A quantum secure direct communication scheme based on intermediate-basis
Kexin Liang, Zhengwen Cao, Xinlei Chen, Lei Wang, Geng Chai, Jinye Peng
A quantum secure direct communication scheme based on intermediate-basis
Quantum secure direct communication (QSDC) is a method of communication that transmits secret information directly through a quantum channel. This paper proposes a two-step QSDC scheme based on intermediate-basis, in which the intermediate-basis Einstein−Podolsky−Rosen (EPR) pairs can assist to detect channel security and help encode information. Specifically, the intermediate-basis EPR pairs reduce the probability of Eve choosing the correct measurement basis in the first step, enhancing the security of the system. Moreover, they encode information together with information EPR pairs to improve the transmission efficiency in the second step. We consider the security of the protocol under coherent attack when Eve takes different dimensions of the auxiliary system. The simulation results show that intermediate-basis EPR pairs can lower the upper limit of the amount of information that Eve can steal in both attack scenarios. Therefore, the proposed protocol can ensure that the legitimate parties get more confidential information and improve the transmission efficiency.
quantum secure direct communication / two-step / intermediate-basis
[1] |
P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proceedings of 35th Annual Symposium on Foundations of Computer Science, 1994, pp 124–134
|
[2] |
R. L. Rivest , A. Shamir , L. Adleman . A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM, 1978, 21(2): 120
CrossRef
ADS
Google scholar
|
[3] |
C. H. Bennett , G. Brassard . Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci., 2014, 560: 7
CrossRef
ADS
Google scholar
|
[4] |
S. Srikara , K. Thapliyal , A. Pathak . Continuous variable direct secure quantum communication using Gaussian states. Quantum Inform. Process., 2020, 19(4): 132
CrossRef
ADS
Google scholar
|
[5] |
D. Bouwmeester , J. W. Pan , K. Mattle , M. Eibl , H. Weinfurter , A. Zeilinger . Experimental quantum teleportation. Nature, 1997, 390(6660): 575
CrossRef
ADS
Google scholar
|
[6] |
G. L. Long , X. S. Liu . Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A, 2002, 65(3): 032302
CrossRef
ADS
Google scholar
|
[7] |
Y. C. Zhang , Z. Chen , S. Pirandola , X. Wang , C. Zhou , B. Chu , Y. Zhao , B. Xu , S. Yu , H. Guo . Long-distance continuous-variable quantum key distribution over 202.81 km fiber. Phys. Rev. Lett., 2020, 125(1): 010502
CrossRef
ADS
Google scholar
|
[8] |
M. Lucamarini , Z. L. Yuan , J. F. Dynes , A. J. Shields . Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557(7705): 400
CrossRef
ADS
Google scholar
|
[9] |
A. Furusawa , J. L. Srensen , S. L. Braunstein , C. A. Fuchs , H. J. Kimble , E. S. Polzik . Unconditional quantum teleportation between distant solid-state quantum bits. Science, 1998, 345(6196): 532
|
[10] |
S. Pirandola , J. Eisert , C. Weedbrook , A. Furusawa , S. L. Braunstein . Advances in quantum teleportation. Nat. Photonics, 2015, 9(10): 641
CrossRef
ADS
Google scholar
|
[11] |
P. Zawadzki . Advances in quantum secure direct communication. IET Quantum Commun., 2021, 2(2): 54
CrossRef
ADS
Google scholar
|
[12] |
F. G. Deng , G. L. Long , X. S. Liu . Two-step quantum direct communication protocol using the Einstein−Podolsky−Rosen pair block. Phys. Rev. A, 2003, 68(4): 042317
CrossRef
ADS
Google scholar
|
[13] |
F. G. Deng , G. L. Long . Secure direct communication with a quantum one-time pad. Phys. Rev. A, 2004, 69(5): 052319
CrossRef
ADS
Google scholar
|
[14] |
J. Wu , Z. Lin , L. Yin , G. L. Long . Security of quantum secure direct communication based on Wyners wiretap channel theory. Quantum Eng., 2019, 1(4): e26
CrossRef
ADS
Google scholar
|
[15] |
R. Qi , Z. Sun , Z. Lin , P. Niu , W. Hao , L. Song , Q. Huang , J. Gao , L. Yin , G. L. Long . Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl., 2019, 8(1): 22
CrossRef
ADS
Google scholar
|
[16] |
Z. Ye , D. Pan , Z. Sun , C. Du , G. L. Long . Generic security analysis framework for quantum secure direct communication. Front. Phys., 2020, 16(2): 1
|
[17] |
J. Y. Hu , B. Yu , M. Y. Jing , L. T. Xiao , S. T. Jia , G. Q. Qin , G. L. Long . Experimental quantum secure direct communication with single photons. Light Sci. Appl., 2016, 5(9): e16144
CrossRef
ADS
Google scholar
|
[18] |
W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , G. C. Guo . Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 2017, 118(22): 220501
CrossRef
ADS
Google scholar
|
[19] |
F. Zhu , W. Zhang , Y. B. Sheng , Y. D. Huang . Experimental long-distance quantum secure direct communication. Sci. Bull. (Beijing), 2017, 62(22): 1519
CrossRef
ADS
Google scholar
|
[20] |
Z.SunR.QiZ.LinL.YinG.LongJ.Lu, Design and implementation of a practical quantum secure direct communication system, 2018 IEEE Globecom Workshops (GC Wkshps), 18472318 (2018)
|
[21] |
Z. R. Zhou , Y. B. Sheng , P. H. Niu , L. Yin , G. L. Long , L. Hanzo . Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63(3): 230362
CrossRef
ADS
Google scholar
|
[22] |
T. Li , Z. K. Gao , Z. H. Li . Measurement-device–independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator. Europhys. Lett., 2020, 131(6): 60001
CrossRef
ADS
Google scholar
|
[23] |
P. H. Niu , J. W. Wu , L. G. Yin , G. L. Long . Security analysis of measurement-device-independent quantum secure direct communication. Quantum Inform. Process., 2020, 19(10): 356
CrossRef
ADS
Google scholar
|
[24] |
Z. Gao , M. Ma , T. Liu , J. Long , T. Li , Z. Li . Free-space quantum secure direct communication based on decoherence-free space. J. Opt. Soc. Am. B, 2020, 37(10): 3028
CrossRef
ADS
Google scholar
|
[25] |
D. Pan , Z. Lin , J. Wu , H. Zhang , Z. Sun , D. Ruan , L. Yin , G. L. Long . Experimental free-space quantum secure direct communication and its security analysis. Photon. Res., 2020, 8(9): 1522
CrossRef
ADS
Google scholar
|
[26] |
X. F. Zou , D. W. Qiu . Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron., 2014, 57(9): 1696
CrossRef
ADS
Google scholar
|
[27] |
Z. Rong , D. Qiu , P. Mateus , X. F. Zou . Mediated semi-quantum secure direct communication. Quantum Inform. Process., 2021, 20(2): 58
CrossRef
ADS
Google scholar
|
[28] |
Z. Rong , D. Qiu , X. Zou . Two single-state semi-quantum secure direct communication protocols based on single photons. Int. J. Mod. Phys. B, 2020, 34(11): 2050106
CrossRef
ADS
Google scholar
|
[29] |
Z. Rong , D. Qiu , X. Zou . Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys., 2020, 59(6): 1807
CrossRef
ADS
Google scholar
|
[30] |
G. Chai , Z. W. Cao , W. Q. Liu , M. H. Zhang , K. X. Liang , J. Y. Peng . Novel continuous-variable quantum secure direct communication and its security analysis. Laser Phys. Lett., 2019, 16(9): 095207
CrossRef
ADS
Google scholar
|
[31] |
Z. W. Cao , L. Wang , K. X. Liang , G. Chai , J. Y. Peng . Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl., 2021, 16(2): 024012
CrossRef
ADS
Google scholar
|
[32] |
S. Pirandola , U. L. Andersen , L. Banchi , M. Berta , D. Bunandar , R. Colbeck , D. Englund , T. Gehring , C. Lupo , C. Ottaviani , J. L. Pereira , M. Razavi , J. Shamsul Shaari , M. Tomamichel , V. C. Usenko , G. Vallone , P. Villoresi , P. Wallden . Advances in quantum cryptography. Adv. Opt. Photonics, 2020, 12(4): 1012
CrossRef
ADS
Google scholar
|
[33] |
A. K. Ekert . Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 1991, 67(6): 661
CrossRef
ADS
Google scholar
|
[34] |
D. Collins , N. Gisin . A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. Math. Gen., 2004, 37(5): 1775
CrossRef
ADS
Google scholar
|
[35] |
A. Khrennikov . CHSH inequality: Quantum probabilities as classical conditional probabilities. Found. Phys., 2015, 45(7): 711
CrossRef
ADS
Google scholar
|
[36] |
S. Leung-Yan-Cheong , M. Hellman . The Gaussian wire-tap channel. IEEE Trans. Inf. Theory, 1978, 24(4): 451
CrossRef
ADS
Google scholar
|
[37] |
N. Cai , A. Winter , R. W. Yeung . Quantum privacy and quantum wiretap channels. Probl. Inf. Transm., 2004, 40(4): 318
CrossRef
ADS
Google scholar
|
[38] |
I. Devetak . The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory, 2005, 51(1): 44
CrossRef
ADS
Google scholar
|
[39] |
M. Hayashi . Quantum wiretap channel with non-uniform random number and its exponent and equivocation rate of leaked information. IEEE Trans. Inf. Theory, 2015, 61(10): 5595
CrossRef
ADS
Google scholar
|
[40] |
A. Winter . Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory, 1999, 45(7): 2481
CrossRef
ADS
Google scholar
|
[41] |
L. Zhou , Y. B. Sheng , G. L. Long . Device-independent quantum secure direct communication against collective attacks. Sci. Bull. (Beijing), 2020, 65(1): 12
CrossRef
ADS
Google scholar
|
[42] |
D. Kretschmann , D. Schlingemann , R. F. Werner . A continuity theorem for stinesprings dilation. J. Funct. Anal., 2008, 255(8): 1889
CrossRef
ADS
Google scholar
|
[43] |
B. X. Wang , M. J. Tao , Q. Ai , T. Xin , N. Lambert , D. Ruan , Y. C. Cheng , F. Nori , F. G. Deng , G. L. Long . Efficient quantum simulation of photosynthetic light harvesting. npj Quantum Inform., 2018, 4(1): 52
CrossRef
ADS
Google scholar
|
[44] |
X. Y. Chen , N. N. Zhang , W. T. He , X. Y. Kong , M. J. Tao , F. G , Deng Ai , Q. L. Long . Global correlation and local information flows in controllable non-Markovian open quantum dynamics. npj Quantum Inform., 2022, 8(1): 22
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |