equation in traveling-wave potential into that in a tilted potential, the mechanism of current reversal is analyzed. For both cases of Gaussian and Lévy noises, the currents show similar dependence on the parameters. Moreover, the current in the tilted potential shows a typical stochastic resonance effect. The external driving force has also a resonance-like effect on the current in the tilted potential. But the current in the traveling-wave potential exhibits the reverse behaviors of that in the tilted potential. Besides, the currents obviously depend on the stability index of the Lévy noise under certain conditions.

  • RESEARCH ARTICLE
    Mei-Yu Wang, Fengli Yan, Ting Gao
    Frontiers of Physics, 2021, 16(4): 41501. https://doi.org/10.1007/s11467-021-1059-8

    Remote state preparation (RSP) provides a useful way of transferring quantum information between two distant nodes based on the previously shared entanglement. In this paper, we study RSP of an arbitrary single-photon state in two degrees of freedom (DoFs). Using hyper-entanglement as a shared resource, our first goal is to remotely prepare the single-photon state in polarization and frequency DoFs and the second one is to reconstruct the single-photon state in polarization and time-bin DoFs. In the RSP process, the sender will rotate the quantum state in each DoF of the photon according to the knowledge of the state to be communicated. By performing a projective measurement on the polarization of the sender’s photon, the original single-photon state in two DoFs can be remotely reconstructed at the receiver’s quantum systems. This work demonstrates a novel capability for longdistance quantum communication.

  • RESEARCH ARTICLE
    Na-Na Zhang (张娜娜), Ming-Jie Tao (陶明杰), Wan-Ting He (何宛亭), Xin-Yu Chen (陈鑫宇), Xiang-Yu Kong (孔祥宇), Fu-Guo Deng (邓富国), Neill Lambert, Qing Ai (艾清)
    Frontiers of Physics, 2021, 16(5): 51501. https://doi.org/10.1007/s11467-021-1064-y

    Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems. On a quantum computer, only log2N qubits are required for the simulation of an N-dimensional quantum system, hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods. Recently, a quantum simulation approach was proposed for studying photosynthetic light harvesting [npj Quantum Inf. 4, 52 (2018)]. In this paper, we apply the approach to simulate the open quantum dynamics of various photosynthetic systems. We show that for Drude–Lorentz spectral density, the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency. We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density. The effects of different types of baths, e.g., Ohmic, sub-Ohmic, and super-Ohmic spectral densities are also studied. The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.

  • RESEARCH ARTICLE
    Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu
    Frontiers of Physics, 2020, 15(6): 61501. https://doi.org/10.1007/s11467-020-1010-4

    One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.

  • RESEARCH HIGHLIGHT
    Linran Fan
    Frontiers of Physics, 2021, 16(2): 21501. https://doi.org/10.1007/s11467-020-1023-z
  • RESEARCH ARTICLE
    Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng
    Frontiers of Physics, 2021, 16(1): 11501. https://doi.org/10.1007/s11467-020-1005-1

    Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side. Besides the unconditional security, people also seek for high key generation rate, but MDI-QKD has relatively low key generation rate. In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of freedom (DOFs) of single photons to generate keys. Compared with other high-dimension MDI-QKD protocols encoding in one DOF, our protocol is more flexible, for our protocol generating keys in independent subsystems and the detection failure or error in a DOF not affecting the information encoding in other DOFs. Based on above features, our MDI-QKD protocol may have potential application in future quantum communication field.