Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system
Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren
Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system
In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.
hyperdistillation / transmission loss / quantum channel noise / quantum communication / quantum information
[1] |
N. Gisin , G. Ribordy , W. Tittel , and H. Zbinden , Quantum cryptography, Rev. Mod. Phys. 74 (1), 145 (2002)
CrossRef
ADS
Google scholar
|
[2] |
X. M. Hu , Y. Guo , B. H. Liu , Y. F. Huang , C. F. Li , and G. C. Guo , Beating the channel capacity limit for superdense coding with entangled ququarts, Sci. Adv. 4 (7), eaat9304 (2018)
CrossRef
ADS
Google scholar
|
[3] |
A. K. Ekert , Quantum cryptography based on bells theorem, Phys. Rev. Lett. 67 (6), 661 (1991)
CrossRef
ADS
Google scholar
|
[4] |
D. Bruß and C. Macchiavello , Optimal eavesdropping in cryptography with three-dimensional quantum states, Phys. Rev. Lett. 88 (12), 127901 (2002)
CrossRef
ADS
Google scholar
|
[5] |
Y. F. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement–device–independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16 (1), 11501 (2021)
CrossRef
ADS
Google scholar
|
[6] |
N. J. Cerf , M. Bourennane , A. Karlsson , and N. Gisin , Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88 (12), 127902 (2002)
CrossRef
ADS
Google scholar
|
[7] |
C. H. Bennett , G. Brassard , C. Crépeau , R. Jozsa , A. Peres , and W. K. Wootters , Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[8] |
C. H. Bennett and S. J. Wiesner , Communication via oneand two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (20), 2881 (1992)
CrossRef
ADS
Google scholar
|
[9] |
X. Liu , G. Long , D. Tong , and F. Li , General scheme for superdense coding between multiparties, Phys. Rev. A 65 (2), 022304 (2002)
CrossRef
ADS
Google scholar
|
[10] |
M. Hillery , V. Bužek , and A. Berthiaume , Quantum secret sharing, Phys. Rev. A 59 (3), 1829 (1999)
CrossRef
ADS
Google scholar
|
[11] |
L. Xiao , G. L. Long , F. G. Deng , and J. W. Pan , Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69 (5), 052307 (2004)
CrossRef
ADS
Google scholar
|
[12] |
G. L. Long and X. S. Liu , Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65 (3), 032302 (2002)
CrossRef
ADS
Google scholar
|
[13] |
F. G. Deng , G. L. Long , and X. S. Liu , Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68 (4), 042317 (2003)
CrossRef
ADS
Google scholar
|
[14] |
W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , and G. C. Guo , Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118 (22), 220501 (2017)
CrossRef
ADS
Google scholar
|
[15] |
Z. Zhou , Y. Sheng , P. Niu , L. Yin , G. Long , and L. Hanzo , Measurement–device–independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63 (3), 230362 (2020)
CrossRef
ADS
Google scholar
|
[16] |
Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , and G. L. Long , Generic security analysis framework for quantum secure direct communication, Front. Phys. 16 (2), 21503 (2021)
CrossRef
ADS
Google scholar
|
[17] |
S. S. Chen , L. Zhou , W. Zhong , and Y. B. Sheng , Three– step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61 (9), 90312 (2018)
CrossRef
ADS
Google scholar
|
[18] |
G. L. Long and H. Zhang , Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull. (Beijing) 66 (13), 1267 (2021)
CrossRef
ADS
Google scholar
|
[19] |
A. Yabushita and T. Kobayashi , Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69 (1), 013806 (2004)
CrossRef
ADS
Google scholar
|
[20] |
C. Schuck , G. Huber , C. Kurtsiefer , and H. Weinfurter , Complete deterministic linear optics bell state analysis, Phys. Rev. Lett. 96 (19), 190501 (2006)
CrossRef
ADS
Google scholar
|
[21] |
M. Barbieri , G. Vallone , P. Mataloni , and F. De Martini , Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement, Phys. Rev. A 75 (4), 042317 (2007)
CrossRef
ADS
Google scholar
|
[22] |
G. Vallone , R. Ceccarelli , F. De Martini , and P. Mataloni , Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79 (3), 030301 (2009)
CrossRef
ADS
Google scholar
|
[23] |
M. Barbieri , C. Cinelli , P. Mataloni , and F. De Martini , Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72 (5), 052110 (2005)
CrossRef
ADS
Google scholar
|
[24] |
J. T. Barreiro , N. K. Langford , N. A. Peters , and P. G. Kwiat , Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95 (26), 260501 (2005)
CrossRef
ADS
Google scholar
|
[25] |
J. T. Barreiro , T. C. Wei , and P. G. Kwiat , Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4 (4), 282 (2008)
CrossRef
ADS
Google scholar
|
[26] |
T. C. Ralph and A. Lund , Nondeterministic noiseless linear amplification of quantum systems, in: AIP Conference Proceedings 1110 (1), 155 (2009)
CrossRef
ADS
Google scholar
|
[27] |
N. Gisin , S. Pironio , and N. Sangouard , Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105 (7), 070501 (2010)
CrossRef
ADS
Google scholar
|
[28] |
D. Pitkanen , X. Ma , R. Wickert , P. van Loock , and N. Lütkenhaus , Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84 (2), 022325 (2011)
CrossRef
ADS
Google scholar
|
[29] |
C. Osorio , N. Bruno , N. Sangouard , H. Zbinden , N. Gisin , and R. Thew , Heralded photon amplification for quantum communication, Phys. Rev. A 86 (2), 023815 (2012)
CrossRef
ADS
Google scholar
|
[30] |
S. Kocsis , G. Y. Xiang , T. C. Ralph , and G. J. Pryde , Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9 (1), 23 (2013)
CrossRef
ADS
Google scholar
|
[31] |
M. Curty and T. Moroder , Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84 (1), 010304 (2011)
CrossRef
ADS
Google scholar
|
[32] |
L. Zhou , Y. B. Sheng , and G. L. Long , Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65 (1), 12 (2020)
CrossRef
ADS
Google scholar
|
[33] |
S. Zhang , S. Yang , X. Zou , B. Shi , and G. Guo , Protecting single-photon entangled state from photon loss with noiseless linear amplification, Phys. Rev. A 86 (3), 034302 (2012)
CrossRef
ADS
Google scholar
|
[34] |
G. Y. Xiang , T. C. Ralph , A. P. Lund , N. Walk , and G. J. Pryde , Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4 (5), 316 (2010)
CrossRef
ADS
Google scholar
|
[35] |
L. Zhou and Y. B. Sheng , Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12 (4), 045203 (2015)
CrossRef
ADS
Google scholar
|
[36] |
F. Monteiro , E. Verbanis , V. C. Vivoli , A. Martin , N. Gisin , H. Zbinden , and R. Thew , Heralded amplification of path entangled quantum states, Quantum Sci. Technol. 2 (2), 024008 (2017)
CrossRef
ADS
Google scholar
|
[37] |
T. J. Wang , C. Cao , and C. Wang , Linear-optical implementation of hyperdistillation from photon loss, Phys. Rev. A 89 (5), 052303 (2014)
CrossRef
ADS
Google scholar
|
[38] |
G. Yang , Y. S. Zhang , Z. R. Yang , L. Zhou , and Y. B. Sheng , Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state, Quantum Inform. Process. 18 (10), 317 (2019)
CrossRef
ADS
Google scholar
|
[39] |
D. Y. Chen , Z. Lin , M. Yang , Q. Yang , X. P. Zang , and Z. L. Cao , Distillation of lossy hyperentangled states, Phys. Rev. A 102 (2), 022425 (2020)
CrossRef
ADS
Google scholar
|
[40] |
Y. Y. Jin , S. X. Qin , H. Zu , L. Zhou , W. Zhong , and Y. B. Sheng , Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13 (5), 130321 (2018)
CrossRef
ADS
Google scholar
|
[41] |
C. H. Bennett , D. P. DiVincenzo , J. A. Smolin , and W. K. Wootters , Mixed-state entanglement and quantum error correction, Phys. Rev. A 54 (5), 3824 (1996)
CrossRef
ADS
Google scholar
|
[42] |
J. W. Pan , C. Simon , Č. Brukner , and A. Zeilinger , Entanglement purification for quantum communication, Nature 410 (6832), 1067 (2001)
CrossRef
ADS
Google scholar
|
[43] |
Y. B. Sheng , F. G. Deng , and H. Y. Zhou , Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity, Phys. Rev. A 77 (4), 042308 (2008)
CrossRef
ADS
Google scholar
|
[44] |
Y. B. Sheng and F. G. Deng , One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82 (4), 044305 (2010)
CrossRef
ADS
Google scholar
|
[45] |
C. Wang , Y. Zhang , and G. S. Jin , Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities, Phys. Rev. A 84 (3), 032307 (2011)
CrossRef
ADS
Google scholar
|
[46] |
B. C. Ren , F. F. Du , and F. G. Deng , Two-step hyperentanglement purification with the quantum-state-joining method, Phys. Rev. A 90 (5), 052309 (2014)
CrossRef
ADS
Google scholar
|
[47] |
M. Zwerger , H. Briegel , and W. Dür , Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90 (1), 012314 (2014)
CrossRef
ADS
Google scholar
|
[48] |
G. Y. Wang , T. Li , Q. Ai , A. Alsaedi , T. Hayat , and F. G. Deng , Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems, Phys. Rev. Appl. 10 (5), 054058 (2018)
CrossRef
ADS
Google scholar
|
[49] |
L. Zhou , W. Zhong , and Y. B. Sheng , Purification of the residual entanglement, Opt. Express 28 (2), 2291 (2020)
CrossRef
ADS
Google scholar
|
[50] |
P. S. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Feasible measurement-based entanglement purification in linear optics, Opt. Express 29 (6), 9363 (2021)
CrossRef
ADS
Google scholar
|
[51] |
T. J. Wang , S. C. Mi , and C. Wang , Hyperentanglement purification using imperfect spatial entanglement, Opt. Express 25 (3), 2969 (2017)
CrossRef
ADS
Google scholar
|
[52] |
P. S. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-based entanglement purification for entangled coherent states, Front. Phys. 17 (2), 21501 (2022)
CrossRef
ADS
Google scholar
|
[53] |
C. H. Bennett , H. J. Bernstein , S. Popescu , and B. Schumacher , Concentrating partial entanglement by local operations, Phys. Rev. A 53 (4), 2046 (1996)
CrossRef
ADS
Google scholar
|
[54] |
Z. Zhao , J. W. Pan , and M. Zhan , Practical scheme for entanglement concentration, Phys. Rev. A 64 (1), 014301 (2001)
CrossRef
ADS
Google scholar
|
[55] |
T. Yamamoto , M. Koashi , and N. Imoto , Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64 (1), 012304 (2001)
CrossRef
ADS
Google scholar
|
[56] |
Y. B. Sheng , L. Zhou , and S. M. Zhao , Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A 85 (4), 042302 (2012)
CrossRef
ADS
Google scholar
|
[57] |
Y. B. Sheng , L. Zhou , S. M. Zhao , and B. Y. Zheng , Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85 (1), 012307 (2012)
CrossRef
ADS
Google scholar
|
[58] |
F. G. Deng , Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85 (2), 022311 (2012)
CrossRef
ADS
Google scholar
|
[59] |
Y. B. Sheng , F. G. Deng , and H. Y. Zhou , Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77 (6), 062325 (2008)
CrossRef
ADS
Google scholar
|
[60] |
X. Yan , Y. F. Yu , and Z. M. Zhang , Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9 (5), 640 (2014)
CrossRef
ADS
Google scholar
|
[61] |
A. P. Liu , L. Y. Cheng , Q. Guo , S. L. Su , H. F. Wang , and S. Zhang , Heralded entanglement concentration of nonlocal photons assisted by double-sided optical microcavities, Phys. Scr. 94 (9), 095103 (2019)
CrossRef
ADS
Google scholar
|
[62] |
S. S. Chen , H. Zhang , Q. Ai , and G. J. Yang , Phononic entanglement concentration via optomechanical interactions, Phys. Rev. A 100 (5), 052306 (2019)
CrossRef
ADS
Google scholar
|
[63] |
J. Liu , L. Zhou , W. Zhong , and Y. B. Sheng , Logic bell state concentration with parity check measurement, Front. Phys. 14 (2), 21601 (2019)
CrossRef
ADS
Google scholar
|
[64] |
B. C. Ren , F. F. Du , and F. G. Deng , Hyperentanglement concentration for two–photon four-qubit systems with linear optics, Phys. Rev. A 88 (1), 012302 (2013)
CrossRef
ADS
Google scholar
|
[65] |
B. C. Ren and G. L. Long , General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities, Opt. Express 22 (6), 6547 (2014)
CrossRef
ADS
Google scholar
|
[66] |
L. L. Fan , Y. Xia , and J. Song , Efficient entanglement concentration for arbitrary less-hyperentanglement multi– photon W states with linear optics, Quantum Inform. Process. 13 (9), 1967 (2014)
CrossRef
ADS
Google scholar
|
[67] |
X. H. Li and S. Ghose , Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91 (6), 062302 (2015)
CrossRef
ADS
Google scholar
|
[68] |
C. Cao , T. J. Wang , S. C. Mi , R. Zhang , and C. Wang , Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)
CrossRef
ADS
Google scholar
|
[69] |
H. J. Liu , Y. Xia , and J. Song , Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity, Quantum Inform. Process. 15 (5), 2033 (2016)
CrossRef
ADS
Google scholar
|
[70] |
B. C. Ren , H. Wang , F. Alzahrani , A. Hobiny , and F. G. Deng , Hyperentanglement concentration of nonlocal twophoton six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)
CrossRef
ADS
Google scholar
|
[71] |
M. Wang , J. Xu , F. Yan , and T. Gao , Entanglement concentration for polarization–spatial–time–bin hyperentangled bell states, Europhys. Lett. 123 (6), 60002 (2018)
CrossRef
ADS
Google scholar
|
[72] |
H. Wang , B. C. Ren , A. H. Wang , A. Alsaedi , T. Hayat , and F. G. Deng , General hyperentanglement concentration for polarization–spatial–time–bin multi-photon systems with linear optics, Front. Phys. 13 (5), 130315 (2018)
CrossRef
ADS
Google scholar
|
[73] |
X. Wang , X. Cai , Z. Su , M. Chen , D. Wu , L. Li , N. Liu , C. Lu , and J. W. Pan , Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518 (7540), 516 (2015)
CrossRef
ADS
Google scholar
|
[74] |
W. B. Gao , C. Y. Lu , X. C. Yao , P. Xu , O. Gühne , A. Goebel , Y. A. Chen , C. Z. Peng , Z. B. Chen , and J. W. Pan , Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6 (5), 331 (2010)
CrossRef
ADS
Google scholar
|
[75] |
X. L. Wang , Y. H. Luo , H. L. Huang , M. C. Chen , Z. E. Su , C. Liu , C. Chen , W. Li , Y. Q. Fang , X. Jiang , J. Zhang , L. Li , N. L. Liu , C. Y. Lu , and J. W. Pan , 18-qubit entanglement with six photons three degrees of freedom, Phys. Rev. Lett. 120 (26), 260502 (2018)
CrossRef
ADS
Google scholar
|
[76] |
Y. B. Sheng , F. G. Deng , and G. L. Long , Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82 (3), 032318 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |