Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom

Xin-Jie Zhou, Wen-Qiang Liu, Hai-Rui Wei, Yan-Bei Zheng, Fang-Fang Du

PDF(2478 KB)
PDF(2478 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 41502. DOI: 10.1007/s11467-022-1168-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom

Author information +
History +

Abstract

Hyperentangled Bell states analysis (HBSA) is an essential building block for certain hyper-parallel quantum information processing. We propose a complete and deterministic HBSA scheme encoded in spatial and polarization degrees of freedom (DOFs) of two-photon system assisted by a fixed frequency-based entanglement and a time interval DOF. The parity information the spatial-based and polarization-based hyper-entanglement can be distinguished by the distinct time intervals of the photon pairs, and the phase information can be distinguished by the detection signature. Compared with previous schemes, the number of the auxiliary entanglements is reduced from two to one by introducing time interval DOF. Moreover, the additional frequency and time interval DOFs suffer less from the collective channel noise.

Graphical abstract

Keywords

hyperentangled Bell states analysis / multiple degrees of freedom / time interval

Cite this article

Download citation ▾
Xin-Jie Zhou, Wen-Qiang Liu, Hai-Rui Wei, Yan-Bei Zheng, Fang-Fang Du. Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom. Front. Phys., 2022, 17(5): 41502 https://doi.org/10.1007/s11467-022-1168-z

References

[1]
M. A. Nielsen I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000
[2]
R. Raussendorf , H. J. Briegel . A one-way quantum computer. Phys. Rev. Lett., 2001, 86( 22): 5188
CrossRef ADS Google scholar
[3]
R. Raussendorf , D. E. Browne , H. J. Briegel . Measurement-based quantum computation on cluster states. Phys. Rev. A, 2003, 68( 2): 022312
CrossRef ADS Google scholar
[4]
S. Liu , Y. Lou , J. Jing . Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun., 2020, 11( 1): 3875
CrossRef ADS Google scholar
[5]
S. Langenfeld , S. Welte , L. Hartung , S. Daiss , P. Thomas , O. Morin , E. Distante , G. Rempe . Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett., 2021, 126( 13): 130502
CrossRef ADS Google scholar
[6]
W. Ning , X. J. Huang , P. R. Han , H. Li , H. Deng , Z. B. Yang , Y. Xia , K. Xu , D. N. Zheng , S. B. Zheng . Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett., 2019, 123( 6): 060502
CrossRef ADS Google scholar
[7]
Z. X. Ji , P. R. Fan , H. G. Zhang . Entanglement swapping for Bell states and Greenberger−Horne− Zeilinger states in qubit systems. Physica A, 2022, 585 : 126400
CrossRef ADS Google scholar
[8]
C. H. Bennett , S. J. Wiesner . Communication via one- and two-particle operators on Einstein−Podolsky−Rosen states. Phys. Rev. Lett., 1992, 69( 20): 2881
CrossRef ADS Google scholar
[9]
Y. Guo , B. H. Liu , C. F. Li , G. C. Guo . Advances in quantum dense coding. Adv. Quantum Technol., 2019, 2( 5−6): 1900011
CrossRef ADS Google scholar
[10]
P. Wang , C. Q. Yu , Z. X. Wang , R. Y. Yuan , F. F. Du , B. C. Ren . Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys., 2022, 17 : 31501
CrossRef ADS Google scholar
[11]
G. L. Long , X. S. Liu . Theoretically efficient highcapacity quantum-key-distribution scheme. Phys. Rev. A, 2002, 65( 3): 032302
CrossRef ADS Google scholar
[12]
X. H. Li , F. G. Deng , H. Y. Zhou . Efficient quantum key distribution over a collective noise channel. Phys. Rev. A, 2008, 78( 2): 022321
CrossRef ADS Google scholar
[13]
L. M. Liang , S. H. Sun , M. S. Jiang , C. Y. Li . Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices. Front. Phys., 2014, 9 : 613
CrossRef ADS Google scholar
[14]
C. C. W. Lim , F. Xu , J. W. Pan , A. Ekert . Security analysis of quantum key distribution with small block length and its application to quantum space communications. Phys. Rev. Lett., 2021, 126( 10): 100501
CrossRef ADS Google scholar
[15]
L. C. Kwek , L. Cao , W. Luo , Y. X. Wang , S. H. Sun , X. B. Wang , A. Q. Liu . Chip-based quantum key distribution. AAPPS Bull., 2021, 31( 1): 15
CrossRef ADS Google scholar
[16]
C. Y. Gao , P. L. Guo , B. C. Ren . Efficient quantum secure direct communication with complete Bell state measurement. Quantum Eng., 2021, 3( 4): e83
CrossRef ADS Google scholar
[17]
G. Z. Tang , C. Y. Li , M. Wang . Polarization discriminated time-bin phase-encoding measurement device-independent quantum key distribution. Quantum Eng., 2021, 3( 4): e79
CrossRef ADS Google scholar
[18]
X. Yan , Y. F. Yu , Z. M. Zhang . Entanglement concentration for a non-maximally entangled four-photon cluster state. Front. Phys., 2014, 9 : 640
CrossRef ADS Google scholar
[19]
H. Wang , B. C. Ren , A. H. Wang , A. Alsaedi , T. Hayat , F. G. Deng . General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys., 2018, 13 : 130315
CrossRef ADS Google scholar
[20]
J. Liu , L. Zhou , W. Zhong , Y. B. Sheng . Logic Bell state concentration with parity check measurement. Front. Phys., 2019, 14( 2): 21601
CrossRef ADS Google scholar
[21]
F. G. Deng , G. L. Long , X. S. Liu . Two-step quantum direct communication protocol using the Einstein−Podolsky−Rosen pair block. Phys. Rev. A, 2003, 68( 4): 042317
CrossRef ADS Google scholar
[22]
Z. R. Zhou , Y. B. Sheng , P. H. Niu , L. G. Yin , G. L. Long , L. Hanzo . Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63( 3): 230362
CrossRef ADS Google scholar
[23]
G. L. Long , H. Zhang . Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. (Beijing), 2021, 66( 13): 1267
CrossRef ADS Google scholar
[24]
Y. B. Sheng , L. Zhou , G. L. Long . One-step quantum secure direct communication. Sci. Bull. (Beijing), 2022, 67( 4): 367
CrossRef ADS Google scholar
[25]
L. Zhou , Y. B. Sheng . One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2022, 65( 5): 250311
CrossRef ADS Google scholar
[26]
C. Wang . Quantum secure direct communication: Intersection of communication and cryptography. Funda. Res., 2021, 1( 1): 91
CrossRef ADS Google scholar
[27]
Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , G. L. Long . Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16 : 21503
CrossRef ADS Google scholar
[28]
N. Lütkenhaus , J. Calsamiglia , K. A. Suominen . Bell measurements for teleportation. Phys. Rev. A, 1999, 59( 5): 3295
CrossRef ADS Google scholar
[29]
L. Vaidman , N. Yoran . Methods for reliable teleportation. Phys. Rev. A, 1999, 59( 1): 116
CrossRef ADS Google scholar
[30]
M. A. Nielsen , E. Knill , R. Laflamme . Complete quantum teleportation using nuclear magnetic resonance. Nature, 1998, 396( 6706): 52
CrossRef ADS Google scholar
[31]
M. D. Barrett , J. Chiaverini , T. Schaetz , J. Britton , W. M. Itano , J. D. Jost , E. Knill , C. Langer , D. Leibfried , R. Ozeri , D. J. Wineland . Deterministic quantum teleportation of atomic qubits. Nature, 2004, 429( 6993): 737
CrossRef ADS Google scholar
[32]
L. Ye , G. C. Guo . Scheme for teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A, 2004, 70( 5): 054303
CrossRef ADS Google scholar
[33]
B. P. Williams , R. J. Sadlier , T. S. Humble . Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett., 2017, 118( 5): 050501
CrossRef ADS Google scholar
[34]
P. G. Kwiat , H. Weinfurter . Embedded Bell-state analysis. Phys. Rev. A, 1998, 58( 4): R2623
CrossRef ADS Google scholar
[35]
G. Vallone , R. Ceccarelli , F. De Martini , P. Mataloni . Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A, 2009, 79( 3): 030301
CrossRef ADS Google scholar
[36]
X. L. Wang , Y. H. Luo , H. L. Huang , M. C. Chen , Z. E. Su , C. Liu , C. Chen , W. Li , Y. Q. Fang , X. Jiang , J. Zhang , L. Li , N. L. Liu , C. Y. Lu , J. W. Pan . 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 2018, 120( 26): 260502
CrossRef ADS Google scholar
[37]
D. Pile . How many bits can a photon carry. Nat. Photonics, 2012, 6( 1): 14
CrossRef ADS Google scholar
[38]
F. Flamini , N. Spagnolo , F. Sciarrino . Photonic quantum information processing: A review. Rep. Prog. Phys., 2019, 82( 1): 016001
CrossRef ADS Google scholar
[39]
G. Y. Wang , Q. Ai , B. C. Ren , T. Li , F. G. Deng . Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express, 2016, 24( 25): 28444
CrossRef ADS Google scholar
[40]
F. G. Deng , B. C. Ren , X. H. Li . Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. (Beijing), 2017, 62( 1): 46
CrossRef ADS Google scholar
[41]
T. C. Wei , J. T. Barreiro , P. G. Kwiat . Hyperentangled Bell-state analysis. Phys. Rev. A, 2007, 75 : 060305(R)
CrossRef ADS Google scholar
[42]
N. Pisenti , C. P. E. Gaebler , T. W. Lynn . Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A, 2011, 84( 2): 022340
CrossRef ADS Google scholar
[43]
X. H. Li , S. Ghose . Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A, 2017, 96 : 020303(R)
CrossRef ADS Google scholar
[44]
C. Y. Gao , B. C. Ren , Y. X. Zhang , Q. Ai , F. G. Deng . The linear optical unambiguous discrimination of hyperentangled Bell states assisted by time bin. Ann. Phys., 2019, 531( 10): 1900201
CrossRef ADS Google scholar
[45]
C. Y. Gao , B. C. Ren , Y. X. Zhang , Q. Ai , F. G. Deng . Universal linear-optical hyperentangled Bell-state measurement. Appl. Phys. Express, 2020, 13 : 027004
[46]
Y. B. Sheng , F. G. Deng , G. L. Long . Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A, 2010, 82( 3): 032318
CrossRef ADS Google scholar
[47]
Y. B. Sheng , L. Zhou . Two-step complete polarization logic Bell-state analysis. Sci. Rep., 2015, 5( 1): 13453
CrossRef ADS Google scholar
[48]
X. H. Li , S. Ghose . Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A, 2016, 93( 2): 022302
CrossRef ADS Google scholar
[49]
H. R. Zhang , P. Wang , C. Q. Yu , B. C. Ren . Deterministic nondestructive state analysis for polarization spatial-time-bin hyperentanglement with cross-Kerr nonlinearity. Chin. Phys. B, 2021, 30( 3): 030304
CrossRef ADS Google scholar
[50]
B. C. Ren , H. R. Wei , M. Hua , T. Li , F. G. Deng . Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express, 2012, 20( 22): 24664
CrossRef ADS Google scholar
[51]
T. J. Wang , Y. Lu , G. L. Long . Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A, 2012, 86( 4): 042337
CrossRef ADS Google scholar
[52]
Q. Liu , M. Zhang . Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A, 2015, 91( 6): 062321
CrossRef ADS Google scholar
[53]
E. Sabag , S. Bouscher , R. Marjieh , A. Hayat . Photonic Bell-state analysis based on semiconductor superconductor structures. Phys. Rev. B, 2017, 95( 9): 094503
CrossRef ADS Google scholar
[54]
Y. Y. Zheng , L. X. Liang , M. Zhang . Error-heralded generation and self-assisted complete analysis of two photon hyperentangled Bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron., 2019, 62( 7): 970312
CrossRef ADS Google scholar
[55]
C. Cao , L. Zhang , Y. H. Han , P. P. Yin , L. Fan , Y. W. Duan , R. Zhang . Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Opt. Express, 2020, 28( 3): 2857
CrossRef ADS Google scholar
[56]
G. Y. Wang , B. C. Ren , F. G. Deng , G. L. Long . Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement. Opt. Express, 2019, 27( 6): 8994
CrossRef ADS Google scholar
[57]
Z. Zeng , K. D. Zhu . Complete hyperentangled Bell state analysis assisted by hyperentanglement. Laser Phys. Lett., 2020, 17( 7): 075203
CrossRef ADS Google scholar
[58]
T. Li , G. Y. Wang , F. G. Deng , G. L. Long . Deterministic error correction for nonlocal spatial-polarization hyperentanglement. Sci. Rep., 2016, 6( 1): 20677
CrossRef ADS Google scholar
[59]
P. G. Kwiat , E. Waks , A. G. White , I. Appelbaum , P. H. Eberhard . Ultrabright source of polarizationentangled photons. Phys. Rev. A, 1999, 60( 2): R773
CrossRef ADS Google scholar
[60]
R. Ceccarelli , G. Vallone , F. De Martini , P. Mataloni , A. Cabello . Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett., 2009, 103( 16): 160401
CrossRef ADS Google scholar
[61]
A. Yabushita , T. Kobayashi . Spectroscopy by frequency-entangled photon pairs. Phys. Rev. A, 2004, 69( 1): 013806
CrossRef ADS Google scholar
[62]
A. Yabushita , T. Kobayashi . Generation of frequency tunable polarization entangled photon pairs. J. Appl. Phys., 2006, 99( 6): 063101
CrossRef ADS Google scholar
[63]
C. Shu , X. X. Guo , P. Chen , M. M. T. Loy , S. W. Du . Narrowband biphotons with polarization-frequencycoupled entanglement. Phys. Rev. A, 2015, 91( 4): 043820
CrossRef ADS Google scholar
[64]
W. Ueno , F. Kaneda , H. Suzuki , S. Nagano , A. Syouji , R. Shimizu , K. Suizu , K. Edamatsu . Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. Opt. Express, 2012, 20( 5): 5508
CrossRef ADS Google scholar
[65]
F. Kaneda , H. Suzuki , R. Shimizu , K. Edamatsu . Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion. Opt. Express, 2019, 27( 2): 1416
CrossRef ADS Google scholar
[66]
A. V. Burlakov , S. P. Kulik , G. O. Rytikov , M. V. Chekhova . Biphoton light generation in polarization frequency Bell states. J. Exp. Theor. Phys., 2002, 95( 4): 639
CrossRef ADS Google scholar
[67]
E. H. Huntington , T. C. Ralph . Components for optical qubits encoded in sideband modes. Phys. Rev. A, 2004, 69( 4): 042318
CrossRef ADS Google scholar
[68]
M. Bloch , S. W. McLaughlin , J. M. Merolla , F. Patois . Frequency-coded quantum key distribution. Opt. Lett., 2007, 32( 3): 301
CrossRef ADS Google scholar
[69]
T. Zhang , Z. Q. Yin , Z. F. Han , G. C. Guo . A frequency-coded quantum key distribution scheme. Opt. Commun., 2008, 281( 18): 4800
CrossRef ADS Google scholar
[70]
C. Langrock , E. Diamanti , R. V. Roussev , Y. Yamamoto , M. M. Fejer , H. Takesue . Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett., 2005, 30( 13): 1725
CrossRef ADS Google scholar
[71]
H. Takesue . Erasing distinguishability using quantum frequency up-conversion. Phys. Rev. Lett., 2008, 101( 17): 173901
CrossRef ADS Google scholar
[72]
R. Ikuta , Y. Kusaka , T. Kitano , H. Kato , T. Yamamoto , M. Koashi , N. Imoto . Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun., 2011, 2( 1): 537
CrossRef ADS Google scholar
[73]
J. M. Merolla , L. Duraffourg , J. P. Goedgebuer , A. Soujaeff , F. Patois , W. T. Rhodes . Integrated quantum key distribution system using single sideband detection. Eur. Phys. J. D, 2002, 18( 2): 141
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11604012, the Fundamental Research Funds for the Central Universities under Grant No. FRF-TP-19-011A3, the National Natural Science Foundation of China under Contract 61901420, the Shanxi Province Science Foundation for Youths under Contract No. 201901D211235, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Contract No. 2019L0507.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2478 KB)

Accesses

Citations

Detail

Sections
Recommended

/