Measurement-based entanglement purification for entangled coherent states

Pei-Shun Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng

PDF(747 KB)
PDF(747 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 21501. DOI: 10.1007/s11467-021-1103-8
RESEARCH ARTICLE

Measurement-based entanglement purification for entangled coherent states

Author information +
History +

Abstract

The entangled coherent states (ECSs) have been widely used to realize quantum information processing tasks. However, the ECSs may suffer from photon loss and decoherence due to the inherent noise in quantum channel, which may degrade the fidelity of ECSs. To overcome these obstacles, we present a measurement-based entanglement purification protocol (MBEPP) for ECSs to distill some highquality ECSs from a large number of low-quality copies. We first show the principle of this MBEPP without considering the photon loss. After that, we prove that this MBEPP is feasible to correct the error resulted from the photon loss. Additionally, this MBEPP only requires to operate the Bell state measurement without performing local two-qubit gates on the noisy pairs and the purified high-quality ECSs can be preserved for other applications. This MBEPP may have application potential in the implementation of long-distance quantum communication.

Graphical abstract

Keywords

measurement-based entanglement purification / entangled coherent state / photon loss / decoherence

Cite this article

Download citation ▾
Pei-Shun Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-based entanglement purification for entangled coherent states. Front. Phys., 2022, 17(2): 21501 https://doi.org/10.1007/s11467-021-1103-8

References

[1]
C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
CrossRef ADS Google scholar
[2]
T. Das, R. Prabhu, A. Sen(De), and U. Sen, Distributed quantum dense coding with two receivers in noisy environments, Phys. Rev. A 92(5), 052330 (2015)
CrossRef ADS Google scholar
[3]
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[4]
B. G. Taketani, F. de Melo, and R. L. de Matos Filho, Optimal teleportation with a noisy source, Phys. Rev. A 85(2), 020301(R) (2012)
CrossRef ADS Google scholar
[5]
X. M. Hu, C. Zhang, C. J. Zhang, B. H. Liu, Y. F. Huang, Y. J. Han, C. F. Li, and G. C. Guo, Experimental certification for nonclassical teleportation, Quant. Engineering 1(2), e3 (2019)
CrossRef ADS Google scholar
[6]
Z. H. Yan, J. L. Qin, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, Generation of non-classical states of light and their application in deterministic quantum teleportation, Fundamental Res. 1(1), 43 (2021)
CrossRef ADS Google scholar
[7]
A. K. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[8]
H. K. Lo, M. Curty, and B. Qi, Measurement-device independent quantum key distribution, Phys. Rev. Lett.108(13), 130503 (2012)
CrossRef ADS Google scholar
[9]
F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, Secure quantum key distribution with realistic devices, Rev. Mod. Phys.92(2), 025002 (2020)
CrossRef ADS Google scholar
[10]
Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron.62(11), 110311 (2019)
CrossRef ADS Google scholar
[11]
Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys.16(1), 11501 (2021)
CrossRef ADS Google scholar
[12]
G. L. Long and X. S. Liu, Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef ADS Google scholar
[13]
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef ADS Google scholar
[14]
F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)
CrossRef ADS Google scholar
[15]
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett.118(22), 220501 (2017)
CrossRef ADS Google scholar
[16]
F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahran, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron.60(12), 120313 (2017)
CrossRef ADS Google scholar
[17]
S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Three step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron.61(9), 90312 (2018)
CrossRef ADS Google scholar
[18]
L. Zhou, Y. B. Sheng, and G. L. Long, Device independent quantum secure direct communication against collective attacks, Sci. Bull.65(1), 12 (2020)
CrossRef ADS Google scholar
[19]
Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron.63(3), 230362 (2020)
CrossRef ADS Google scholar
[20]
T. Li, Z. K. Gao, and Z. H. Li, Measurement-device independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator, EPL 131(6), 60001 (2020)
CrossRef ADS Google scholar
[21]
T. Li and G. L. Long, Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys.22(6), 063017 (2020)
CrossRef ADS Google scholar
[22]
D. Pan, Z. S. Lin, J. W. Wu, H. R. Zhang, Z. Sun, D. Ruan, L. G. Yin, and G. L. Long, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res.8(9), 1522 (2020)
CrossRef ADS Google scholar
[23]
C. Wang, Quantum secure direct communication: Intersection of communication and cryptography, Fundamental Res.1(1), 91 (2021)
CrossRef ADS Google scholar
[24]
Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys.16(2), 21503 (2021)
CrossRef ADS Google scholar
[25]
J. Y. Quan, Q. Li, C. D. Liu, J. J. Shi, and Y. Peng, A simplified verifiable blind quantum computing protocol with quantum input verification, Quant. Engineering 3(1), e58 (2021)
CrossRef ADS Google scholar
[26]
D. X. Li, C. Yang, and X. Q. Shao, Dissipative engineering of a tripartite Greenberger–Horne–Zeilinger state for neutral atoms, Quant. Engineering 3(2), e66 (2021)
CrossRef ADS Google scholar
[27]
H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65(4), 042305 (2002)
CrossRef ADS Google scholar
[28]
M. Paternostro, M. S. Kim, and P. L. Knight, Vibrational coherent quantum computation, Phys. Rev. A 71(2), 022311 (2005)
CrossRef ADS Google scholar
[29]
A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Fault tolerant linear optical quantum computing with small amplitude coherent states, Phys. Rev. Lett.100(3), 030503 (2008)
CrossRef ADS Google scholar
[30]
L. M. Zhang, T. Gao, and F. L. Yan, Transformations of multilevel coherent states under coherence-preserving operations, Sci. China Phys. Mech. Astron.64(6), 260312 (2021)
CrossRef ADS Google scholar
[31]
A. Mecozzi and P. Tombesi, Distinguishable quantum states generated via nonlinear birefringence, Phys. Rev. Lett.58(11), 1055 (1987)
CrossRef ADS Google scholar
[32]
B. C. Sanders, Entangled coherent states, Phys. Rev. A 45(9), 6811 (1992)
CrossRef ADS Google scholar
[33]
H. Jeong, M. S. Kim, and J. Lee, Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel, Phys. Rev. A 64(5), 052308 (2001)
CrossRef ADS Google scholar
[34]
X. G. Wang, Quantum teleportation of entangled coherent states, Phys. Rev. A 64(2), 022302 (2001)
CrossRef ADS Google scholar
[35]
S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A 64(2), 022313 (2001)
CrossRef ADS Google scholar
[36]
J. Joo and E. Ginossar, Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics, Sci. Rep.6(1), 26338 (2016)
CrossRef ADS Google scholar
[37]
K. Park and H. Jeong, Entangled coherent states versus entangled photon pairs for practical quantum information processing, Phys. Rev. A 82(6), 062325 (2010)
CrossRef ADS Google scholar
[38]
D. S. Simon, G. Jaeger, and A. V. Sergienko, Entangled coherent-state quantum key distribution with entanglement witnessing, Phys. Rev. A 89(1), 012315 (2014)
CrossRef ADS Google scholar
[39]
S. L. Zhang, Improving long-distance distribution of entangled coherent state with the method of twin-field quantum key distribution, Opt. Express 27(25), 37087 (2019)
CrossRef ADS Google scholar
[40]
X. F. Ma, P. Zeng, and H. Y. Zhou, Phase-matching quantum key distribution, Phys. Rev. X 8(3), 031043 (2018)
CrossRef ADS Google scholar
[41]
X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous variable quantum key distribution with photon subtraction, Front. Phys.14(4), 41501 (2019)
CrossRef ADS Google scholar
[42]
J. J. Ma, Y. Zhou, X. Yuan, and X. F. Ma, Operational interpretation of coherence in quantum key distribution, Phys. Rev. A 99(6), 062325 (2019)
CrossRef ADS Google scholar
[43]
X. D. Wu, Y. J. Wang, D. Huang, and Y. Guo, Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation, Front. Phys.15(3), 31601 (2020)
CrossRef ADS Google scholar
[44]
S. Y. Lee, Y. S. Ihn, and Z. Kim, Optimal entangled coherent states in lossy quantum-enhanced metrology, Phys. Rev. A 101(1), 012332 (2020)
CrossRef ADS Google scholar
[45]
N. Sangouard, C. Simon, N. Gisin, J. Laurat, R. Tualle-Brouri, and P. Grangier, Quantum repeaters with entangled coherent states, J. Opt. Soc. Am. B 27(6), A137 (2010)
CrossRef ADS Google scholar
[46]
L. M. Kuang, Z. B. Chen, and J. W. Pan, Generation of entangled coherent states for distant Bose–Einstein condensates via electromagnetically induced transparency, Phys. Rev. A 76(5), 052324 (2007)
CrossRef ADS Google scholar
[47]
A. P. Lund, T. C. Ralph, and H. Jeong, Generation of distributed entangled coherent states over a lossy environment with inefficient detectors, Phys. Rev. A 88(5), 052335 (2013)
CrossRef ADS Google scholar
[48]
Z. R. Zhong, X. J. Huang, Z. B. Yang, L. T. Shen, and S. B. Zheng, Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion, Phys. Rev. A 98(3), 032311 (2018)
CrossRef ADS Google scholar
[49]
B. Xiong, X. Li, S. L. Chao, Z. Yang, W. Z. Zhang, and L. Zhou, Generation of entangled Schrödinger cat state of two macroscopic mirrors, Opt. Express 27(9), 13547 (2019)
CrossRef ADS Google scholar
[50]
L. Tian, S. P. Shi, Y. H. Tian, Y. J. Wang, Y. H. Zheng, and K. C. Peng, Resource reduction for simultaneous generation of two types of continuous variable nonclassical states, Front. Phys.16(2), 21502 (2021)
CrossRef ADS Google scholar
[51]
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
CrossRef ADS Google scholar
[52]
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary Wstates, Phys. Rev. A 85(4), 042302 (2012)
CrossRef ADS Google scholar
[53]
B. C. Ren and G. L. Long, General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities, Opt. Express 22(6), 6547 (2014)
CrossRef ADS Google scholar
[54]
H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics, Front. Phys.13(5), 130315 (2018)
CrossRef ADS Google scholar
[55]
H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyper entanglement concentration for polarizationspatial-time-bin hyperentangled photon systems with linear optics, Quantum Inform. Process.16(10), 237 (2017)
CrossRef ADS Google scholar
[56]
M. Sisodia, C. Shukla, and G. L. Long, Linear optics based entanglement concentration protocols for cluster type entangled coherent state, Quantum Inform. Process.18(8), 253 (2019)
CrossRef ADS Google scholar
[57]
J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic Bell state concentration with parity check measurement, Front. Phys.14(2), 21601 (2019)
CrossRef ADS Google scholar
[58]
L. Zhou, J. Liu, Z. K. Liu, W. Zhong, and Y. B. Sheng, Logic W-state concentration with parity check, Quant. Engineering 3(2), e63 (2021)
CrossRef ADS Google scholar
[59]
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noise entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett.76(5), 722 (1996)
CrossRef ADS Google scholar
[60]
D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels, Phys. Rev. Lett.77(13), 2818 (1996)
CrossRef ADS Google scholar
[61]
M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, Multiparticle entanglement purification protocols, Phys. Rev. A 57(6), R4075 (1998)
CrossRef ADS Google scholar
[62]
J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)
CrossRef ADS Google scholar
[63]
C. Simon and J. W. Pan, Polarization entanglement purification using spatial entanglement, Phys. Rev. Lett.89(25), 257901 (2002)
CrossRef ADS Google scholar
[64]
Y. B. Sheng, L. Zhou, and G. L. Long, Hybrid entanglement purification for quantum repeaters, Phys. Rev. A 88(2), 022302 (2013)
CrossRef ADS Google scholar
[65]
M. Zwerger, H. J. Briegel, and W. Dür, Universal and optimal error thresholds for measurement-based entanglement purification, Phys. Rev. Lett.110(26), 260503 (2013)
CrossRef ADS Google scholar
[66]
M. Zwerger, H. J. Briegel, and W. Dür, Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90(1), 012314 (2014)
CrossRef ADS Google scholar
[67]
G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, Faithful entanglement purification for high capacity quantum communication with two-photon four qubit systems, Phys. Rev. Appl.10(5), 054058 (2018)
CrossRef ADS Google scholar
[68]
L. Zhou, W. Zhong, and Y. B. Sheng, Purification of the residual entanglement, Opt. Express 28(2), 2291 (2020)
CrossRef ADS Google scholar
[69]
M. Y. Wang, F. L. Yan, and T. Gao, Entanglement purification of two-photon systems in multiple degrees of freedom, Quantum Inform. Process.19(7), 206 (2020)
CrossRef ADS Google scholar
[70]
D. Y. Chen, Z. Lin, M. Yang, Q. Yang, X. P. Zang, and Z. L. Cao, Distillation of lossy hyperentangled states, Phys.Rev. A 102(2), 022425 (2020)
CrossRef ADS Google scholar
[71]
X. M. Hu, C. X. Huang, Y. B. Sheng, L. Zhou, B. H. Liu, Y. Guo, C. Zhang, W. B. Xing, Y. F. Huang, C. F. Li, and G. C. Guo, Long-distance entanglement purification for quantum communication, Phys. Rev. Lett.126(1), 010503 (2021)
CrossRef ADS Google scholar
[72]
P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Feasible time-bin entanglement purification based on sum frequency generation, Opt. Express 29(2), 571 (2021)
CrossRef ADS Google scholar
[73]
P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Feasible measurement-based entanglement purification in linear optics, Opt. Express 29(6), 9363 (2021)
CrossRef ADS Google scholar
[74]
H. Jeong and M. S. Kim, Purification of entangled coherent states, Quantum Inf. Comput.2(3), 208 (2002)
CrossRef ADS Google scholar
[75]
J. Clausen, L. Knöll, and D. G. Welsch, Lossy purification and detection of entangled coherent states, Phys. Rev. A 66(6), 062303 (2002)
CrossRef ADS Google scholar
[76]
U. L. Andersen, R. Filip, J. Fiurášek, V. Josse, and G. Leuchs, Experimental purification of coherent states, Phys. Rev. A 72(6), 060301(R) (2005)
CrossRef ADS Google scholar
[77]
M. Zwerger, W. Dür, and H. J. Briegel, Measurement based quantum repeaters, Phys. Rev. A 85(6), 062326 (2012)
CrossRef ADS Google scholar
[78]
M. Zwerger, H. J. Briegel, and W. Dür, Measurement based quantum communication, Appl. Phys. B 122(3), 50 (2016)
CrossRef ADS Google scholar
[79]
S. W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits, Phys. Rev. A 87(2), 022326 (2013)
CrossRef ADS Google scholar
[80]
A. E. Lita, A. J. Miller, and S. W. Nam, Counting near infrared single-photons with 95% efficiency, Opt. Express 16(5), 3032 (2008)
CrossRef ADS Google scholar
[81]
M. ö, M. Swillo, S. Gyger, V. Zwiller, and G. Björk, Temporal array with superconducting nanowire single photon detectors for photon-number-resolution, Phys. Rev. A 102(5), 052616 (2020)
CrossRef ADS Google scholar
[82]
R. Guo, L. Zhou, S. P. Gu, X. F. Wang, and Y. B. Sheng, Generation of concatenated Greenberger–Horne– Zeilinger-type entangled coherent state based on linear optics, Quantum Inform. Process. 16(3), 68 (2017)
CrossRef ADS Google scholar
[83]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397(6720), 594 (1999)
CrossRef ADS Google scholar
[84]
K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, Quantum memory for entangled continuous-variable states, Nat. Phys. 7(1), 13 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(747 KB)

Accesses

Citations

Detail

Sections
Recommended

/