Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED

Qi-Ping Su, Hanyu Zhang, Chui-Ping Yang

PDF(807 KB)
PDF(807 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 61501. DOI: 10.1007/s11467-021-1098-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED

Author information +
History +

Abstract

We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.

Graphical abstract

Keywords

entangled state / single-photon-state qubit / coherent-state qubit / circuit QED

Cite this article

Download citation ▾
Qi-Ping Su, Hanyu Zhang, Chui-Ping Yang. Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED. Front. Phys., 2021, 16(6): 61501 https://doi.org/10.1007/s11467-021-1098-1

References

[1]
T. C. Ralph and G. J. Pryde, Optical quantum computation, Prog. Opt.54, 209 (2010)
CrossRef ADS Google scholar
[2]
J. L. O’Brien, A. Furusawa, and J. Vucković, Photonic quantum technologies, Nature Photon. 3, 687 (2009)
CrossRef ADS Google scholar
[3]
Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)
CrossRef ADS Google scholar
[4]
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature409(6816), 46 (2001)
CrossRef ADS Google scholar
[5]
P. Zhu, Q. Zheng, S. Xue, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, J. Wu, and P. Xu, Onchip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs, Front. Phys.15(6), 61501 (2020)
CrossRef ADS Google scholar
[6]
H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A65(4), 042305 (2002)
CrossRef ADS Google scholar
[7]
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)
CrossRef ADS Google scholar
[8]
J. K. Asbóth, P. Adam, M. Koniorczyk, and J. Janszky, Coherent-state qubits: Entanglement and decoherence, Eur. Phys. J. D 30(3), 403 (2004)
CrossRef ADS Google scholar
[9]
U. L. Andersen, G. Leuchs, and C. Silberhorn, Continuousvariable quantum information processing, Laser Photonics Rev. 4(3), 337 (2010)
CrossRef ADS Google scholar
[10]
Z. R. Zhong, J. Q. Sheng, L. H. Lin, and S. B. Zheng, Quantum nonlocality for entanglement of quasiclassical states, Opt. Lett. 44(7), 1726 (2019)
CrossRef ADS Google scholar
[11]
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
CrossRef ADS Google scholar
[12]
S. E. Nigg, Deterministic Hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A89(2), 022340 (2014)
CrossRef ADS Google scholar
[13]
Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P. Yang, Universal controlled phase gate with cat-state qubits in circuit QED, Phys. Rev. A96(5), 052317 (2017)
CrossRef ADS Google scholar
[14]
C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
CrossRef ADS Google scholar
[15]
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
CrossRef ADS Google scholar
[16]
T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
CrossRef ADS Google scholar
[17]
K. Park and H. Jeong, Entangled coherent states versus entangled photon pairs for practical quantum-information processing, Phys. Rev. A 82(6), 062325 (2010)
CrossRef ADS Google scholar
[18]
P. van Loock, Optical hybrid approaches to quantum information, Laser Photon. Rev. 5(2), 167 (2011)
CrossRef ADS Google scholar
[19]
S. W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource efficient quantum computation using linear optics and hybrid qubits, Phys. Rev. A87(2), 022326 (2013)
CrossRef ADS Google scholar
[20]
C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum interferencedevice qubits in cavity QED, Phys. Rev. A67(4), 042311 (2003)
CrossRef ADS Google scholar
[21]
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B68(6), 064509 (2003)
CrossRef ADS Google scholar
[22]
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A69(6), 062320 (2004)
CrossRef ADS Google scholar
[23]
J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature453(7198), 1031 (2008)
CrossRef ADS Google scholar
[24]
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature474(7353), 589 (2011)
CrossRef ADS Google scholar
[25]
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 5(2), 623 (2013)
CrossRef ADS Google scholar
[26]
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep.718–719, 1 (2017)
CrossRef ADS Google scholar
[27]
X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef ADS Google scholar
[28]
J. Joo, C. W. Lee, S. Kono, and J. Kim, Logical measurement-based quantum computation in circuit-QED, Sci. Rep. 9(1), 16592 (2019)
CrossRef ADS Google scholar
[29]
A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling between light and matter, Nature Rev. Phys. 1(1), 19 (2019)
CrossRef ADS Google scholar
[30]
S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
CrossRef ADS Google scholar
[31]
D. F. V. James, and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
CrossRef ADS Google scholar
[32]
C. P. Yang and S. Han,n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)
CrossRef ADS Google scholar
[33]
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B79(18), 180511 (2009)
CrossRef ADS Google scholar
[34]
M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4(7), 523 (2008)
CrossRef ADS Google scholar
[35]
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
CrossRef ADS Google scholar
[36]
Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)
CrossRef ADS Google scholar
[37]
C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
CrossRef ADS Google scholar
[38]
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
CrossRef ADS Google scholar
[39]
W. J. Shan, Y. Xia, Y. H. Chen, and J. Song, Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving, Quantum Inform. Process. 15(6), 2359 (2016)
CrossRef ADS Google scholar
[40]
J. Heo, M. S. Kang, C. H. Hong, H. Yang, and S. G. Choi, Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication, Quantum Inform. Process. 16(1), 24 (2017)
CrossRef ADS Google scholar
[41]
A. Zheng and J. Liu, Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities, J. Phys. B 44(16), 165501 (2011)
CrossRef ADS Google scholar
[42]
P. Xu, D. Wang, L. Ye, and Y. Yu, Preparation and transmission of diversified multi-particle entanglements with spatially separate cavities, Eur. Phys. J. D69(6), 144 (2015)
CrossRef ADS Google scholar
[43]
Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95(8), 087001 (2005)
CrossRef ADS Google scholar
[44]
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6(10), 772 (2010)
CrossRef ADS Google scholar
[45]
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)
CrossRef ADS Google scholar
[46]
J. Q. You, X. Hu, S. Ashhab, and F. Nori, Lowdecoherence flux qubit, Phys. Rev. B75(14), 140515 (2007)
CrossRef ADS Google scholar
[47]
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED, Phys. Rev. B 94(1), 014506 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(807 KB)

Accesses

Citations

Detail

Sections
Recommended

/