Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED
Qi-Ping Su, Hanyu Zhang, Chui-Ping Yang
Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.
entangled state / single-photon-state qubit / coherent-state qubit / circuit QED
[1] |
T. C. Ralph and G. J. Pryde, Optical quantum computation, Prog. Opt.54, 209 (2010)
CrossRef
ADS
Google scholar
|
[2] |
J. L. O’Brien, A. Furusawa, and J. Vucković, Photonic quantum technologies, Nature Photon. 3, 687 (2009)
CrossRef
ADS
Google scholar
|
[3] |
Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)
CrossRef
ADS
Google scholar
|
[4] |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature409(6816), 46 (2001)
CrossRef
ADS
Google scholar
|
[5] |
P. Zhu, Q. Zheng, S. Xue, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, J. Wu, and P. Xu, Onchip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs, Front. Phys.15(6), 61501 (2020)
CrossRef
ADS
Google scholar
|
[6] |
H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A65(4), 042305 (2002)
CrossRef
ADS
Google scholar
|
[7] |
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)
CrossRef
ADS
Google scholar
|
[8] |
J. K. Asbóth, P. Adam, M. Koniorczyk, and J. Janszky, Coherent-state qubits: Entanglement and decoherence, Eur. Phys. J. D 30(3), 403 (2004)
CrossRef
ADS
Google scholar
|
[9] |
U. L. Andersen, G. Leuchs, and C. Silberhorn, Continuousvariable quantum information processing, Laser Photonics Rev. 4(3), 337 (2010)
CrossRef
ADS
Google scholar
|
[10] |
Z. R. Zhong, J. Q. Sheng, L. H. Lin, and S. B. Zheng, Quantum nonlocality for entanglement of quasiclassical states, Opt. Lett. 44(7), 1726 (2019)
CrossRef
ADS
Google scholar
|
[11] |
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
CrossRef
ADS
Google scholar
|
[12] |
S. E. Nigg, Deterministic Hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A89(2), 022340 (2014)
CrossRef
ADS
Google scholar
|
[13] |
Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P. Yang, Universal controlled phase gate with cat-state qubits in circuit QED, Phys. Rev. A96(5), 052317 (2017)
CrossRef
ADS
Google scholar
|
[14] |
C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
CrossRef
ADS
Google scholar
|
[15] |
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
CrossRef
ADS
Google scholar
|
[16] |
T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
CrossRef
ADS
Google scholar
|
[17] |
K. Park and H. Jeong, Entangled coherent states versus entangled photon pairs for practical quantum-information processing, Phys. Rev. A 82(6), 062325 (2010)
CrossRef
ADS
Google scholar
|
[18] |
P. van Loock, Optical hybrid approaches to quantum information, Laser Photon. Rev. 5(2), 167 (2011)
CrossRef
ADS
Google scholar
|
[19] |
S. W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource efficient quantum computation using linear optics and hybrid qubits, Phys. Rev. A87(2), 022326 (2013)
CrossRef
ADS
Google scholar
|
[20] |
C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum interferencedevice qubits in cavity QED, Phys. Rev. A67(4), 042311 (2003)
CrossRef
ADS
Google scholar
|
[21] |
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B68(6), 064509 (2003)
CrossRef
ADS
Google scholar
|
[22] |
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A69(6), 062320 (2004)
CrossRef
ADS
Google scholar
|
[23] |
J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature453(7198), 1031 (2008)
CrossRef
ADS
Google scholar
|
[24] |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature474(7353), 589 (2011)
CrossRef
ADS
Google scholar
|
[25] |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 5(2), 623 (2013)
CrossRef
ADS
Google scholar
|
[26] |
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep.718–719, 1 (2017)
CrossRef
ADS
Google scholar
|
[27] |
X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef
ADS
Google scholar
|
[28] |
J. Joo, C. W. Lee, S. Kono, and J. Kim, Logical measurement-based quantum computation in circuit-QED, Sci. Rep. 9(1), 16592 (2019)
CrossRef
ADS
Google scholar
|
[29] |
A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling between light and matter, Nature Rev. Phys. 1(1), 19 (2019)
CrossRef
ADS
Google scholar
|
[30] |
S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
CrossRef
ADS
Google scholar
|
[31] |
D. F. V. James, and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
CrossRef
ADS
Google scholar
|
[32] |
C. P. Yang and S. Han,n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)
CrossRef
ADS
Google scholar
|
[33] |
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B79(18), 180511 (2009)
CrossRef
ADS
Google scholar
|
[34] |
M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4(7), 523 (2008)
CrossRef
ADS
Google scholar
|
[35] |
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
CrossRef
ADS
Google scholar
|
[36] |
Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)
CrossRef
ADS
Google scholar
|
[37] |
C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
CrossRef
ADS
Google scholar
|
[38] |
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
CrossRef
ADS
Google scholar
|
[39] |
W. J. Shan, Y. Xia, Y. H. Chen, and J. Song, Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving, Quantum Inform. Process. 15(6), 2359 (2016)
CrossRef
ADS
Google scholar
|
[40] |
J. Heo, M. S. Kang, C. H. Hong, H. Yang, and S. G. Choi, Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication, Quantum Inform. Process. 16(1), 24 (2017)
CrossRef
ADS
Google scholar
|
[41] |
A. Zheng and J. Liu, Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities, J. Phys. B 44(16), 165501 (2011)
CrossRef
ADS
Google scholar
|
[42] |
P. Xu, D. Wang, L. Ye, and Y. Yu, Preparation and transmission of diversified multi-particle entanglements with spatially separate cavities, Eur. Phys. J. D69(6), 144 (2015)
CrossRef
ADS
Google scholar
|
[43] |
Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95(8), 087001 (2005)
CrossRef
ADS
Google scholar
|
[44] |
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6(10), 772 (2010)
CrossRef
ADS
Google scholar
|
[45] |
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)
CrossRef
ADS
Google scholar
|
[46] |
J. Q. You, X. Hu, S. Ashhab, and F. Nori, Lowdecoherence flux qubit, Phys. Rev. B75(14), 140515 (2007)
CrossRef
ADS
Google scholar
|
[47] |
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED, Phys. Rev. B 94(1), 014506 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |