A quantum secure direct communication scheme based on intermediate-basis

Kexin Liang, Zhengwen Cao, Xinlei Chen, Lei Wang, Geng Chai, Jinye Peng

PDF(6991 KB)
PDF(6991 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 51301. DOI: 10.1007/s11467-023-1284-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A quantum secure direct communication scheme based on intermediate-basis

Author information +
History +

Abstract

Quantum secure direct communication (QSDC) is a method of communication that transmits secret information directly through a quantum channel. This paper proposes a two-step QSDC scheme based on intermediate-basis, in which the intermediate-basis Einstein−Podolsky−Rosen (EPR) pairs can assist to detect channel security and help encode information. Specifically, the intermediate-basis EPR pairs reduce the probability of Eve choosing the correct measurement basis in the first step, enhancing the security of the system. Moreover, they encode information together with information EPR pairs to improve the transmission efficiency in the second step. We consider the security of the protocol under coherent attack when Eve takes different dimensions of the auxiliary system. The simulation results show that intermediate-basis EPR pairs can lower the upper limit of the amount of information that Eve can steal in both attack scenarios. Therefore, the proposed protocol can ensure that the legitimate parties get more confidential information and improve the transmission efficiency.

Graphical abstract

Keywords

quantum secure direct communication / two-step / intermediate-basis

Cite this article

Download citation ▾
Kexin Liang, Zhengwen Cao, Xinlei Chen, Lei Wang, Geng Chai, Jinye Peng. A quantum secure direct communication scheme based on intermediate-basis. Front. Phys., 2023, 18(5): 51301 https://doi.org/10.1007/s11467-023-1284-4

References

[1]
P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proceedings of 35th Annual Symposium on Foundations of Computer Science, 1994, pp 124–134
[2]
R. L. Rivest , A. Shamir , L. Adleman . A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM, 1978, 21(2): 120
CrossRef ADS Google scholar
[3]
C. H. Bennett , G. Brassard . Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci., 2014, 560: 7
CrossRef ADS Google scholar
[4]
S. Srikara , K. Thapliyal , A. Pathak . Continuous variable direct secure quantum communication using Gaussian states. Quantum Inform. Process., 2020, 19(4): 132
CrossRef ADS Google scholar
[5]
D. Bouwmeester , J. W. Pan , K. Mattle , M. Eibl , H. Weinfurter , A. Zeilinger . Experimental quantum teleportation. Nature, 1997, 390(6660): 575
CrossRef ADS Google scholar
[6]
G. L. Long , X. S. Liu . Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A, 2002, 65(3): 032302
CrossRef ADS Google scholar
[7]
Y. C. Zhang , Z. Chen , S. Pirandola , X. Wang , C. Zhou , B. Chu , Y. Zhao , B. Xu , S. Yu , H. Guo . Long-distance continuous-variable quantum key distribution over 202.81 km fiber. Phys. Rev. Lett., 2020, 125(1): 010502
CrossRef ADS Google scholar
[8]
M. Lucamarini , Z. L. Yuan , J. F. Dynes , A. J. Shields . Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557(7705): 400
CrossRef ADS Google scholar
[9]
A. Furusawa , J. L. Srensen , S. L. Braunstein , C. A. Fuchs , H. J. Kimble , E. S. Polzik . Unconditional quantum teleportation between distant solid-state quantum bits. Science, 1998, 345(6196): 532
[10]
S. Pirandola , J. Eisert , C. Weedbrook , A. Furusawa , S. L. Braunstein . Advances in quantum teleportation. Nat. Photonics, 2015, 9(10): 641
CrossRef ADS Google scholar
[11]
P. Zawadzki . Advances in quantum secure direct communication. IET Quantum Commun., 2021, 2(2): 54
CrossRef ADS Google scholar
[12]
F. G. Deng , G. L. Long , X. S. Liu . Two-step quantum direct communication protocol using the Einstein−Podolsky−Rosen pair block. Phys. Rev. A, 2003, 68(4): 042317
CrossRef ADS Google scholar
[13]
F. G. Deng , G. L. Long . Secure direct communication with a quantum one-time pad. Phys. Rev. A, 2004, 69(5): 052319
CrossRef ADS Google scholar
[14]
J. Wu , Z. Lin , L. Yin , G. L. Long . Security of quantum secure direct communication based on Wyners wiretap channel theory. Quantum Eng., 2019, 1(4): e26
CrossRef ADS Google scholar
[15]
R. Qi , Z. Sun , Z. Lin , P. Niu , W. Hao , L. Song , Q. Huang , J. Gao , L. Yin , G. L. Long . Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl., 2019, 8(1): 22
CrossRef ADS Google scholar
[16]
Z. Ye , D. Pan , Z. Sun , C. Du , G. L. Long . Generic security analysis framework for quantum secure direct communication. Front. Phys., 2020, 16(2): 1
[17]
J. Y. Hu , B. Yu , M. Y. Jing , L. T. Xiao , S. T. Jia , G. Q. Qin , G. L. Long . Experimental quantum secure direct communication with single photons. Light Sci. Appl., 2016, 5(9): e16144
CrossRef ADS Google scholar
[18]
W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , G. C. Guo . Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 2017, 118(22): 220501
CrossRef ADS Google scholar
[19]
F. Zhu , W. Zhang , Y. B. Sheng , Y. D. Huang . Experimental long-distance quantum secure direct communication. Sci. Bull. (Beijing), 2017, 62(22): 1519
CrossRef ADS Google scholar
[20]
Z.SunR.QiZ.LinL.YinG.LongJ.Lu, Design and implementation of a practical quantum secure direct communication system, 2018 IEEE Globecom Workshops (GC Wkshps), 18472318 (2018)
[21]
Z. R. Zhou , Y. B. Sheng , P. H. Niu , L. Yin , G. L. Long , L. Hanzo . Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63(3): 230362
CrossRef ADS Google scholar
[22]
T. Li , Z. K. Gao , Z. H. Li . Measurement-device–independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator. Europhys. Lett., 2020, 131(6): 60001
CrossRef ADS Google scholar
[23]
P. H. Niu , J. W. Wu , L. G. Yin , G. L. Long . Security analysis of measurement-device-independent quantum secure direct communication. Quantum Inform. Process., 2020, 19(10): 356
CrossRef ADS Google scholar
[24]
Z. Gao , M. Ma , T. Liu , J. Long , T. Li , Z. Li . Free-space quantum secure direct communication based on decoherence-free space. J. Opt. Soc. Am. B, 2020, 37(10): 3028
CrossRef ADS Google scholar
[25]
D. Pan , Z. Lin , J. Wu , H. Zhang , Z. Sun , D. Ruan , L. Yin , G. L. Long . Experimental free-space quantum secure direct communication and its security analysis. Photon. Res., 2020, 8(9): 1522
CrossRef ADS Google scholar
[26]
X. F. Zou , D. W. Qiu . Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron., 2014, 57(9): 1696
CrossRef ADS Google scholar
[27]
Z. Rong , D. Qiu , P. Mateus , X. F. Zou . Mediated semi-quantum secure direct communication. Quantum Inform. Process., 2021, 20(2): 58
CrossRef ADS Google scholar
[28]
Z. Rong , D. Qiu , X. Zou . Two single-state semi-quantum secure direct communication protocols based on single photons. Int. J. Mod. Phys. B, 2020, 34(11): 2050106
CrossRef ADS Google scholar
[29]
Z. Rong , D. Qiu , X. Zou . Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys., 2020, 59(6): 1807
CrossRef ADS Google scholar
[30]
G. Chai , Z. W. Cao , W. Q. Liu , M. H. Zhang , K. X. Liang , J. Y. Peng . Novel continuous-variable quantum secure direct communication and its security analysis. Laser Phys. Lett., 2019, 16(9): 095207
CrossRef ADS Google scholar
[31]
Z. W. Cao , L. Wang , K. X. Liang , G. Chai , J. Y. Peng . Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl., 2021, 16(2): 024012
CrossRef ADS Google scholar
[32]
S. Pirandola , U. L. Andersen , L. Banchi , M. Berta , D. Bunandar , R. Colbeck , D. Englund , T. Gehring , C. Lupo , C. Ottaviani , J. L. Pereira , M. Razavi , J. Shamsul Shaari , M. Tomamichel , V. C. Usenko , G. Vallone , P. Villoresi , P. Wallden . Advances in quantum cryptography. Adv. Opt. Photonics, 2020, 12(4): 1012
CrossRef ADS Google scholar
[33]
A. K. Ekert . Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 1991, 67(6): 661
CrossRef ADS Google scholar
[34]
D. Collins , N. Gisin . A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. Math. Gen., 2004, 37(5): 1775
CrossRef ADS Google scholar
[35]
A. Khrennikov . CHSH inequality: Quantum probabilities as classical conditional probabilities. Found. Phys., 2015, 45(7): 711
CrossRef ADS Google scholar
[36]
S. Leung-Yan-Cheong , M. Hellman . The Gaussian wire-tap channel. IEEE Trans. Inf. Theory, 1978, 24(4): 451
CrossRef ADS Google scholar
[37]
N. Cai , A. Winter , R. W. Yeung . Quantum privacy and quantum wiretap channels. Probl. Inf. Transm., 2004, 40(4): 318
CrossRef ADS Google scholar
[38]
I. Devetak . The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory, 2005, 51(1): 44
CrossRef ADS Google scholar
[39]
M. Hayashi . Quantum wiretap channel with non-uniform random number and its exponent and equivocation rate of leaked information. IEEE Trans. Inf. Theory, 2015, 61(10): 5595
CrossRef ADS Google scholar
[40]
A. Winter . Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory, 1999, 45(7): 2481
CrossRef ADS Google scholar
[41]
L. Zhou , Y. B. Sheng , G. L. Long . Device-independent quantum secure direct communication against collective attacks. Sci. Bull. (Beijing), 2020, 65(1): 12
CrossRef ADS Google scholar
[42]
D. Kretschmann , D. Schlingemann , R. F. Werner . A continuity theorem for stinesprings dilation. J. Funct. Anal., 2008, 255(8): 1889
CrossRef ADS Google scholar
[43]
B. X. Wang , M. J. Tao , Q. Ai , T. Xin , N. Lambert , D. Ruan , Y. C. Cheng , F. Nori , F. G. Deng , G. L. Long . Efficient quantum simulation of photosynthetic light harvesting. npj Quantum Inform., 2018, 4(1): 52
CrossRef ADS Google scholar
[44]
X. Y. Chen , N. N. Zhang , W. T. He , X. Y. Kong , M. J. Tao , F. G , Deng Ai , Q. L. Long . Global correlation and local information flows in controllable non-Markovian open quantum dynamics. npj Quantum Inform., 2022, 8(1): 22
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62071381), Shaanxi Provincial Key R&D Program General Project (Grant No. 2022GY-023), ISN 23rd Open Project (Grant No. ISN23-06) of the State Key Laboratory of Integrated Services Networks (Xidian University), and Qinchuangyuan “Scientist + Engineer” Team Construction Project of Shaanxi Province of China (Grant No. 2022KXJ-009).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6991 KB)

Accesses

Citations

Detail

Sections
Recommended

/