Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system

Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren

PDF(2823 KB)
PDF(2823 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 31501. DOI: 10.1007/s11467-021-1120-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system

Author information +
History +

Abstract

In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.

Graphical abstract

Keywords

hyperdistillation / transmission loss / quantum channel noise / quantum communication / quantum information

Cite this article

Download citation ▾
Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren. Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys., 2022, 17(3): 31501 https://doi.org/10.1007/s11467-021-1120-7

References

[1]
N. Gisin , G. Ribordy , W. Tittel , and H. Zbinden , Quantum cryptography, Rev. Mod. Phys. 74 (1), 145 (2002)
CrossRef ADS Google scholar
[2]
X. M. Hu , Y. Guo , B. H. Liu , Y. F. Huang , C. F. Li , and G. C. Guo , Beating the channel capacity limit for superdense coding with entangled ququarts, Sci. Adv. 4 (7), eaat9304 (2018)
CrossRef ADS Google scholar
[3]
A. K. Ekert , Quantum cryptography based on bells theorem, Phys. Rev. Lett. 67 (6), 661 (1991)
CrossRef ADS Google scholar
[4]
D. Bruß and C. Macchiavello , Optimal eavesdropping in cryptography with three-dimensional quantum states, Phys. Rev. Lett. 88 (12), 127901 (2002)
CrossRef ADS Google scholar
[5]
Y. F. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement–device–independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16 (1), 11501 (2021)
CrossRef ADS Google scholar
[6]
N. J. Cerf , M. Bourennane , A. Karlsson , and N. Gisin , Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88 (12), 127902 (2002)
CrossRef ADS Google scholar
[7]
C. H. Bennett , G. Brassard , C. Crépeau , R. Jozsa , A. Peres , and W. K. Wootters , Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (13), 1895 (1993)
CrossRef ADS Google scholar
[8]
C. H. Bennett and S. J. Wiesner , Communication via oneand two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (20), 2881 (1992)
CrossRef ADS Google scholar
[9]
X. Liu , G. Long , D. Tong , and F. Li , General scheme for superdense coding between multiparties, Phys. Rev. A 65 (2), 022304 (2002)
CrossRef ADS Google scholar
[10]
M. Hillery , V. Bužek , and A. Berthiaume , Quantum secret sharing, Phys. Rev. A 59 (3), 1829 (1999)
CrossRef ADS Google scholar
[11]
L. Xiao , G. L. Long , F. G. Deng , and J. W. Pan , Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69 (5), 052307 (2004)
CrossRef ADS Google scholar
[12]
G. L. Long and X. S. Liu , Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65 (3), 032302 (2002)
CrossRef ADS Google scholar
[13]
F. G. Deng , G. L. Long , and X. S. Liu , Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68 (4), 042317 (2003)
CrossRef ADS Google scholar
[14]
W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , and G. C. Guo , Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118 (22), 220501 (2017)
CrossRef ADS Google scholar
[15]
Z. Zhou , Y. Sheng , P. Niu , L. Yin , G. Long , and L. Hanzo , Measurement–device–independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63 (3), 230362 (2020)
CrossRef ADS Google scholar
[16]
Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , and G. L. Long , Generic security analysis framework for quantum secure direct communication, Front. Phys. 16 (2), 21503 (2021)
CrossRef ADS Google scholar
[17]
S. S. Chen , L. Zhou , W. Zhong , and Y. B. Sheng , Three– step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61 (9), 90312 (2018)
CrossRef ADS Google scholar
[18]
G. L. Long and H. Zhang , Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull. (Beijing) 66 (13), 1267 (2021)
CrossRef ADS Google scholar
[19]
A. Yabushita and T. Kobayashi , Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69 (1), 013806 (2004)
CrossRef ADS Google scholar
[20]
C. Schuck , G. Huber , C. Kurtsiefer , and H. Weinfurter , Complete deterministic linear optics bell state analysis, Phys. Rev. Lett. 96 (19), 190501 (2006)
CrossRef ADS Google scholar
[21]
M. Barbieri , G. Vallone , P. Mataloni , and F. De Martini , Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement, Phys. Rev. A 75 (4), 042317 (2007)
CrossRef ADS Google scholar
[22]
G. Vallone , R. Ceccarelli , F. De Martini , and P. Mataloni , Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79 (3), 030301 (2009)
CrossRef ADS Google scholar
[23]
M. Barbieri , C. Cinelli , P. Mataloni , and F. De Martini , Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72 (5), 052110 (2005)
CrossRef ADS Google scholar
[24]
J. T. Barreiro , N. K. Langford , N. A. Peters , and P. G. Kwiat , Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95 (26), 260501 (2005)
CrossRef ADS Google scholar
[25]
J. T. Barreiro , T. C. Wei , and P. G. Kwiat , Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4 (4), 282 (2008)
CrossRef ADS Google scholar
[26]
T. C. Ralph and A. Lund , Nondeterministic noiseless linear amplification of quantum systems, in: AIP Conference Proceedings 1110 (1), 155 (2009)
CrossRef ADS Google scholar
[27]
N. Gisin , S. Pironio , and N. Sangouard , Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105 (7), 070501 (2010)
CrossRef ADS Google scholar
[28]
D. Pitkanen , X. Ma , R. Wickert , P. van Loock , and N. Lütkenhaus , Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84 (2), 022325 (2011)
CrossRef ADS Google scholar
[29]
C. Osorio , N. Bruno , N. Sangouard , H. Zbinden , N. Gisin , and R. Thew , Heralded photon amplification for quantum communication, Phys. Rev. A 86 (2), 023815 (2012)
CrossRef ADS Google scholar
[30]
S. Kocsis , G. Y. Xiang , T. C. Ralph , and G. J. Pryde , Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9 (1), 23 (2013)
CrossRef ADS Google scholar
[31]
M. Curty and T. Moroder , Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84 (1), 010304 (2011)
CrossRef ADS Google scholar
[32]
L. Zhou , Y. B. Sheng , and G. L. Long , Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65 (1), 12 (2020)
CrossRef ADS Google scholar
[33]
S. Zhang , S. Yang , X. Zou , B. Shi , and G. Guo , Protecting single-photon entangled state from photon loss with noiseless linear amplification, Phys. Rev. A 86 (3), 034302 (2012)
CrossRef ADS Google scholar
[34]
G. Y. Xiang , T. C. Ralph , A. P. Lund , N. Walk , and G. J. Pryde , Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4 (5), 316 (2010)
CrossRef ADS Google scholar
[35]
L. Zhou and Y. B. Sheng , Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12 (4), 045203 (2015)
CrossRef ADS Google scholar
[36]
F. Monteiro , E. Verbanis , V. C. Vivoli , A. Martin , N. Gisin , H. Zbinden , and R. Thew , Heralded amplification of path entangled quantum states, Quantum Sci. Technol. 2 (2), 024008 (2017)
CrossRef ADS Google scholar
[37]
T. J. Wang , C. Cao , and C. Wang , Linear-optical implementation of hyperdistillation from photon loss, Phys. Rev. A 89 (5), 052303 (2014)
CrossRef ADS Google scholar
[38]
G. Yang , Y. S. Zhang , Z. R. Yang , L. Zhou , and Y. B. Sheng , Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state, Quantum Inform. Process. 18 (10), 317 (2019)
CrossRef ADS Google scholar
[39]
D. Y. Chen , Z. Lin , M. Yang , Q. Yang , X. P. Zang , and Z. L. Cao , Distillation of lossy hyperentangled states, Phys. Rev. A 102 (2), 022425 (2020)
CrossRef ADS Google scholar
[40]
Y. Y. Jin , S. X. Qin , H. Zu , L. Zhou , W. Zhong , and Y. B. Sheng , Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13 (5), 130321 (2018)
CrossRef ADS Google scholar
[41]
C. H. Bennett , D. P. DiVincenzo , J. A. Smolin , and W. K. Wootters , Mixed-state entanglement and quantum error correction, Phys. Rev. A 54 (5), 3824 (1996)
CrossRef ADS Google scholar
[42]
J. W. Pan , C. Simon , Č. Brukner , and A. Zeilinger , Entanglement purification for quantum communication, Nature 410 (6832), 1067 (2001)
CrossRef ADS Google scholar
[43]
Y. B. Sheng , F. G. Deng , and H. Y. Zhou , Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity, Phys. Rev. A 77 (4), 042308 (2008)
CrossRef ADS Google scholar
[44]
Y. B. Sheng and F. G. Deng , One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82 (4), 044305 (2010)
CrossRef ADS Google scholar
[45]
C. Wang , Y. Zhang , and G. S. Jin , Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities, Phys. Rev. A 84 (3), 032307 (2011)
CrossRef ADS Google scholar
[46]
B. C. Ren , F. F. Du , and F. G. Deng , Two-step hyperentanglement purification with the quantum-state-joining method, Phys. Rev. A 90 (5), 052309 (2014)
CrossRef ADS Google scholar
[47]
M. Zwerger , H. Briegel , and W. Dür , Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90 (1), 012314 (2014)
CrossRef ADS Google scholar
[48]
G. Y. Wang , T. Li , Q. Ai , A. Alsaedi , T. Hayat , and F. G. Deng , Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems, Phys. Rev. Appl. 10 (5), 054058 (2018)
CrossRef ADS Google scholar
[49]
L. Zhou , W. Zhong , and Y. B. Sheng , Purification of the residual entanglement, Opt. Express 28 (2), 2291 (2020)
CrossRef ADS Google scholar
[50]
P. S. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Feasible measurement-based entanglement purification in linear optics, Opt. Express 29 (6), 9363 (2021)
CrossRef ADS Google scholar
[51]
T. J. Wang , S. C. Mi , and C. Wang , Hyperentanglement purification using imperfect spatial entanglement, Opt. Express 25 (3), 2969 (2017)
CrossRef ADS Google scholar
[52]
P. S. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-based entanglement purification for entangled coherent states, Front. Phys. 17 (2), 21501 (2022)
CrossRef ADS Google scholar
[53]
C. H. Bennett , H. J. Bernstein , S. Popescu , and B. Schumacher , Concentrating partial entanglement by local operations, Phys. Rev. A 53 (4), 2046 (1996)
CrossRef ADS Google scholar
[54]
Z. Zhao , J. W. Pan , and M. Zhan , Practical scheme for entanglement concentration, Phys. Rev. A 64 (1), 014301 (2001)
CrossRef ADS Google scholar
[55]
T. Yamamoto , M. Koashi , and N. Imoto , Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64 (1), 012304 (2001)
CrossRef ADS Google scholar
[56]
Y. B. Sheng , L. Zhou , and S. M. Zhao , Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A 85 (4), 042302 (2012)
CrossRef ADS Google scholar
[57]
Y. B. Sheng , L. Zhou , S. M. Zhao , and B. Y. Zheng , Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85 (1), 012307 (2012)
CrossRef ADS Google scholar
[58]
F. G. Deng , Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85 (2), 022311 (2012)
CrossRef ADS Google scholar
[59]
Y. B. Sheng , F. G. Deng , and H. Y. Zhou , Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77 (6), 062325 (2008)
CrossRef ADS Google scholar
[60]
X. Yan , Y. F. Yu , and Z. M. Zhang , Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9 (5), 640 (2014)
CrossRef ADS Google scholar
[61]
A. P. Liu , L. Y. Cheng , Q. Guo , S. L. Su , H. F. Wang , and S. Zhang , Heralded entanglement concentration of nonlocal photons assisted by double-sided optical microcavities, Phys. Scr. 94 (9), 095103 (2019)
CrossRef ADS Google scholar
[62]
S. S. Chen , H. Zhang , Q. Ai , and G. J. Yang , Phononic entanglement concentration via optomechanical interactions, Phys. Rev. A 100 (5), 052306 (2019)
CrossRef ADS Google scholar
[63]
J. Liu , L. Zhou , W. Zhong , and Y. B. Sheng , Logic bell state concentration with parity check measurement, Front. Phys. 14 (2), 21601 (2019)
CrossRef ADS Google scholar
[64]
B. C. Ren , F. F. Du , and F. G. Deng , Hyperentanglement concentration for two–photon four-qubit systems with linear optics, Phys. Rev. A 88 (1), 012302 (2013)
CrossRef ADS Google scholar
[65]
B. C. Ren and G. L. Long , General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities, Opt. Express 22 (6), 6547 (2014)
CrossRef ADS Google scholar
[66]
L. L. Fan , Y. Xia , and J. Song , Efficient entanglement concentration for arbitrary less-hyperentanglement multi– photon W states with linear optics, Quantum Inform. Process. 13 (9), 1967 (2014)
CrossRef ADS Google scholar
[67]
X. H. Li and S. Ghose , Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91 (6), 062302 (2015)
CrossRef ADS Google scholar
[68]
C. Cao , T. J. Wang , S. C. Mi , R. Zhang , and C. Wang , Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)
CrossRef ADS Google scholar
[69]
H. J. Liu , Y. Xia , and J. Song , Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity, Quantum Inform. Process. 15 (5), 2033 (2016)
CrossRef ADS Google scholar
[70]
B. C. Ren , H. Wang , F. Alzahrani , A. Hobiny , and F. G. Deng , Hyperentanglement concentration of nonlocal twophoton six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)
CrossRef ADS Google scholar
[71]
M. Wang , J. Xu , F. Yan , and T. Gao , Entanglement concentration for polarization–spatial–time–bin hyperentangled bell states, Europhys. Lett. 123 (6), 60002 (2018)
CrossRef ADS Google scholar
[72]
H. Wang , B. C. Ren , A. H. Wang , A. Alsaedi , T. Hayat , and F. G. Deng , General hyperentanglement concentration for polarization–spatial–time–bin multi-photon systems with linear optics, Front. Phys. 13 (5), 130315 (2018)
CrossRef ADS Google scholar
[73]
X. Wang , X. Cai , Z. Su , M. Chen , D. Wu , L. Li , N. Liu , C. Lu , and J. W. Pan , Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518 (7540), 516 (2015)
CrossRef ADS Google scholar
[74]
W. B. Gao , C. Y. Lu , X. C. Yao , P. Xu , O. Gühne , A. Goebel , Y. A. Chen , C. Z. Peng , Z. B. Chen , and J. W. Pan , Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6 (5), 331 (2010)
CrossRef ADS Google scholar
[75]
X. L. Wang , Y. H. Luo , H. L. Huang , M. C. Chen , Z. E. Su , C. Liu , C. Chen , W. Li , Y. Q. Fang , X. Jiang , J. Zhang , L. Li , N. L. Liu , C. Y. Lu , and J. W. Pan , 18-qubit entanglement with six photons three degrees of freedom, Phys. Rev. Lett. 120 (26), 260502 (2018)
CrossRef ADS Google scholar
[76]
Y. B. Sheng , F. G. Deng , and G. L. Long , Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82 (3), 032318 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2823 KB)

Accesses

Citations

Detail

Sections
Recommended

/