Power-law scalings in weakly-interacting Bose gases at quantum criticality

Ming-Cheng Liang, Zhi-Xing Lin, Yang-Yang Chen, Xi-Wen Guan, Xibo Zhang

PDF(2472 KB)
PDF(2472 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 61501. DOI: 10.1007/s11467-022-1186-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Power-law scalings in weakly-interacting Bose gases at quantum criticality

Author information +
History +

Abstract

Weakly interacting quantum systems in low dimensions have been investigated for a long time, but there still remain a number of open questions and a lack of explicit expressions of physical properties of such systems. In this work, we find power-law scalings of thermodynamic observables in low-dimensional interacting Bose gases at quantum criticality. We present a physical picture for these systems with the repulsive interaction strength approaching zero; namely, the competition between the kinetic and interaction energy scales gives rise to power-law scalings with respect to the interaction strength in characteristic thermodynamic observables. This prediction is supported by exact Bethe ansatz solutions in one dimension, demonstrating a simple 1/3-power-law scaling of the critical entropy per particle. Our method also yields results in agreement with a non-perturbative renormalization-group computation in two dimensions. These results provide a new perspective for understanding many-body phenomena induced by weak interactions in quantum gases.

Graphical abstract

Keywords

power-law scaling / quantum criticality / Bose gases / weak interaction / non-perturbative methods

Cite this article

Download citation ▾
Ming-Cheng Liang, Zhi-Xing Lin, Yang-Yang Chen, Xi-Wen Guan, Xibo Zhang. Power-law scalings in weakly-interacting Bose gases at quantum criticality. Front. Phys., 2022, 17(6): 61501 https://doi.org/10.1007/s11467-022-1186-x

References

[1]
T. D. Lee , K. Huang , C. N. Yang . Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev., 1957, 106( 6): 1135
CrossRef ADS Google scholar
[2]
C. N. Yang , C. P. Yang . Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 1969, 10( 7): 1115
CrossRef ADS Google scholar
[3]
F. Dalfovo , S. Giorgini , L. P. Pitaevskii , S. Stringari . Theory of Bose−Einstein condensation in trapped gases. Rev. Mod. Phys., 1999, 71( 3): 463
CrossRef ADS Google scholar
[4]
N. Prokof’ev , O. Ruebenacker , B. Svistunov . Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett., 2001, 87( 27): 270402
CrossRef ADS Google scholar
[5]
N. Prokof’ev , B. Svistunov . Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A, 2002, 66( 4): 043608
CrossRef ADS Google scholar
[6]
S. Floerchinger , C. Wetterich . Nonperturbative thermodynamics of an interacting Bose gas. Phys. Rev. A, 2009, 79( 6): 063602
CrossRef ADS Google scholar
[7]
Y. Z. Jiang , Y. Y. Chen , X. W. Guan . Understanding many-body physics in one dimension from the Lieb–Liniger model. Chin. Phys. B, 2015, 24( 5): 050311
CrossRef ADS Google scholar
[8]
C. Chin . Ultracold atomic gases going strong. Natl. Sci. Rev., 2016, 3( 2): 168
CrossRef ADS Google scholar
[9]
E. Bettelheim . The Whitham approach to the c → 0 limit of the Lieb–Liniger model and generalized hydrodynamics. J. Phys. A Math. Theor., 2020, 53( 20): 205204
CrossRef ADS Google scholar
[10]
A. Posazhennikova . Colloquium: Weakly interacting, dilute Bose gases in 2D. Rev. Mod. Phys., 2006, 78( 4): 1111
CrossRef ADS Google scholar
[11]
X. W. Guan , M. T. Batchelor , C. Lee . Fermi gases in one dimension: From Bethe ansatz to experiments. Rev. Mod. Phys., 2013, 85( 4): 1633
CrossRef ADS Google scholar
[12]
M. Gaudin . Un systeme a une dimension de fermions en interaction. Phys. Lett. A, 1967, 24( 1): 55
CrossRef ADS Google scholar
[13]
C. N. Yang . Some exact results for the many-body problem in one dimension with repulsive δ-function interaction. Phys. Rev. Lett., 1967, 19( 23): 1312
CrossRef ADS Google scholar
[14]
M. Takahashi . Ground state energy of the one-dimensional electron system with short-range interaction (I). Prog. Theor. Phys., 1970, 44 : 348
CrossRef ADS Google scholar
[15]
T. Iida , M. Wadati . Exact analysis of a one-dimensional attractive δ-function Fermi gas with arbitrary spin polarization. J. Low Temp. Phys., 2007, 148( 3−4): 417
CrossRef ADS Google scholar
[16]
X. W. Guan . Polaron, molecule and pairing in one-dimensional spin-1/2 Fermi gas with an attractive delta-function interaction. Front. Phys., 2012, 7( 1): 8
CrossRef ADS Google scholar
[17]
X. W. Guan , Z. Q. Ma . One-dimensional multicomponent fermions with δ-function interaction in strong- and weak-coupling limits: Two-component Fermi gas. Phys. Rev. A, 2012, 85( 3): 033632
CrossRef ADS Google scholar
[18]
X. W. Guan , Z. Q. Ma , B. Wilson . One-dimensional multicomponent fermions with δ -function interaction in strong- and weak-coupling limits: κ-component Fermi gas. Phys. Rev. A, 2012, 85( 3): 033633
CrossRef ADS Google scholar
[19]
C. A. Tracy , H. Widom . On the ground state energy of the δ-function Bose gas. J. Phys. A Math. Theor., 2016, 49( 29): 294001
CrossRef ADS Google scholar
[20]
C. A. Tracy , H. Widom . On the ground state energy of the δ-function Fermi gas. J. Math. Phys., 2016, 57( 10): 103301
CrossRef ADS Google scholar
[21]
S. Prolhac . Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation. J. Phys. A Math. Theor., 2017, 50( 14): 144001
CrossRef ADS Google scholar
[22]
S. Sachdev, Quantum Phase Transitions, 2nd Ed., Cambridge University Press, 2011
[23]
G. G. Batrouni , R. T. Scalettar , G. T. Zimanyi . Quantum critical phenomena in one-dimensional Bose systems. Phys. Rev. Lett., 1990, 65( 14): 1765
CrossRef ADS Google scholar
[24]
I. Bloch , J. Dalibard , W. Zwerger . Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80( 3): 885
CrossRef ADS Google scholar
[25]
M. A. Cazalilla , R. Citro , T. Giamarchi , E. Orignac , M. Rigol . One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys., 2011, 83( 4): 1405
CrossRef ADS Google scholar
[26]
C. Chin in: Universal Themes of Bose−Einstein Condensation edited by D. Snoke N. Proukakis P. Littlewood, Cambridge University Press, 2017, Chapter 9, pp 175– 195
[27]
T. L. Ho . Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett., 2004, 92( 9): 090402
CrossRef ADS Google scholar
[28]
T. L. Ho , Q. Zhou . Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nat. Phys., 2010, 6( 2): 131
CrossRef ADS Google scholar
[29]
S. Pilati , S. Giorgini , N. Prokof’ev . Critical temperature of interacting Bose gases in two and three dimensions. Phys. Rev. Lett., 2008, 100( 14): 140405
CrossRef ADS Google scholar
[30]
A. Rançon , N. Dupuis . Universal thermodynamics of a two-dimensional Bose gas. Phys. Rev. A, 2012, 85( 6): 063607
CrossRef ADS Google scholar
[31]
J. Kinast , A. Turlapov , J. E. Thomas , Q. Chen , J. Stajic , K. Levin . Heat capacity of a strongly interacting Fermi gas. Science, 2005, 307( 5713): 1296
CrossRef ADS Google scholar
[32]
L. Luo , J. E. Thomas . Thermodynamic measurements in a strongly interacting Fermi gas. J. Low Temp. Phys., 2009, 154( 1−2): 1
CrossRef ADS Google scholar
[33]
S. Nascimbène , N. Navon , K. J. Jiang , F. Chevy , C. Salomon . Exploring the thermodynamics of a universal Fermi gas. Nature, 2010, 463( 7284): 1057
CrossRef ADS Google scholar
[34]
N. Navon , S. Nascimbene , F. Chevy , C. Salomon . The equation of state of a low-temperature Fermi gas with tunable interactions. Science, 2010, 328( 5979): 729
CrossRef ADS Google scholar
[35]
C. L. Hung , X. Zhang , N. Gemelke , C. Chin . Observation of scale invariance and universality in two-dimensional Bose gases. Nature, 2011, 470( 7333): 236
CrossRef ADS Google scholar
[36]
T. Yefsah , R. Desbuquois , L. Chomaz , K. J. Gunter , J. Dalibard . Exploring the thermodynamics of a two-dimensional Bose gas. Phys. Rev. Lett., 2011, 107( 13): 130401
CrossRef ADS Google scholar
[37]
M. J. H. Ku , A. T. Sommer , L. W. Cheuk , M. W. Zwierlein . Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science, 2012, 335( 6068): 563
CrossRef ADS Google scholar
[38]
X. Zhang , C. L. Hung , S. K. Tung , C. Chin . Observation of quantum criticality with ultracold atoms in optical lattices. Science, 2012, 335( 6072): 1070
CrossRef ADS Google scholar
[39]
L. C. Ha , C. L. Hung , X. Zhang , U. Eismann , S. K. Tung , C. Chin . Strongly interacting two-dimensional Bose gases. Phys. Rev. Lett., 2013, 110( 14): 145302
CrossRef ADS Google scholar
[40]
A. Vogler R. Labouvie F. Stubenrauch G. Barontini V. Guarrera H. Ott, Thermodynamics of strongly correlated one-dimensional Bose gases, Phys. Rev. A 88, 031603(R) ( 2013)
[41]
B. Yang , Y. Y. Chen , Y. G. Zheng , H. Sun , H. N. Dai , X. W. Guan , Z. S. Yuan , J. W. Pan . Quantum criticality and the Tomonaga−Luttinger liquid in one-dimensional Bose gases. Phys. Rev. Lett., 2017, 119( 16): 165701
CrossRef ADS Google scholar
[42]
X. Zhang , Y. Y. Chen , L. X. Liu , Y. J. Deng , X. W. Guan . Interaction-induced particle−hole symmetry breaking and fractional exclusion statistics. Natl. Sci. Rev.,, 2022, nwac027
CrossRef ADS Google scholar
[43]
M. P. A. Fisher , P. B. Weichman , G. Grinstein , D. S. Fisher . Boson localization and the superfluid−insulator transition. Phys. Rev. B, 1989, 40( 1): 546
CrossRef ADS Google scholar
[44]
A . Khare, Fractional Statistics and Quantum Theory, World Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224, 2005, Chapter 5, 2nd Ed
[45]
P. Grüter , D. Ceperley , F. Laloe . Critical temperature of Bose−Einstein condensation of hard-sphere gases. Phys. Rev. Lett., 1997, 79( 19): 3549
CrossRef ADS Google scholar
[46]
E. H. Lieb , W. Liniger . Exact analysis of an interacting Bose gas (I): The general solution and the ground state. Phys. Rev., 1963, 130( 4): 1605
CrossRef ADS Google scholar
[47]
X. W. Guan , M. T. Batchelor . Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems. J. Phys. A Math. Theor., 2011, 44( 10): 102001
CrossRef ADS Google scholar
[48]
L. Tonks . The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev., 1936, 50( 10): 955
CrossRef ADS Google scholar
[49]
M. Girardeau . Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys., 1960, 1( 6): 516
CrossRef ADS Google scholar
[50]
B. Paredes , A. Widera , V. Murg , O. Mandel , S. Folling , I. Cirac , G. V. Shlyapnikov , T. W. Hansch , I. Bloch . Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 2004, 429( 6989): 277
CrossRef ADS Google scholar
[51]
T. Kinoshita , T. Wenger , D. S. Weiss . Observation of a one-dimensional Tonks−Girardeau gas. Science, 2004, 305( 5687): 1125
CrossRef ADS Google scholar
[52]
Supporting information is available as supplementary materials.
[53]
K. G. Wilson . The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 1975, 47( 4): 773
CrossRef ADS Google scholar
[54]
K. Costello, Renormalization and Effective Field Theory, American Mathematical Society, Providence, Rhode Island, 2011
[55]
G. Passarino . Veltman, renormalizability, calculability. Acta Phys. Pol. B, 2021, 52( 6): 533
CrossRef ADS Google scholar
[56]
B. Wolf , Y. Tsui , D. Jaiswal-Nagar , U. Tutsch , A. Honecker , K. Remović-Langer , G. Hofmann , A. Prokofiev , W. Assmus , G. Donath , M. Lang . Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl. Acad. Sci. USA, 2011, 108( 17): 6862
CrossRef ADS Google scholar
[57]
Y. Y. Chen , G. Watanabe , Y. C. Yu , X. W. Guan , A. del Campo . An interaction-driven many-particle quantum heat engine and its universal behavior. npj Quantum Inf., 2019, 5 : 88
CrossRef ADS Google scholar

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1186-x and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1186-x and are accessible for authorized users.

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2018YFA0305601, the National Natural Science Foundation of China under Grant No. 11874073, the Chinese Academy of Sciences Strategic Priority Research Program under Grant No. XDB35020100, and the Hefei National Laboratory and the Scientific and Technological Innovation 2030 under Grant No. 2021ZD0301903. X. W. Guan is supported by the National Natural Science Foundation of China under key Grant No. 12134015, and under Grants No. 11874393 and No. 12121004. Y. Y. Chen is supported by the National Natural Science Foundation of China under Grant No. 12104372.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2472 KB)

Accesses

Citations

Detail

Sections
Recommended

/