Influence of thermal effects on atomic Bloch oscillation

Guoling Yin, Chi-Kin Lai, Nana Chang, Yi Liang, Dekai Mao, Xiaoji Zhou

PDF(4180 KB)
PDF(4180 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 62201. DOI: 10.1007/s11467-024-1420-9
RESEARCH ARTICLE

Influence of thermal effects on atomic Bloch oscillation

Author information +
History +

Abstract

Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose−Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.

Graphical abstract

Keywords

Bloch oscillation / optical lattice / thermal effects / cold atoms / Raman cooling

Cite this article

Download citation ▾
Guoling Yin, Chi-Kin Lai, Nana Chang, Yi Liang, Dekai Mao, Xiaoji Zhou. Influence of thermal effects on atomic Bloch oscillation. Front. Phys., 2024, 19(6): 62201 https://doi.org/10.1007/s11467-024-1420-9

References

[1]
F.Bloch, Über die quantenmechanik der elektronen in kristallgittern, Eur. Phys. J. A 52(7–8), 555 (1929)
[2]
C.Zener, A theory of the electrical breakdown of solid dielectrics, Proc. R. Soc. Lond. A 145(855), 523 (1934)
[3]
M. Ben Dahan , E. Peik , J. Reichel , Y. Castin , C. Salomon . Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett., 1996, 76(24): 4508
CrossRef ADS Google scholar
[4]
E. Peik , M. Ben Dahan , I. Bouchoule , Y. Castin , C. Salomon . Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams. Phys. Rev. A, 1997, 55(4): 2989
CrossRef ADS Google scholar
[5]
O. Morsch , J. H. Müller , M. Cristiani , D. Ciampini , E. Arimondo . Bloch oscillations and mean-field effects of Bose‒Einstein condensates in 1D optical lattices. Phys. Rev. Lett., 2001, 87(14): 140402
CrossRef ADS Google scholar
[6]
T. Hartmann , F. Keck , H. J. Korsch , S. Mossmann . Dynamics of Bloch oscillations. New J. Phys., 2004, 6: 2
CrossRef ADS Google scholar
[7]
M. Gustavsson , E. Haller , M. J. Mark , J. G. Danzl , G. Rojas-Kopeinig , H. C. Nägerl . Control of interaction-induced dephasing of Bloch oscillations. Phys. Rev. Lett., 2008, 100(8): 080404
CrossRef ADS Google scholar
[8]
D. I. Choi , Q. Niu . Bose‒Einstein condensates in an optical lattice. Phys. Rev. Lett., 1999, 82(10): 2022
CrossRef ADS Google scholar
[9]
M. Raizen , C. Salomon , Q. Niu . New light on quantum transport. Phys. Today, 1997, 50(7): 30
CrossRef ADS Google scholar
[10]
T. Pertsch , P. Dannberg , W. Elflein , A. Braüer , F. Lederer . Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett., 1999, 83: 4752
CrossRef ADS Google scholar
[11]
R. Morandotti , U. Peschel , J. S. Aitchison , H. S. Eisenberg , Y. Silberberg . Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett., 1999, 83(23): 4756
CrossRef ADS Google scholar
[12]
Z. Zhang , S. Ning , H. Zhong , M. R. Belić , Y. Zhang , Y. Feng , S. Liang , Y. Zhang , M. Xiao . Experimental demonstration of optical Bloch oscillation in electromagnetically induced photonic lattices. Fundamental Research, 2022, 2(3): 401
CrossRef ADS Google scholar
[13]
V. Agarwal , J. A. del Río , G. Malpuech , M. Zamfirescu , A. Kavokin , D. Coquillat , D. Scalbert , M. Vladimirova , B. Gil . Photon Bloch oscillations in porous silicon optical superlattices. Phys. Rev. Lett., 2004, 92(9): 097401
CrossRef ADS Google scholar
[14]
M. H. Anderson , J. R. Ensher , M. R. Matthews , C. E. Wieman , E. A. Cornell . Observation of Bose‒Einstein condensation in a dilute atomic vapor. Science, 1995, 269(5221): 198
CrossRef ADS Google scholar
[15]
K. B. Davis , M. O. Mewes , M. R. Andrews , N. J. van Druten , D. S. Durfee , D. M. Kurn , W. Ketterle . Bose‒Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 1995, 75(22): 3969
CrossRef ADS Google scholar
[16]
M. Kasevich , S. Chu . Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett., 1992, 69(12): 1741
CrossRef ADS Google scholar
[17]
J. Reichel , F. Bardou , M. B. Dahan , E. Peik , S. Rand , C. Salomon , C. Cohen-Tannoudji . Raman cooling of cesium below 3 nK: New approach inspired by Lévy flight statistics. Phys. Rev. Lett., 1995, 75(25): 4575
CrossRef ADS Google scholar
[18]
V. Boyer , L. J. Lising , S. L. Rolston , W. D. Phillips . Deeply subrecoil two-dimensional Raman cooling. Phys. Rev. A, 2004, 70(4): 043405
CrossRef ADS Google scholar
[19]
G. Modugno , E. de Mirandés , F. Ferlaino , H. Ott , G. Roati , M. Inguscio . Atom interferometry in a vertical optical lattice. Fortschr. Phys., 2004, 52(11−12): 1173
CrossRef ADS Google scholar
[20]
G. Roati , E. de Mirandes , F. Ferlaino , H. Ott , G. Modugno , M. Inguscio . Atom interferometry with trapped Fermi gases. Phys. Rev. Lett., 2004, 92(23): 230402
CrossRef ADS Google scholar
[21]
G. Ferrari , N. Poli , F. Sorrentino , G. M. Tino . Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett., 2006, 97(6): 060402
CrossRef ADS Google scholar
[22]
V. Xu , M. Jaffe , C. D. Panda , S. L. Kristensen , L. W. Clark , H. Müller . Probing gravity by holding atoms for 20 seconds. Science, 2019, 366(6466): 745
CrossRef ADS Google scholar
[23]
P.CladéS.Guellati-KhélifaC.SchwobF.NezL.JulienF.Biraben, A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
[24]
N. Poli , F. Y. Wang , M. G. Tarallo , A. Alberti , M. Prevedelli , G. M. Tino . Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett., 2011, 106(3): 038501
CrossRef ADS Google scholar
[25]
G. Rosi , F. Sorrentino , L. Cacciapuoti , M. Prevedelli , G. Tino . Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014, 510(7506): 518
CrossRef ADS Google scholar
[26]
G. M. Tino . Testing gravity with cold atom interferometry: Results and prospects. Quantum Sci. Technol., 2021, 6(2): 024014
CrossRef ADS Google scholar
[27]
J. B. Fixler , G. T. Foster , J. M. McGuirk , M. A. Kasevich . Atom interferometer measurement of the Newtonian constant of gravity. Science, 2007, 315(5808): 74
CrossRef ADS Google scholar
[28]
G. Rosi , L. Cacciapuoti , F. Sorrentino , M. Menchetti , M. Prevedelli , G. M. Tino . Measurement of the gravity-field curvature by atom interferometry. Phys. Rev. Lett., 2015, 114(1): 013001
CrossRef ADS Google scholar
[29]
P. Cladé , E. de Mirandes , M. Cadoret , S. Guellati-Khélifa , C. Schwob , F. Nez , L. Julien , F. Biraben . Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: Determination of the fine-structure constant. Phys. Rev. A, 2006, 74: 052109
CrossRef ADS Google scholar
[30]
R. H. Parker , C. Yu , W. Zhong , B. Estey , H. Müller . Measurement of the fine-structure constant as a test of the Standard Model. Science, 2018, 360(6385): 191
CrossRef ADS Google scholar
[31]
M. G. Tarallo , T. Mazzoni , N. Poli , D. V. Sutyrin , X. Zhang , G. M. Tino . Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin−gravity coupling effects. Phys. Rev. Lett., 2014, 113(2): 023005
CrossRef ADS Google scholar
[32]
X. Guo , Z. Yu , F. Wei , S. Jin , X. Chen , X. Li , X. Zhang , X. Zhou . Quantum precision measurement of two-dimensional forces with 10‒28-Newton stability. Sci. Bull. (Beijing), 2022, 67(22): 2291
CrossRef ADS Google scholar
[33]
K. Berg-Sørensen , K. Mølmer . Bose‒Einstein condensates in spatially periodic potentials. Phys. Rev. A, 1998, 58(2): 1480
CrossRef ADS Google scholar
[34]
J. H. DenschlagJ. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston , W. D. Phillips., A Bose‒Einstein condensate in an optical lattice, J. Phys. At. Mol. Opt. Phys. 35(14), 3095 (2002)
[35]
Z. Yu , J. Tian , P. Peng , D. Mao , X. Chen , X. Zhou . Transport of ultracold atoms in superpositions of S- and D-band states in a moving optical lattice. Phys. Rev. A, 2023, 107(2): 023303
CrossRef ADS Google scholar
[36]
G. Yin , L. Kong , Z. Yu , J. Tian , X. Chen , X. Zhou . Time bound of atomic adiabatic evolution in an accelerated optical lattice. Phys. Rev. A, 2023, 108(3): 033310
CrossRef ADS Google scholar
[37]
M. Andia , R. Jannin , F. c. Nez , F. c. Biraben , S. Guellati-Khélifa , P. Cladé . Compact atomic gravimeter based on a pulsed and accelerated optical lattice. Phys. Rev. A, 2013, 88: 031605
CrossRef ADS Google scholar
[38]
P. Cladé . Bloch oscillations in atom interferometry. Riv. Nuovo Cim., 2015, 38: 173
CrossRef ADS Google scholar
[39]
R. Charrière , M. Cadoret , N. Zahzam , Y. Bidel , A. Bresson . Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A, 2012, 85(1): 013639
CrossRef ADS Google scholar
[40]
R.Bouchendira, Thèse de doctorat, Université Pierre et Marie Curie, Paris (2012), soutenue publiquement le 17 Juillet 2012
[41]
M.Andia, Thèse de doctorat, Université Pierre et Marie Curie, Paris (2015), soutenue le 25 Septembre 2015
[42]
S. Choudhury , E. J. Mueller . Transverse collisional instabilities of a Bose‒Einstein condensate in a driven one-dimensional lattice. Phys. Rev. A, 2015, 91(2): 023624
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The authors would like to thank Z. Yu and L. Kong for useful discussions. This work was supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA0718300 and 2021YFA1400900), the National Natural Science Foundation of China (Grant Nos. 11920101004, 11934002, and 92365208), the Science and Technology Major Project of Shanxi (Grant No. 202101030201022), and the Space Application System of China Manned Space Program.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4180 KB)

Accesses

Citations

Detail

Sections
Recommended

/