Rotation-translation coupling of a double-headed Brownian motor in a traveling-wave potential

Wei-Xia Wu, Chen-Pu Li, Yan-Li Song, Ying-Rong Han, Zhi-Gang Zheng

PDF(1968 KB)
PDF(1968 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 31500. DOI: 10.1007/s11467-021-1057-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Rotation-translation coupling of a double-headed Brownian motor in a traveling-wave potential

Author information +
History +

Abstract

Considering a double-headed Brownian motor moving with both translational and rotational degrees of freedom, we investigate the directed transport properties of the system in a traveling-wave potential. It is found that the traveling wave provides the essential condition of the directed transport for the system, and at an appropriate angular frequency, the positive current can be optimized. A general current reversal appears by modulating the angular frequency of the traveling wave, noise intensity, external driving force and the rod length. By transforming the dynamical equation in traveling-wave potential into that in a tilted potential, the mechanism of current reversal is analyzed. For both cases of Gaussian and Lévy noises, the currents show similar dependence on the parameters. Moreover, the current in the tilted potential shows a typical stochastic resonance effect. The external driving force has also a resonance-like effect on the current in the tilted potential. But the current in the traveling-wave potential exhibits the reverse behaviors of that in the tilted potential. Besides, the currents obviously depend on the stability index of the Lévy noise under certain conditions.

Keywords

Brownian motor / rotation-translation coupling / traveling-wave potential / current reversal

Cite this article

Download citation ▾
Wei-Xia Wu, Chen-Pu Li, Yan-Li Song, Ying-Rong Han, Zhi-Gang Zheng. Rotation-translation coupling of a double-headed Brownian motor in a traveling-wave potential. Front. Phys., 2021, 16(3): 31500 https://doi.org/10.1007/s11467-021-1057-x

References

[1]
P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)
CrossRef ADS Google scholar
[2]
P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)
CrossRef ADS Google scholar
[3]
C. S. Peskin, G. M. Odell, and G. F. Oster, Cellular motions and thermal fluctuations: The Brownian ratchet, Biophys. J. 65(1), 316 (1993)
CrossRef ADS Google scholar
[4]
R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276(5314), 917 (1997)
CrossRef ADS Google scholar
[5]
P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appli. Phys. A 75(2), 169 (2002)
CrossRef ADS Google scholar
[6]
S. von Gehlen, M. Evstigneev, and P. Reimann, Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E 79(3), 031114 (2009)
CrossRef ADS Google scholar
[7]
M. Khoury, A. M. Lacasta, J. M. Sancho, and K. Lindenberg, Weak disorder: anomalous transport and diffusion are normal yet again, Phys. Rev. Lett. 106(9), 090602 (2011)
CrossRef ADS Google scholar
[8]
D. Cubero and F. Renzoni, Brownian Ratchets: From Statistical Physics to Bio- and Nano-motors, Cambridge University Press, Cambridge, 2016
CrossRef ADS Google scholar
[9]
C. Hyeon and W. Hwang, Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials, Phys. Rev. E 96(1), 012156 (2017)
CrossRef ADS Google scholar
[10]
T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, and P. Virnau, Critical behavior of active Brownian particles, Phys. Rev. E 98(3), 030601 (2018)
CrossRef ADS Google scholar
[11]
M. J. Skaug, C. Schwemmer, S. Fringes, C. D. Rawlings, and A. W. Knoll, Nanofluidic rocking Brownian motors, Science 359(6383), 1505 (2018)
CrossRef ADS Google scholar
[12]
R. Salgado-García, Noise-induced rectification in out-ofequilibrium structures, Phys. Rev. E 99(1), 012128 (2019)
CrossRef ADS Google scholar
[13]
S. Pattanayak, R. Das, M. Kumar, and S. Mishra, Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels, Eur. Phys. J. E 42(5), 62 (2019)
CrossRef ADS Google scholar
[14]
P. Hänggi, J. Tuczka, and J. Spiechowicz, Many faces of nonequilibrium: Anomalous transport phenomena in driven periodic systems, Acta Phys. Pol. 51(5), 1131 (2020)
CrossRef ADS Google scholar
[15]
A. Nakamura, K. I. Okazaki, T. Furuta, M. Sakurai, J. Ando, and R. Iino, Crystalline chitin hydrolase is a burntbridge Brownian motor, Biophys. 17, 51 (2020)
CrossRef ADS Google scholar
[16]
H. Qian, A simple theory of motor protein Kinesin and energetics, Biophys. Chem. 67(1–3), 263 (1997)
CrossRef ADS Google scholar
[17]
W. R. Schief and J. Howard, Conformational changes during Kinesin motility, Curr. Opin. Cell Biol. 13(1), 19 (2001)
CrossRef ADS Google scholar
[18]
A. B. Kolomeisky and M. E. Fisher, A simple kinetic model describes the processivity of myosin-V, Biophys. J. 84(3), 1642 (2003)
CrossRef ADS Google scholar
[19]
L. C. Kapitein, B. H. Kwok, J. S. Weinger, C. F. Schmidt, T. M. Kapoor, and E. J. G. Peterman, Microtubule crosslinking triggers the directional motility of kinesin-5, J. Cell Biol. 182(3), 421 (2008)
CrossRef ADS Google scholar
[20]
M. Takanoa, T. P. Teradab, and M. Sasai, Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor, Proc. Natl. Acad. Sci. USA 107(17), 7769 (2010)
CrossRef ADS Google scholar
[21]
F. J. Kull and S. A. Endow, Force generation by kinesin and myosin cytoskeletal motor proteins, J. Cell Sci. 126(Pt 1), 9 (2013)
CrossRef ADS Google scholar
[22]
J. E. Komianos and G. A. Papoian, Stochastic ratcheting on a funneled energy landscape is necessary for highly efficient contractility of actomyosin force dipoles, Phys. Rev. X 8(2), 021006 (2018)
CrossRef ADS Google scholar
[23]
G. Knoops and C. Vanderzande, Motion of kinesin in a viscoelastic medium, Phys. Rev. E 97(5), 052408 (2018)
CrossRef ADS Google scholar
[24]
R. D. Astumian and M. Bier, Fluctuation driven ratchets: Molecular motors, Phys. Rev. Lett. 72(11), 1766 (1994)
CrossRef ADS Google scholar
[25]
A. Sarmiento and H. Larralde, Deterministic transport in ratchets, Phys. Rev. E 59(5), 4878 (1999)
CrossRef ADS Google scholar
[26]
A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Myosin V walks hand-overhand: Single fluorophore imaging with 1.5-nm localization, Science 300(5628), 2061 (2003)
CrossRef ADS Google scholar
[27]
C. L. Asbury, A. N. Fehr, and S. M. Block, Kinesin moves by an asymmetric hand-over-hand mechanism, Science 302(5653), 2130 (2003)
CrossRef ADS Google scholar
[28]
A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, Kinesin walks hand-over-hand, Science 303(5658), 676 (2004)
CrossRef ADS Google scholar
[29]
A. Mehta, Myosin learns to walk, J. Cell Sci. 114(11), 1981 (2001)
[30]
Z. Ökten, L. S. Churchman, R. S. Rock, and J. A. Spudich, Myosin VI walks hand-over-hand along actin, Nat. Struct. Mol. Biol. 11(9), 884 (2004)
CrossRef ADS Google scholar
[31]
Y. X. Li, X. Z. Wu, and Y. Z. Zhuo, Directed motion of two-headed Brownian motors, Mod. Phys. Lett. B 14(13), 479 (2000)
CrossRef ADS Google scholar
[32]
A. K. Zhao, H. W. Zhang, and Y. X. Li, Feedback control of two-headed Brownian motors in flashing ratchet potential, Chin. Phys. B 19(11), 110506 (2010)
CrossRef ADS Google scholar
[33]
C. P. Li, H. B. Chen, and Z. G. Zheng, Double-temperature ratchet model and current reversal of coupled Brownian motors, Front. Phys. 12(6), 120507 (2017)
CrossRef ADS Google scholar
[34]
L. F. Lin, H. Q. Wang, and H. Ma, Directed transport properties of double-headed molecular motors with balanced cargo, Physica A 517, 270 (2019)
CrossRef ADS Google scholar
[35]
J. Howard, The movement of kinesin along microtubules, Annu. Rev. Physiol. 58(1), 703 (1996)
CrossRef ADS Google scholar
[36]
E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, Defocused orientation and position imaging (DOPI) of myosin V, Proc. Natl. Acad. Sci. USA 103(17), 6495 (2006)
CrossRef ADS Google scholar
[37]
A. R. Dunn and J. A. Spudich, Dynamics of the unbound head during myosin V processive translocation, Nat. Struct. Mol. Biol. 14(3), 246 (2007)
CrossRef ADS Google scholar
[38]
B. Geislinger and R. Kawai, Brownian molecular motors driven by rotation-translation coupling, Phys. Rev. E 74(1), 011912 (2006)
CrossRef ADS Google scholar
[39]
L. Y. Qiao, Y. Y. Li, and Z. G. Zheng, Rotational effect in two-dimensional cooperative directed transport, Front. Phys. 10(1), 108701 (2015)
CrossRef ADS Google scholar
[40]
R. N. Mantegna and B. Spagnolo, Stochastic resonance in a tunnel diode in the presence of white or coloured noise, Nuovo Cimento D 17(7–8), 873 (1995)
CrossRef ADS Google scholar
[41]
R. N. Mantegna and B. Spagnolo, Noise enhanced stability in an unstable system, Phys. Rev. Lett. 76(4), 563 (1996)
CrossRef ADS Google scholar
[42]
L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70(1), 223 (1998)
CrossRef ADS Google scholar
[43]
R. N. Mantegna, B. Spagnolo, and M. Trapanese, Linear and nonlinear experimental regimes of stochastic resonance, Phys. Rev. E 63(1), 011101 (2001)
CrossRef ADS Google scholar
[44]
B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, D. Persano Adorno, S. Spezia, N. Pizzolato, and B. Di Paola, Noise-induced effects in nonlinear relaxation of condensed matter systems, Chaos Solitons Fractals 81(8), 412 (2015)
CrossRef ADS Google scholar
[45]
C. Guarcello, D. Valenti, A. Carollo, and B. Spagnolo, Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions, J. Stat. Mech.: Theory Exp. 2016(5), 054012 (2016)
CrossRef ADS Google scholar
[46]
B. Spagnolo, C. Guarcello, L. Magazzù, A. Carollo, D. P. Adorno, and D. Valenti, Nonlinear relaxation phenomena in metastable condensed matter systems, Entropy (Basel) 19(1), 20 (2017)
CrossRef ADS Google scholar
[47]
M. S. Simon, J. M. Sancho, and K. Lindenberg, Transport and diffusion of overdamped Brownian particles in random potentials, Phys. Rev. E 88(6), 062105 (2013)
CrossRef ADS Google scholar
[48]
C. P. Li, H. B. Chen, and Z. G. Zheng, Ratchet motion and current reversal of coupled Brownian motors in pulsating symmetric potentials, Front. Phys. 12(4), 120502 (2017)
CrossRef ADS Google scholar
[49]
S. N. Ethier and J. Lee, The tilted flashing Brownian ratchet, Fluct. Noise Lett. 18(1), 1950005 (2019)
CrossRef ADS Google scholar
[50]
X. Zhang, J. H. Cao, B. Q. Ai, T. F. Gao, and Z. G. Zheng, Investigation on the directional transportation of coupled Brownian motors with asymmetric friction, Acta Physica Sinica 69(10), 100503 (2020) (in Chinese)
CrossRef ADS Google scholar
[51]
D. del-Castillo-Negrete, V. Yu. Gonchar, and A. V. Chechkin, Fluctuation-driven directed transport in the presence of Lévy flights, Physica A 387(27), 6693 (2008)
CrossRef ADS Google scholar
[52]
Y. G. Li, Y. Xu, J. Kurths, and X. L. Yue, Lévy-noiseinduced transport in a rough triple-well potential, Phys. Rev. E 94(4), 042222 (2016)
CrossRef ADS Google scholar
[53]
D. Dan, M. C. Mahato, and A. M. Jayannavar, Stochastic resonance in washboard potentials, Phys. Lett. A 258(4–6), 217 (1999)
CrossRef ADS Google scholar
[54]
C. P. Li, H. B. Chen, H. Fan, G. Y. Xie, and Z. G. Zheng, Cooperation and competition between two symmetry breakings in a coupled ratchet, Physica A 494(6), 175 (2018)
CrossRef ADS Google scholar
[55]
B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, and E. Gudowska-Nowak, Stepping molecular motor amid Lévy white noise, Phys. Rev. E 91(4), 042713 (2015)
CrossRef ADS Google scholar
[56]
Y. Xie and R. N. Liu, Stochastic resonance in overdamped washboard potential system, Acta Physica Sinica 66(12), 120501 (2017) (in Chinese)
CrossRef ADS Google scholar
[57]
R. N. Liu and R. M. Kang, Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise, Phys. Lett. A 382(25), 1656 (2018)
CrossRef ADS Google scholar
[58]
M. Borromeo and F. Marchesoni, Brownian surfers, Phys. Lett. A 249(3), 199 (1998)
CrossRef ADS Google scholar
[59]
A. Fiasconaro and B. Spagnolo, Resonant activation in piecewise linear asymmetric potentials, Phys. Rev. E 83(4), 041122 (2011)
CrossRef ADS Google scholar
[60]
J. M. Chambers, C. L. Mallows, and B. W. Stuck, A method for simulating stable random variables, J. Am. Stat. Assoc. 71(354), 340 (1976)
CrossRef ADS Google scholar
[61]
D. Fulger, E. Scalas, and G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Phys. Rev. E 77(2), 021122 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1968 KB)

Accesses

Citations

Detail

Sections
Recommended

/