Power-law scalings in weakly-interacting Bose gases at quantum criticality
Ming-Cheng Liang, Zhi-Xing Lin, Yang-Yang Chen, Xi-Wen Guan, Xibo Zhang
Power-law scalings in weakly-interacting Bose gases at quantum criticality
Weakly interacting quantum systems in low dimensions have been investigated for a long time, but there still remain a number of open questions and a lack of explicit expressions of physical properties of such systems. In this work, we find power-law scalings of thermodynamic observables in low-dimensional interacting Bose gases at quantum criticality. We present a physical picture for these systems with the repulsive interaction strength approaching zero; namely, the competition between the kinetic and interaction energy scales gives rise to power-law scalings with respect to the interaction strength in characteristic thermodynamic observables. This prediction is supported by exact Bethe ansatz solutions in one dimension, demonstrating a simple 1/3-power-law scaling of the critical entropy per particle. Our method also yields results in agreement with a non-perturbative renormalization-group computation in two dimensions. These results provide a new perspective for understanding many-body phenomena induced by weak interactions in quantum gases.
power-law scaling / quantum criticality / Bose gases / weak interaction / non-perturbative methods
[1] |
T. D. Lee , K. Huang , C. N. Yang . Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev., 1957, 106( 6): 1135
CrossRef
ADS
Google scholar
|
[2] |
C. N. Yang , C. P. Yang . Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 1969, 10( 7): 1115
CrossRef
ADS
Google scholar
|
[3] |
F. Dalfovo , S. Giorgini , L. P. Pitaevskii , S. Stringari . Theory of Bose−Einstein condensation in trapped gases. Rev. Mod. Phys., 1999, 71( 3): 463
CrossRef
ADS
Google scholar
|
[4] |
N. Prokof’ev , O. Ruebenacker , B. Svistunov . Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett., 2001, 87( 27): 270402
CrossRef
ADS
Google scholar
|
[5] |
N. Prokof’ev , B. Svistunov . Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A, 2002, 66( 4): 043608
CrossRef
ADS
Google scholar
|
[6] |
S. Floerchinger , C. Wetterich . Nonperturbative thermodynamics of an interacting Bose gas. Phys. Rev. A, 2009, 79( 6): 063602
CrossRef
ADS
Google scholar
|
[7] |
Y. Z. Jiang , Y. Y. Chen , X. W. Guan . Understanding many-body physics in one dimension from the Lieb–Liniger model. Chin. Phys. B, 2015, 24( 5): 050311
CrossRef
ADS
Google scholar
|
[8] |
C. Chin . Ultracold atomic gases going strong. Natl. Sci. Rev., 2016, 3( 2): 168
CrossRef
ADS
Google scholar
|
[9] |
E. Bettelheim . The Whitham approach to the c → 0 limit of the Lieb–Liniger model and generalized hydrodynamics. J. Phys. A Math. Theor., 2020, 53( 20): 205204
CrossRef
ADS
Google scholar
|
[10] |
A. Posazhennikova . Colloquium: Weakly interacting, dilute Bose gases in 2D. Rev. Mod. Phys., 2006, 78( 4): 1111
CrossRef
ADS
Google scholar
|
[11] |
X. W. Guan , M. T. Batchelor , C. Lee . Fermi gases in one dimension: From Bethe ansatz to experiments. Rev. Mod. Phys., 2013, 85( 4): 1633
CrossRef
ADS
Google scholar
|
[12] |
M. Gaudin . Un systeme a une dimension de fermions en interaction. Phys. Lett. A, 1967, 24( 1): 55
CrossRef
ADS
Google scholar
|
[13] |
C. N. Yang . Some exact results for the many-body problem in one dimension with repulsive δ-function interaction. Phys. Rev. Lett., 1967, 19( 23): 1312
CrossRef
ADS
Google scholar
|
[14] |
M. Takahashi . Ground state energy of the one-dimensional electron system with short-range interaction (I). Prog. Theor. Phys., 1970, 44 : 348
CrossRef
ADS
Google scholar
|
[15] |
T. Iida , M. Wadati . Exact analysis of a one-dimensional attractive δ-function Fermi gas with arbitrary spin polarization. J. Low Temp. Phys., 2007, 148( 3−4): 417
CrossRef
ADS
Google scholar
|
[16] |
X. W. Guan . Polaron, molecule and pairing in one-dimensional spin-1/2 Fermi gas with an attractive delta-function interaction. Front. Phys., 2012, 7( 1): 8
CrossRef
ADS
Google scholar
|
[17] |
X. W. Guan , Z. Q. Ma . One-dimensional multicomponent fermions with δ-function interaction in strong- and weak-coupling limits: Two-component Fermi gas. Phys. Rev. A, 2012, 85( 3): 033632
CrossRef
ADS
Google scholar
|
[18] |
X. W. Guan , Z. Q. Ma , B. Wilson . One-dimensional multicomponent fermions with δ -function interaction in strong- and weak-coupling limits: κ-component Fermi gas. Phys. Rev. A, 2012, 85( 3): 033633
CrossRef
ADS
Google scholar
|
[19] |
C. A. Tracy , H. Widom . On the ground state energy of the δ-function Bose gas. J. Phys. A Math. Theor., 2016, 49( 29): 294001
CrossRef
ADS
Google scholar
|
[20] |
C. A. Tracy , H. Widom . On the ground state energy of the δ-function Fermi gas. J. Math. Phys., 2016, 57( 10): 103301
CrossRef
ADS
Google scholar
|
[21] |
S. Prolhac . Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation. J. Phys. A Math. Theor., 2017, 50( 14): 144001
CrossRef
ADS
Google scholar
|
[22] |
S. Sachdev, Quantum Phase Transitions, 2nd Ed., Cambridge University Press, 2011
|
[23] |
G. G. Batrouni , R. T. Scalettar , G. T. Zimanyi . Quantum critical phenomena in one-dimensional Bose systems. Phys. Rev. Lett., 1990, 65( 14): 1765
CrossRef
ADS
Google scholar
|
[24] |
I. Bloch , J. Dalibard , W. Zwerger . Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80( 3): 885
CrossRef
ADS
Google scholar
|
[25] |
M. A. Cazalilla , R. Citro , T. Giamarchi , E. Orignac , M. Rigol . One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys., 2011, 83( 4): 1405
CrossRef
ADS
Google scholar
|
[26] |
C. Chin in: Universal Themes of Bose−Einstein Condensation edited by D. Snoke N. Proukakis P. Littlewood, Cambridge University Press, 2017, Chapter 9, pp 175– 195
|
[27] |
T. L. Ho . Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett., 2004, 92( 9): 090402
CrossRef
ADS
Google scholar
|
[28] |
T. L. Ho , Q. Zhou . Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nat. Phys., 2010, 6( 2): 131
CrossRef
ADS
Google scholar
|
[29] |
S. Pilati , S. Giorgini , N. Prokof’ev . Critical temperature of interacting Bose gases in two and three dimensions. Phys. Rev. Lett., 2008, 100( 14): 140405
CrossRef
ADS
Google scholar
|
[30] |
A. Rançon , N. Dupuis . Universal thermodynamics of a two-dimensional Bose gas. Phys. Rev. A, 2012, 85( 6): 063607
CrossRef
ADS
Google scholar
|
[31] |
J. Kinast , A. Turlapov , J. E. Thomas , Q. Chen , J. Stajic , K. Levin . Heat capacity of a strongly interacting Fermi gas. Science, 2005, 307( 5713): 1296
CrossRef
ADS
Google scholar
|
[32] |
L. Luo , J. E. Thomas . Thermodynamic measurements in a strongly interacting Fermi gas. J. Low Temp. Phys., 2009, 154( 1−2): 1
CrossRef
ADS
Google scholar
|
[33] |
S. Nascimbène , N. Navon , K. J. Jiang , F. Chevy , C. Salomon . Exploring the thermodynamics of a universal Fermi gas. Nature, 2010, 463( 7284): 1057
CrossRef
ADS
Google scholar
|
[34] |
N. Navon , S. Nascimbene , F. Chevy , C. Salomon . The equation of state of a low-temperature Fermi gas with tunable interactions. Science, 2010, 328( 5979): 729
CrossRef
ADS
Google scholar
|
[35] |
C. L. Hung , X. Zhang , N. Gemelke , C. Chin . Observation of scale invariance and universality in two-dimensional Bose gases. Nature, 2011, 470( 7333): 236
CrossRef
ADS
Google scholar
|
[36] |
T. Yefsah , R. Desbuquois , L. Chomaz , K. J. Gunter , J. Dalibard . Exploring the thermodynamics of a two-dimensional Bose gas. Phys. Rev. Lett., 2011, 107( 13): 130401
CrossRef
ADS
Google scholar
|
[37] |
M. J. H. Ku , A. T. Sommer , L. W. Cheuk , M. W. Zwierlein . Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science, 2012, 335( 6068): 563
CrossRef
ADS
Google scholar
|
[38] |
X. Zhang , C. L. Hung , S. K. Tung , C. Chin . Observation of quantum criticality with ultracold atoms in optical lattices. Science, 2012, 335( 6072): 1070
CrossRef
ADS
Google scholar
|
[39] |
L. C. Ha , C. L. Hung , X. Zhang , U. Eismann , S. K. Tung , C. Chin . Strongly interacting two-dimensional Bose gases. Phys. Rev. Lett., 2013, 110( 14): 145302
CrossRef
ADS
Google scholar
|
[40] |
A. Vogler R. Labouvie F. Stubenrauch G. Barontini V. Guarrera H. Ott, Thermodynamics of strongly correlated one-dimensional Bose gases, Phys. Rev. A 88, 031603(R) ( 2013)
|
[41] |
B. Yang , Y. Y. Chen , Y. G. Zheng , H. Sun , H. N. Dai , X. W. Guan , Z. S. Yuan , J. W. Pan . Quantum criticality and the Tomonaga−Luttinger liquid in one-dimensional Bose gases. Phys. Rev. Lett., 2017, 119( 16): 165701
CrossRef
ADS
Google scholar
|
[42] |
X. Zhang , Y. Y. Chen , L. X. Liu , Y. J. Deng , X. W. Guan . Interaction-induced particle−hole symmetry breaking and fractional exclusion statistics. Natl. Sci. Rev.,, 2022,
CrossRef
ADS
Google scholar
|
[43] |
M. P. A. Fisher , P. B. Weichman , G. Grinstein , D. S. Fisher . Boson localization and the superfluid−insulator transition. Phys. Rev. B, 1989, 40( 1): 546
CrossRef
ADS
Google scholar
|
[44] |
A
|
[45] |
P. Grüter , D. Ceperley , F. Laloe . Critical temperature of Bose−Einstein condensation of hard-sphere gases. Phys. Rev. Lett., 1997, 79( 19): 3549
CrossRef
ADS
Google scholar
|
[46] |
E. H. Lieb , W. Liniger . Exact analysis of an interacting Bose gas (I): The general solution and the ground state. Phys. Rev., 1963, 130( 4): 1605
CrossRef
ADS
Google scholar
|
[47] |
X. W. Guan , M. T. Batchelor . Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems. J. Phys. A Math. Theor., 2011, 44( 10): 102001
CrossRef
ADS
Google scholar
|
[48] |
L. Tonks . The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev., 1936, 50( 10): 955
CrossRef
ADS
Google scholar
|
[49] |
M. Girardeau . Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys., 1960, 1( 6): 516
CrossRef
ADS
Google scholar
|
[50] |
B. Paredes , A. Widera , V. Murg , O. Mandel , S. Folling , I. Cirac , G. V. Shlyapnikov , T. W. Hansch , I. Bloch . Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 2004, 429( 6989): 277
CrossRef
ADS
Google scholar
|
[51] |
T. Kinoshita , T. Wenger , D. S. Weiss . Observation of a one-dimensional Tonks−Girardeau gas. Science, 2004, 305( 5687): 1125
CrossRef
ADS
Google scholar
|
[52] |
Supporting information is available as supplementary materials.
|
[53] |
K. G. Wilson . The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 1975, 47( 4): 773
CrossRef
ADS
Google scholar
|
[54] |
K. Costello, Renormalization and Effective Field Theory, American Mathematical Society, Providence, Rhode Island, 2011
|
[55] |
G. Passarino . Veltman, renormalizability, calculability. Acta Phys. Pol. B, 2021, 52( 6): 533
CrossRef
ADS
Google scholar
|
[56] |
B. Wolf , Y. Tsui , D. Jaiswal-Nagar , U. Tutsch , A. Honecker , K. Remović-Langer , G. Hofmann , A. Prokofiev , W. Assmus , G. Donath , M. Lang . Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl. Acad. Sci. USA, 2011, 108( 17): 6862
CrossRef
ADS
Google scholar
|
[57] |
Y. Y. Chen , G. Watanabe , Y. C. Yu , X. W. Guan , A. del Campo . An interaction-driven many-particle quantum heat engine and its universal behavior. npj Quantum Inf., 2019, 5 : 88
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |