A quantum circuit design of AES requiring fewer quantum qubits and gate operations

Ze-Guo Wang, Shi-Jie Wei, Gui-Lu Long

PDF(432 KB)
PDF(432 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 41501. DOI: 10.1007/s11467-021-1141-2
RESEARCH ARTICLE
RESEARCH ARTICLE

A quantum circuit design of AES requiring fewer quantum qubits and gate operations

Author information +
History +

Abstract

Advanced Encryption Standard (AES) is one of the most widely used block ciphers nowadays, and has been established as an encryption standard in 2001. Here we design AES-128 and the sample-AES (S-AES) quantum circuits for deciphering. In the quantum circuit of AES-128, we perform an affine transformation for the SubBytes part to solve the problem that the initial state of the output qubits in SubBytes is not the |0>⊗8 state. After that, we are able to encode the new round sub-key on the qubits encoding the previous round sub-key, and this improvement reduces the number of qubits used by 224 compared with Langenberg et al.’s implementation. For S-AES, a complete quantum circuit is presented with only 48 qubits, which is already within the reach of existing noisy intermediate-scale quantum computers.

Graphical abstract

Keywords

AES / S-AES / quantum circuit / quantum attack

Cite this article

Download citation ▾
Ze-Guo Wang, Shi-Jie Wei, Gui-Lu Long. A quantum circuit design of AES requiring fewer quantum qubits and gate operations. Front. Phys., 2022, 17(4): 41501 https://doi.org/10.1007/s11467-021-1141-2

References

[1]
M. Bellare and P. Rogaway , Introduction to modern cryptography, Ucsd Cse 207, 207 (2005)
[2]
R. L. Rivest , A. Shamir , and L. Adleman , A method for obtaining digital signatures and public key cryptosystems, Comm. ACM 21 (2), 120 (1978)
CrossRef ADS Google scholar
[3]
P. W. Shor , Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5), 1484 (1997)
CrossRef ADS Google scholar
[4]
D. Joan and R. Vincent , The design of rijndael: AES — The advanced encryption standard, Inf. Secur. Cryptogr (2002)
[5]
L. K. Grover , A fast quantum mechanical algorithm for database search, in: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996, pp 212- 219
CrossRef ADS Google scholar
[6]
G. L. Long , Grover algorithm with zero theoretical failure rate, Phys. Rev. A 64 (2), 022307 (2001)
CrossRef ADS Google scholar
[7]
A. Yamamura and H. Ishizuka , Quantum cryptanalysis of block ciphers (Algebraic Systems, Formal Languages and Computations), RIMS Kokyuroku 1166, 235 (2000)
[8]
M. Kaplan , Quantum attacks against iterated block ciphers, arXiv: 1410.1434 (2014)
[9]
R. J. Li and C. H. Jin , Meet-in-the-middle attacks on 10- round AES-256, Des. Codes Cryptogr. 80 (3), 459 (2016)
CrossRef ADS Google scholar
[10]
A. Ambainis , Quantum walk algorithm for element distinctness, SIAM J. Comput. 37 (1), 210 (2007)
CrossRef ADS Google scholar
[11]
M. Roetteler and R. Steinwandt , A note on quantum related-key attacks, Inf. Process. Lett. 115 (1), 40 (2015)
CrossRef ADS Google scholar
[12]
D. R. Simon , On the power of quantum computation, in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994, pp 116- 123
[13]
M. Grassl , B. Langenberg , M. Roetteler , and R. Steinwandt , Applying Grover’s algorithm to AES: Quantum resource estimates, in: Post-Quantum Cryptography, Springer, 2016, pp 29- 43
[14]
P. Kim , D. Han , and K. C. Jeong , Time– space complexity of quantum search algorithms in symmetric cryptanalysis: Applying to AES and SHA-2, Quantum Inform. Process. 17 (12), 339 (2018)
CrossRef ADS Google scholar
[15]
M. Almazrooie , R. Abdullah , A. Samsudin , and K. N. Mutter , Quantum Grover attack on the simplified-AES, in: Proceedings of the 7th International Conference on Software and Computer Applications, 2018, pp 204- 211
[16]
F. Arute , K. Arya , R. Babbush , D. Bacon , J. C. Bardin , et al. , Quantum supremacy using a programmable superconducting processor, Nature 574 (7779), 505 (2019)
CrossRef ADS Google scholar
[17]
J. Xu , S. Li , T. Chen , and Z. Y. Xue , Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15 (4), 41503 (2020)
CrossRef ADS Google scholar
[18]
B. Langenberg , H. Pham , and R. Steinwandt , Reducing the cost of implementing the advanced encryption standard as a quantum circuit, IEEE Trans. Quantum Eng. 1, 1 (2020)
CrossRef ADS Google scholar
[19]
J. Boyar and R. Peralta , A new combinational logic minimization technique with applications to cryptology, in: International Symposium on Experimental Algorithms, Springer, 2010, pp 178- 189
[20]
J. Zou , Z. H. Wei , S. W. Sun , X. M. Liu , and W. L. Wu , Quantum circuit implementations of AES with fewer qubits, in: International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2020, pp 697- 726

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(432 KB)

Accesses

Citations

Detail

Sections
Recommended

/