Preparing quantum states by measurement-feedback control with Bayesian optimization

Yadong Wu, Juan Yao, Pengfei Zhang

PDF(3556 KB)
PDF(3556 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 61301. DOI: 10.1007/s11467-023-1311-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparing quantum states by measurement-feedback control with Bayesian optimization

Author information +
History +

Abstract

The preparation of quantum states is crucial for enabling quantum computations and simulations. In this work, we present a general framework for preparing ground states of many-body systems by combining the measurement-feedback control process (MFCP) with machine learning techniques. Specifically, we employ Bayesian optimization (BO) to enhance the efficiency of determining the measurement and feedback operators within the MFCP. As an illustration, we study the ground state preparation of the one-dimensional Bose−Hubbard model. Through BO, we are able to identify optimal parameters that can effectively drive the system towards low-energy states with a high probability across various quantum trajectories. Our results open up new directions for further exploration and development of advanced control strategies for quantum computations and simulations.

Graphical abstract

Keywords

state preparation / feedback control / Bayesian optimization

Cite this article

Download citation ▾
Yadong Wu, Juan Yao, Pengfei Zhang. Preparing quantum states by measurement-feedback control with Bayesian optimization. Front. Phys., 2023, 18(6): 61301 https://doi.org/10.1007/s11467-023-1311-5

References

[1]
J. M. Geremia , J. K. Stockton , H. Mabuchi . Real-time quantum feedback control of atomic spin-squeezing. Science, 2004, 304(5668): 270
CrossRef ADS Google scholar
[2]
J. M. Geremia . Deterministic and nondestructively verifiable preparation of photon number states. Phys. Rev. Lett., 2006, 97(7): 073601
CrossRef ADS Google scholar
[3]
M. Yanagisawa . Quantum feedback control for deterministic entangled photon generation. Phys. Rev. Lett., 2006, 97(19): 190201
CrossRef ADS Google scholar
[4]
A. Negretti , U. V. Poulsen , K. Mølmer . Quantum superposition state production by continuous observations and feedback. Phys. Rev. Lett., 2007, 99(22): 223601
CrossRef ADS Google scholar
[5]
C. Sayrin , I. Dotsenko , X. Zhou , B. Peaudecerf , T. Rybarczyk , S. Gleyzes , P. Rouchon , M. Mirrahimi , H. Amini , M. Brune , J. M. Raimond , S. Haroche . Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73
CrossRef ADS Google scholar
[6]
X. Zhou , I. Dotsenko , B. Peaudecerf , T. Rybarczyk , C. Sayrin , S. Gleyzes , J. M. Raimond , M. Brune , S. Haroche . Field locked to a Fock state by quantum feedback with single photon corrections. Phys. Rev. Lett., 2012, 108(24): 243602
CrossRef ADS Google scholar
[7]
D. Ristè , M. Dukalski , C. A. Watson , G. de Lange , M. J. Tiggelman , Ya. M. Blanter , K. W. Lehnert , R. N. Schouten , L. DiCarlo . Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature, 2013, 502(7471): 350
CrossRef ADS Google scholar
[8]
R. Inoue , S. I. R. Tanaka , R. Namiki , T. Sagawa , Y. Takahashi . Unconditional quantumnoise suppression via measurement-based quantum feedback. Phys. Rev. Lett., 2013, 110(16): 163602
CrossRef ADS Google scholar
[9]
A. C. J. Wade , J. F. Sherson , K. Mølmer . Squeezing and entanglement of density oscillations in a Bose-Einstein condensate. Phys. Rev. Lett., 2015, 115(6): 060401
CrossRef ADS Google scholar
[10]
K. C. Cox , G. P. Greve , J. M. Weiner , J. K. Thompson . Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett., 2016, 116(9): 093602
CrossRef ADS Google scholar
[11]
M. Gajdacz , A. J. Hilliard , M. A. Kristensen , P. L. Pedersen , C. Klempt , J. J. Arlt , J. F. Sherson . Preparation of ultracold atom clouds at the shot noise level. Phys. Rev. Lett., 2016, 117(7): 073604
CrossRef ADS Google scholar
[12]
J. Lammers , H. Weimer , K. Hammerer . Open-system many-body dynamics through interferometric measurements and feedback. Phys. Rev. A, 2016, 94(5): 052120
CrossRef ADS Google scholar
[13]
V. Sudhir , D. J. Wilson , R. Schilling , H. Schütz , S. A. Fedorov , A. H. Ghadimi , A. Nunnenkamp , T. J. Kippenberg . Appearance and disappearance of quantum correlations in measurement-based feedback control of a mechanical oscillator. Phys. Rev. X, 2017, 7(1): 011001
CrossRef ADS Google scholar
[14]
H. J. Briegel , R. Raussendorf . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
CrossRef ADS Google scholar
[15]
R. Raussendorf , S. Bravyi , J. Harrington . Long-range quantum entanglement in noisy cluster states. Phys. Rev. A, 2005, 71(6): 062313
CrossRef ADS Google scholar
[16]
R.VerresenN.TantivasadakarnA.Vishwanath, Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topological order in quantum devices, arXiv: 2112.03061 (2021)
[17]
N.TantivasadakarnR.ThorngrenA.VishwanathR.Verresen, Long-range entanglement from measuring symmetry-protected topological phases, arXiv: 2112.01519 (2021)
[18]
G.Y. ZhuN.TantivasadakarnA.VishwanathS.TrebstR.Verresen, Nishimori’s cat: Stable long-range entanglement from finite-depth unitaries and weak measurements, arXiv: 2208.11136 (2022)
[19]
J.Y. LeeW.JiZ.BiM.Fisher, Measurement-prepared quantum criticality: From Ising model to gauge theory, and beyond, arXiv: 2208.11699 (2022)
[20]
N.TantivasadakarnA.VishwanathR.Verresen, A hierarchy of topological order from finite depth unitaries, measurement and feedforward, arXiv: 2209.06202 (2022)
[21]
S.BravyiI.KimA.KlieschR.Koenig, Adaptive constant-depth circuits for manipulating non-Abelian anyons, arXiv: 2205.01933 (2022)
[22]
T.C. LuL.A. LessaI.H. KimT.H. Hsieh, Measurement as a shortcut to long-range entangled quantum matter, arXiv: 2206.13527 (2022)
[23]
S.WuZ.Cai, Feedback-induced interactive dynamics: Unitary but dissipative evolution, arxiv: 2211.09291 (2022)
[24]
H. M. Wiseman . Quantum theory of continuous feedback. Phys. Rev. A, 1994, 49(3): 2133
CrossRef ADS Google scholar
[25]
J. Zhang , Y. Liu , R. B. Wu , K. Jacobs , F. Nori . Quantum feedback: Theory, experiments, and applications. Phys. Rep., 2017, 679: 1
CrossRef ADS Google scholar
[26]
L. K. Thomsen , S. Mancini , H. M. Wiseman . Spin squeezing via quantum feedback. Phys. Rev. A, 2002, 65(6): 061801
CrossRef ADS Google scholar
[27]
C. A. Muschik , K. Hammerer , E. S. Polzik , I. J. Cirac . Quantum teleportation of dynamics and effective interactions between remote systems. Phys. Rev. Lett., 2013, 111(2): 020501
CrossRef ADS Google scholar
[28]
A. L. Grimsmo , A. S. Parkins , B. S. Skagerstam . Rapid steady-state convergence for quantum systems using time-delayed feedback control. New J. Phys., 2014, 16(6): 065004
CrossRef ADS Google scholar
[29]
W. Kopylov C. Emary, E. Schöll , T. Brandes. . Time-delayed feedback control of the Dicke–Hepp–Lieb superradiant quantum phase transition. New J. Phys., 2015, 17(1): 013040
CrossRef ADS Google scholar
[30]
G. Mazzucchi , S. F. Caballero-Benitez , D. A. Ivanov , I. B. Mekhov . Quantum optical feedback control for creating strong correlations in many-body systems. Optica, 2016, 3(11): 1213
CrossRef ADS Google scholar
[31]
A. Shankar , G. P. Greve , B. Wu , J. K. Thompson , M. Holland . Continuous real-time tracking of a quantum phase below the standard quantum limit. Phys. Rev. Lett., 2019, 122(23): 233602
CrossRef ADS Google scholar
[32]
D. A. Ivanov , T. Y. Ivanova , S. F. Caballero-Benitez , I. B. Mekhov . Cavityless self-organization of ultracold atoms due to the feedback-induced phase transition. Sci. Rep., 2020, 10(1): 10550
CrossRef ADS Google scholar
[33]
D. A. Ivanov , T. Yu. Ivanova , S. F. Caballero-Benitez , I. B. Mekhov . Feedback-induced quantum phase transitions using weak measurements. Phys. Rev. Lett., 2020, 124(1): 010603
CrossRef ADS Google scholar
[34]
K. Kroeger , N. Dogra , R. Rosa-Medina , M. Paluch , F. Ferri , T. Donner , T. Esslinger . Continuous feedback on a quantum gas coupled to an optical cavity. New J. Phys., 2020, 22(3): 033020
CrossRef ADS Google scholar
[35]
M. H. Muñoz-Arias , P. M. Poggi , P. S. Jessen , I. H. Deutsch . Simulating nonlinear dynamics of collective spins via quantum measurement and feedback. Phys. Rev. Lett., 2020, 124(11): 110503
CrossRef ADS Google scholar
[36]
M. H. Muñoz-Arias , I. H. Deutsch , P. S. Jessen , P. M. Poggi . Simulation of the complex dynamics of mean-field p-spin models using measurement-based quantum feedback control. Phys. Rev. A, 2020, 102(2): 022610
CrossRef ADS Google scholar
[37]
H. M. Hurst , S. Guo , I. B. Spielman . Feedback induced magnetic phases in binary Bose-Einstein condensates. Phys. Rev. Res., 2020, 2(4): 043325
CrossRef ADS Google scholar
[38]
D. A. Ivanov , T. Yu. Ivanova , S. F. Caballero-Benitez , I. B. Mekhov . Tuning the universality class of phase transitions by feedback: Open quantum systems beyond dissipation. Phys. Rev. A, 2021, 104(3): 033719
CrossRef ADS Google scholar
[39]
H. M. Hurst , I. B. Spielman . Measurement-induced dynamics and stabilization of spinor-condensate domain walls. Phys. Rev. A, 2019, 99(5): 053612
CrossRef ADS Google scholar
[40]
J. T. Young , A. V. Gorshkov , I. B. Spielman . Feedback-stabilized dynamical steady states in the bosehubbard model. Phys. Rev. Res., 2021, 3(4): 043075
CrossRef ADS Google scholar
[41]
H.M. WisemanG.J. Milburn, Quantum Measurement and Control, Cambridge University Press, 2009
[42]
H. Shen , J. Liu , L. Fu . Self-learning Monte Carlo with deep neural networks. Phys. Rev. B, 2018, 97(20): 205140
CrossRef ADS Google scholar
[43]
C. Wang , H. Zhai . Machine learning of frustrated classical spin models (i): Principal component analysis. Phys. Rev. B, 2017, 96(14): 144432
CrossRef ADS Google scholar
[44]
P. Zhang , H. Shen , H. Zhai . Machine learning topological invariants with neural networks. Phys. Rev. Lett., 2018, 120(6): 066401
CrossRef ADS Google scholar
[45]
C. Wang , H. Zhai . Machine learning of frustrated classical spin models (ii): Kernel principal component analysis. Front. Phys., 2018, 13(5): 130507
CrossRef ADS Google scholar
[46]
N. Sun , J. Yi , P. Zhang , H. Shen , H. Zhai . Deep learning topological invariants of band insulators. Phys. Rev. B, 2018, 98(8): 085402
CrossRef ADS Google scholar
[47]
T. Song , H. Lee . Accelerated continuous time quantum Monte Carlo method with machine learning. Phys. Rev. B, 2019, 100(4): 045153
CrossRef ADS Google scholar
[48]
C. Wang , H. Zhai , Y. Z. You . Emergent Schrödinger equation in an introspective machine learning architecture. Sci. Bull. (Beijing), 2019, 64(17): 1228
CrossRef ADS Google scholar
[49]
Y. Zhang , A. Mesaros , K. Fujita , S. D. Edkins , M. H. Hamidian , K. Ch’ng , H. Eisaki , S. Uchida , J. C. S. Davis , E. Khatami , E. A. Kim . Machine learning in electronic-quantum-matter imaging experiments. Nature, 2019, 570(7762): 484
CrossRef ADS Google scholar
[50]
B. S. Rem , N. Käming , M. Tarnowski , L. Asteria , N. Fläschner , C. Becker , K. Sengstock , C. Weitenberg . Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys., 2019, 15(9): 917
CrossRef ADS Google scholar
[51]
A. Bohrdt , C. S. Chiu , G. Ji , M. Xu , D. Greif , M. Greiner , E. Demler , F. Grusdt , M. Knap . Classifying snapshots of the doped Hubbard model with machine learning. Nat. Phys., 2019, 15(9): 921
CrossRef ADS Google scholar
[52]
J. Yao , Y. Wu , J. Koo , B. Yan , H. Zhai . Active learning algorithm for computational physics. Phys. Rev. Res., 2020, 2(1): 013287
CrossRef ADS Google scholar
[53]
G. Torlai , B. Timar , E. P. L. van Nieuwenburg , H. Levine , A. Omran , A. Keesling , H. Bernien , M. Greiner , V. Vuletić , M. D. Lukin , R. G. Melko , M. Endres . Integrating neural networks with a quantum simulator for state reconstruction. Phys. Rev. Lett., 2019, 123(23): 230504
CrossRef ADS Google scholar
[54]
A. M. Palmieri , E. Kovlakov , F. Bianchi , D. Yudin , S. Straupe , J. D. Biamonte , S. Kulik . Experimental neural network enhanced quantum tomography. npj Quantum Inf., 2020, 6(1): 20
CrossRef ADS Google scholar
[55]
Y. Wu , Z. Meng , K. Wen , C. Mi , J. Zhang , H. Zhai . Active learning approach to optimization of experimental control. Chin. Phys. Lett., 2020, 37(10): 103201
CrossRef ADS Google scholar
[56]
V. Saggio , B. E. Asenbeck , A. Hamann , T. Strömberg , P. Schiansky , V. Dunjko , N. Friis , N. C. Harris , M. Hochberg , D. Englund , S. Wölk , H. J. Briegel , P. Walther . Experimental quantum speed-up in reinforcement learning agents. Nature, 2021, 591(7849): 229
CrossRef ADS Google scholar
[57]
Y. Baum , M. Amico , S. Howell , M. Hush , M. Liuzzi , P. Mundada , T. Merkh , A. R. R. Carvalho , M. J. Biercuk . Seantal deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer. PRX Quantum, 2021, 2(4): 040324
CrossRef ADS Google scholar
[58]
D. Castaldo , M. Rosa , S. Corni . Quantum optimal control with quantum computers: A hybrid algorithm featuring machine learning optimization. Phys. Rev. A, 2021, 103(2): 022613
CrossRef ADS Google scholar
[59]
V. V. Sivak , A. Eickbusch , H. Liu , B. Royer , I. Tsioutsios , M. H. Devoret . Model-free quantum control with reinforcement learning. Phys. Rev. X, 2022, 12(1): 011059
CrossRef ADS Google scholar
[60]
P. A. Erdman , F. Noé . Identifying optimal cycles in quantum thermal machines with reinforcement-learning. npj Quantum Inf., 2022, 8(1): 1
CrossRef ADS Google scholar
[61]
M. F. Langer , A. Goeßmann , M. Rupp . Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. npj Comput. Mater., 2022, 8(1): 41
CrossRef ADS Google scholar
[62]
I. A. Luchnikov , E. O. Kiktenko , M. A. Gavreev , H. Ouerdane , S. N. Filippov , A. K. Fedorov . Probing non-Markovian quantum dynamics with data-driven analysis: Beyond “blackbox” machine-learning models. Phys. Rev. Res., 2022, 4(4): 043002
CrossRef ADS Google scholar
[63]
I. Khait , J. Carrasquilla , D. Segal . Optimal control of quantum thermal machines using machine learning. Phys. Rev. Res., 2022, 4(1): L012029
CrossRef ADS Google scholar
[64]
J. Carrasquilla , R. G. Melko . Machine learning phases of matter. Nat. Phys., 2017, 13(5): 431
CrossRef ADS Google scholar
[65]
E. P. L. van Nieuwenburg , Y. H. Liu , S. D. Huber . Learning phase transitions by confusion. Nat. Phys., 2017, 13(5): 435
CrossRef ADS Google scholar
[66]
Y. Zhang , E. A. Kim . Quantum loop topography for machine learning. Phys. Rev. Lett., 2017, 118(21): 216401
CrossRef ADS Google scholar
[67]
D. L. Deng , X. Li , S. Das Sarma . Machine learning topological states. Phys. Rev. B, 2017, 96(19): 195145
CrossRef ADS Google scholar
[68]
Y. H. Liu , E. P. L. van Nieuwenburg . Discriminative cooperative networks for detecting phase transitions. Phys. Rev. Lett., 2018, 120(17): 176401
CrossRef ADS Google scholar
[69]
X. Y. Dong , F. Pollmann , X. F. Zhang . Machine learning of quantum phase transitions. Phys. Rev. B, 2019, 99(12): 121104
CrossRef ADS Google scholar
[70]
G. Carleo , M. Troyer . Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
CrossRef ADS Google scholar
[71]
X. Gao , L. M. Duan . Efficient representation of quantum many-body states with deep neural networks. Nat. Commun., 2017, 8(1): 662
CrossRef ADS Google scholar
[72]
Z. Cai , J. Liu . Approximating quantum many-body wave functions using artificial neural networks. Phys. Rev. B, 2018, 97(3): 035116
CrossRef ADS Google scholar
[73]
H. Saito . Method to solve quantum few-body problems with artificial neural networks. J. Phys. Soc. Jpn., 2018, 87(7): 074002
CrossRef ADS Google scholar
[74]
G. Torlai , G. Mazzola , J. Carrasquilla , M. Troyer , R. Melko , G. Carleo . Neuralnetwork quantum state tomography. Nat. Phys., 2018, 14(5): 447
CrossRef ADS Google scholar
[75]
Y. Wu , P. Zhang , H. Shen , H. Zhai . Visualizing a neural network that develops quantum perturbation theory. Phys. Rev. A, 2018, 98(1): 010701
CrossRef ADS Google scholar
[76]
C. Wang , H. Li , Z. Hao , X. Li , C. Zou , P. Cai , Y. Wang , Y. Z. You , H. Zhai . Machine learning identification of impurities in the STM images. Chin. Phys. B, 2020, 29(11): 116805
CrossRef ADS Google scholar
[77]
B. Shahriari , K. Swersky , Z. Wang , R. P. Adams , N. de Freitas . Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE, 2016, 104(1): 148
CrossRef ADS Google scholar
[78]
R. A. Vargas-Hernández , Y. Guan , D. H. Zhang , R. V. Krems . Bayesian optimization for the inverse scattering problem in quantum reaction dynamics. New J. Phys., 2019, 21(2): 022001
CrossRef ADS Google scholar
[79]
R. Mukherjee , F. Sauvage , H. Xie , R. Löw , F. Mintert . Preparation of ordered states in ultra-cold gases using Bayesian optimization. New J. Phys., 2020, 22(7): 075001
CrossRef ADS Google scholar
[80]
A. Kuroś , R. Mukherjee , W. Golletz , F. Sauvage , K. Giergiel , F. Mintert , K. Sacha . Phase diagram and optimal control for n-tupling discrete time crystal. New J. Phys., 2020, 22(9): 095001
CrossRef ADS Google scholar
[81]
F. Sauvage , F. Mintert . Optimal quantum control with poor statistics. PRX Quantum, 2020, 1(2): 020322
CrossRef ADS Google scholar
[82]
C. T. Belmiro Chu , Y. L. Sheu , S. I. Chu . Bayesian optimal control of the ultrashort circularly polarized attosecond pulse generation by two-color polarization gating. Opt. Express, 2021, 29(21): 32900
CrossRef ADS Google scholar
[83]
A. Kuroś , R. Mukherjee , F. Mintert , K. Sacha . Controlled preparation of phases in two-dimensional time crystals. Phys. Rev. Res., 2021, 3(4): 043203
CrossRef ADS Google scholar
[84]
Y. J. Xie , H. N. Dai , Z. S. Yuan , Y. Deng , X. Li , Y. A. Chen , J. W. Pan . Bayesian learning for optimal control of quantum many-body states in optical lattices. Phys. Rev. A, 2022, 106(1): 013316
CrossRef ADS Google scholar
[85]
C. L. Cortes , P. Lefebvre , N. Lauk , M. J. Davis , N. Sinclair , S. K. Gray , D. Oblak . Sample-efficient adaptive calibration of quantum networks using Bayesian optimization. Phys. Rev. Appl., 2022, 17(3): 034067
CrossRef ADS Google scholar
[86]
K. Jacobs , D. A. Steck . A straightforward introduction to continuous quantum measurement. Contemp. Phys., 2006, 47(5): 279
CrossRef ADS Google scholar
[87]
X. L. Qi , D. Ranard . Determining a local Hamiltonian from a single eigenstate. Quantum, 2019, 3: 159
CrossRef ADS Google scholar
[88]
E. Bairey , I. Arad , N. H. Lindner . Learning a local Hamiltonian from local measurements. Phys. Rev. Lett., 2019, 122(2): 020504
CrossRef ADS Google scholar
[89]
E. Chertkov , B. K. Clark . Computational inverse method for constructing spaces of quantum models from wave functions. Phys. Rev. X, 2018, 8(3): 031029
CrossRef ADS Google scholar
[90]
Z. Li , L. Zou , T. H. Hsieh . Hsieh. Hamiltonian tomography via quantum quench. Phys. Rev. Lett., 2020, 124(16): 160502
CrossRef ADS Google scholar
[91]
Z. Yao , L. Pan , S. Liu , P. Zhang . Bounding entanglement entropy using zeros of local correlation matrices. Phys. Rev. Res., 2022, 4(4): L042037
CrossRef ADS Google scholar
[92]
L. N. Wu , A. Eckardt . Cooling and state preparation in an optical lattice via Markovian feedback control. Phys. Rev. Res., 2022, 4(2): L022045
CrossRef ADS Google scholar
[93]
H. Ritsch , P. Domokos , F. Brennecke , T. Esslinger . Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 2013, 85(2): 553
CrossRef ADS Google scholar
[94]
T. J. Elliott , W. Kozlowski , S. F. Caballero-Benitez , I. B. Mekhov . Multipartite entangled spatial modes of ultracold atoms generated and controlled by quantum measurement. Phys. Rev. Lett., 2015, 114(11): 113604
CrossRef ADS Google scholar
[95]
Y. Ashida , M. Ueda . Diffraction-unlimited position measurement of ultracold atoms in an optical lattice. Phys. Rev. Lett., 2015, 115(9): 095301
CrossRef ADS Google scholar
[96]
P.W. Shor, Fault-tolerant quantum computation, in: Proceedings of 37th Conference on Foundations of Computer Science, pp 56–65, IEEE, 1996
[97]
D.AharonovM.Ben-Or, Fault-tolerant quantum computation with constant error, in: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp 176–188, 1997
[98]
J. Preskill, Fault-tolerant quantum computation, in: Introduction to Quantum Computation and Information, pp 213–269, World Scientific, 1998
[99]
D. Gottesman . Theory of fault-tolerant quantum computation. Phys. Rev. A, 1998, 57(1): 127
CrossRef ADS Google scholar
[100]
L. Gyongyosi . Quantum state optimization and computational pathway evaluation for gate-model quantum computers. Sci. Rep., 2020, 10(1): 4543
CrossRef ADS Google scholar
[101]
L. Gyongyosi , S. Imre . Dense quantum measurement theory. Sci. Rep., 2019, 9(1): 6755
CrossRef ADS Google scholar
[102]
L. Gyongyosi , S. Imre . Training optimization for gate-model quantum neural networks. Sci. Rep., 2019, 9(1): 12679
CrossRef ADS Google scholar
[103]
L. Gyongyosi , S. Imre . Advances in the quantum internet. Commun. ACM, 2022, 65(8): 52
CrossRef ADS Google scholar
[104]
E. G. D. Torre , S. Diehl , M. D. Lukin , S. Sachdev , P. Strack . Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities. Phys. Rev. A, 2013, 87(2): 023831
CrossRef ADS Google scholar
[105]
M. F. Maghrebi , A. V. Gorshkov . Nonequilibrium many-body steady states via Keldysh formalism. Phys. Rev. B, 2016, 93(1): 014307
CrossRef ADS Google scholar
[106]
M. Foss-Feig , P. Niroula , J. T. Young , M. Hafezi , A. V. Gorshkov , R. M. Wilson , M. F. Maghrebi . Emergent equilibrium in many-body optical bistability. Phys. Rev. A, 2017, 95(4): 043826
CrossRef ADS Google scholar
[107]
B. Skinner , J. Ruhman , A. Nahum . Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 2019, 9(3): 031009
CrossRef ADS Google scholar
[108]
S. Choi , Y. Bao , X. L. Qi , E. Altman . Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett., 2020, 125(3): 030505
CrossRef ADS Google scholar
[109]
Q. Tang , W. Zhu . Measurement-induced phase transition: A case study in the nonintegrable model by density matrix renormalization group calculations. Phys. Rev. Res., 2020, 2(1): 013022
CrossRef ADS Google scholar
[110]
R. Fan , S. Vijay , A. Vishwanath , Y. Z. You . Self-organized error correction in random unitary circuits with measurement. Phys. Rev. B, 2021, 103(17): 174309
CrossRef ADS Google scholar

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Y.W. is supported by the National Program on Key Basic Research Project of China (Grant No. 2021YFA1400900) and the National Natural Science Foundation of China (Grant No. 12174236). P.Z. is partly supported by the Walter Burke Institute for Theoretical Physics at Caltech. J.Y. is supported by the National Natural Science Foundation of China (Grant No. 11904190) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120021).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3556 KB)

Accesses

Citations

Detail

Sections
Recommended

/