Negative thermal expansion: Mechanisms and materials

Erjun Liang, Qiang Sun, Huanli Yuan, Jiaqi Wang, Gaojie Zeng, Qilong Gao

PDF(4435 KB)
PDF(4435 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53302. DOI: 10.1007/s11467-021-1070-0
REVIEW ARTICLE
REVIEW ARTICLE

Negative thermal expansion: Mechanisms and materials

Author information +
History +

Abstract

Negative thermal expansion (NTE) of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications. Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials. In this article, we review the most recent understandings on the underlying mechanisms (anharmonic phonon vibration, magnetovolume effect, ferroelectrorestriction and charge transfer) of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects. Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures, NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed. Based on the data documented, some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.

Keywords

negative thermal expansion / mechanisms of thermal contraction / negative thermal expansion materials / lattice thermal dynamics / magnetovolume effect / ferroelectrostriction / charge transfer / anisotropic elasticity

Cite this article

Download citation ▾
Erjun Liang, Qiang Sun, Huanli Yuan, Jiaqi Wang, Gaojie Zeng, Qilong Gao. Negative thermal expansion: Mechanisms and materials. Front. Phys., 2021, 16(5): 53302 https://doi.org/10.1007/s11467-021-1070-0

References

[1]
L. P. Prisco, P. I. Ponton, M. V. Guaman, R. R. Avillez, C. P. Romao, M. B. Johnson, M. A. White, and B. A. Marinkovic, Assessment of the thermal shock resistance figures of merit of Al2W3O12, a low thermal expansion ceramic, J. Am. Ceram. Soc. 99(5), 1742 (2016)
CrossRef ADS Google scholar
[2]
T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleight, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8, Science 272(5258), 90 (1996)
CrossRef ADS Google scholar
[3]
N. Zhang, L. Li, M. Wu, Y. Li, D. Feng, C. Liu, Y. Mao, J. Guo, M. Chao, and E. Liang, Negative thermal expansion and electrical properties of α-Cu2V2O7, J. Eur. Ceram. Soc. 36(11), 2761 (2016)
CrossRef ADS Google scholar
[4]
X. H. Ge, Y. C. Mao, X. S. Liu, Y. G. Cheng, B. H. Yuan, M. J. Chao, and E. J. Liang, Negative thermal expansion and broad band photo luminescence in a novel material of ZrScMo2VO12, Sci. Rep. 6(1), 24832 (2016)
CrossRef ADS Google scholar
[5]
N. K. Shi, A. Sanson, Q. Gao, Q. Sun, Y. Ren, Q. Z. Huang, D. O. deSouza, X. R. Xing, and J. Chen, Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7, J. Am. Chem. Soc. 142(6), 3088 (2020)
CrossRef ADS Google scholar
[6]
M. K. Gupta, R. Mittal, and S. L. Chaplot, Negative thermal expansion behavior in orthorhombic Sc2(MoO4)3 andSc2(WO4)3, J. Appl. Phys. 126(12), 125114 (2019)
CrossRef ADS Google scholar
[7]
A. L. Goodwin and C. J. Kepert, Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials, Phys. Rev. B 71, 140301(R) (2005)
CrossRef ADS Google scholar
[8]
K. W. Chapman, P. J. Chupas, and C. J. Kepert, Compositional dependence of negative thermal expansion in the Prussian blue analogues MII PtIV (CN)6(M)Mn, Fe, Co, Ni, Cu, Zn, Cd), J. Am. Chem. Soc. 128(21), 7009 (2006)
CrossRef ADS Google scholar
[9]
S. d’Ambrumenil, M. Zbiri, A. M. Chippindale, S. J. Hibble, E. Marelli, and A. C. Hannon, Lattice dynamics and negative thermal expansion in the framework compound ZnNi(CN)4 with two-dimensional and three-dimensional local environments, Phys. Rev. B 99(2), 024309 (2019)
CrossRef ADS Google scholar
[10]
Q. Gao, J. Wang, A. Sanson, Q. Sun, E. Liang, X. Xing, and J. Chen, Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume, J. Am. Chem. Soc. 142(15), 6935 (2020)
CrossRef ADS Google scholar
[11]
B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W. Chapman, and A. P. Wilkinson, Pronounced negative thermal expansion from a simple structure: Cubic ScF3, J. Am. Chem. Soc. 132(44), 15496 (2010)
CrossRef ADS Google scholar
[12]
J. C. Hancock, K. W. Chapman, G. J. Halder, C. R. Morelock, B. S. Kaplan, L. C. Gallington, A. Bongiorno, C. Han, S. Zhou, and A. P. Wilkinson, Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AII BIV F6: CaZrF6 and CaHfF6, Chem. Mater. 27(11), 3912 (2015)
CrossRef ADS Google scholar
[13]
B. R. Hester, J. C. Hancock, S. H. Lapidus, and A. P. Wilkinson, Composition, response to pressure, and negative thermal expansion in MII BIV F6 (M= Ca, Mg; B= Zr, Nb), Chem. Mater. 29(2), 823 (2017)
CrossRef ADS Google scholar
[14]
D. Yoon, Y. W. Son, and H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett. 11(8), 3227 (2011)
CrossRef ADS Google scholar
[15]
G. Liu and J. Zhou, First-principles study of thermal expansion and thermomechanics of group-V monolayers: blue phosphorene, arsenene, and antimonene, J. Phys.: Condens. Matter 31(6), 065302 (2019)
CrossRef ADS Google scholar
[16]
K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87(23), 261902 (2005)
CrossRef ADS Google scholar
[17]
Y. Sun, C. Wang, Y. C. Wen, K. G. Zhu, and J. T. Zhao, Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN, Appl. Phys. Lett. 91(23), 231913 (2007)
CrossRef ADS Google scholar
[18]
X. G. Guo, P. Tong, J. C. Lina, C. Yang, K. Zhang, M. Wang, Y. Wu, S. Lin, W. H. Song, and Y. P. Sun, Large negative thermal expansion in(Ga0.7Cu0.3)1−xMnxNMn3 (x≤0.4), compensating for the thermal expansion of cryogenic materials, Scr. Mater. 128, 74 (2017)
CrossRef ADS Google scholar
[19]
R. J. Huang, Y. Y. Liu, W. Fan, J. Tan, F. R. Xiao, L. H. Qian, and L. F. Li, Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds, J. Am. Chem. Soc. 135(28), 11469 (2013)
CrossRef ADS Google scholar
[20]
W. T. Sun, H. Zhang, W. Li, R. J. Huang, Y. Q. Zhao, W. Wang, and L. F. Li, Controllable negative thermal expansion in NaZn13-type La(Fe, Co, Al)13 compounds, AIP Adv. 10(7), 075123 (2020)
CrossRef ADS Google scholar
[21]
X. R. Xing, J. X. Deng, J. Chen, and G. R. Liu, Novel thermal expansion of lead titanate, Rare Met. 22(4), 294 (2003)
[22]
H. Fang, Y. Wang, S. Shang, and Z. K. Liu, Nature of ferroelectric–paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B 91(2), 024104 (2015)
CrossRef ADS Google scholar
[23]
E. T. Ritz and N. A. Benedek, Interplay between phonons and anisotropic elasticity drives negative thermal expansion in PbTiO3, Phys. Rev. Lett. 121(22), 255901 (2018)
CrossRef ADS Google scholar
[24]
Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, and Y. Shimakawa, Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite, Nature 458(7234), 60 (2009)
CrossRef ADS Google scholar
[25]
M. Azuma, W. T. Chen, H. Seki, M. Czapski, S. Olga, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, S. Ishiwata, M. G. Tucker, Y. Shimakawa, and J. P. Attfield, Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer, Nat. Commun. 2(1), 347 (2011)
CrossRef ADS Google scholar
[26]
A. P. Giddy, M. T. Dove, G. S. Pawley, and V. Heine, The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures, Acta Crystallogr Sec. A: Found. Crystallogr. A49, 697 (1993)
CrossRef ADS Google scholar
[27]
L. Goodwin, Rigid unit modes and intrinsic flexibility in linearly bridged framework structures, Phys. Rev. B 74(13), 134302 (2006)
CrossRef ADS Google scholar
[28]
M. T. Dove, Flexibility of network materials and the Rigid Unit Mode model: A personal perspective, Phil. Trans. R. Soc. A 377(2149), 20180222 (2019)
CrossRef ADS Google scholar
[29]
W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp(2) hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)
CrossRef ADS Google scholar
[30]
J. Z. Tao and A. W. Sleight, The role of rigid unit modes in negative thermal expansion, J. Solid State Chem. 173(2), 442 (2003)
CrossRef ADS Google scholar
[31]
K. D. Hammonds, A. Bosenick, M. T. Dove, and V. Heine, Rigid unit modes in crystal structures with octahedrally coordinated atoms, Am. Mineral. 83(5–6), 476 (1998)
CrossRef ADS Google scholar
[32]
A. K. A. Pryde, K. D. Hammonds, M. T. Dove, V. Heine, J. D. Gale, and M. C. Warren, Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7, J. Phys.: Condens. Matter 8(50), 10973 (1999)
CrossRef ADS Google scholar
[33]
L. H. N. Rimmer and M. T. Dove, Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12, J. Phys.: Condens. Matter 27(18), 185401 (2015)
CrossRef ADS Google scholar
[34]
A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, M. Dapiaggi, and G. Artioli, Negative thermal expansion and local dynamics in Cu2O and Ag2O, Phys. Rev. B 73(21), 214305 (2006)
CrossRef ADS Google scholar
[35]
L. H. N. Rimmer, M. T. Dove, B. Winkler, D. J. Wilson, K. Refson, and A. L. Goodwin, Framework flexibility and the negative thermal expansion mechanism of copper (I) oxide Cu2O, Phys. Rev. B 89(21), 214115 (2014)
CrossRef ADS Google scholar
[36]
C. W. Li, X. Tang, J. A. Munöz, J. B. Keith, S. J. Tracy, D. L. Abernathy, and B. Fultz, Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3, Phys. Rev. Lett. 107(19), 195504 (2011)
CrossRef ADS Google scholar
[37]
C. P. Romao, Anisotropic thermal expansion in flexible materials, Phys. Rev. B 96(13), 134113 (2017)
CrossRef ADS Google scholar
[38]
E. Grüneisen, Theory of the solid state of monoatomic elements, Ann. Phys. 344(12), 257 (1912)
CrossRef ADS Google scholar
[39]
N. Mounet and N. Marzari, First-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives, Phys. Rev. B 71(20), 205214 (2005)
CrossRef ADS Google scholar
[40]
Z. Y. Wang, Y. L. Zhou, X. Q. Wang, F. Wang, Q. Sun, Z. X. Guo, and Y. Jia, Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide, Chin. Phys. B 24(2), 026501 (2015)
CrossRef ADS Google scholar
[41]
R. M. Hazen and A. Y. Au, High-pressure crystal chemistry of phenakite (Be2SiO4) and bertrandite (Be4Si2O7(OH)2), Phys. Chem. Miner. 13(2), 69 (1986)
CrossRef ADS Google scholar
[42]
R. Stevens, B. F. Woodfield, J. Boerio-Goates, and M. K. Crawford, Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion material Zn2GeO4 from T=(0 to 400) K, J. Chem. Thermodyn. 36(5), 349 (2004)
CrossRef ADS Google scholar
[43]
H. L. Yuan, Q. L. Gao, P. Xu, J. Guo, L. H. He, A. Sanson, M. J. Chao, and E. J. Liang, Understanding negative thermal expansion of Zn2GeO4 through local structure and vibrational dynamics, Inorg. Chem. 60(3), 1499 (2021)
CrossRef ADS Google scholar
[44]
J. Q. Wang, P. Xu, H. L. Yuan, Q. L. Gao, Q. Sun, and E. J. Liang, Negative thermal expansion driven by acoustic phonon modes in rhombohedral Zn2GeO4, Results Phys. 19, 103531 (2020)
CrossRef ADS Google scholar
[45]
J. N. Plendl and L. C. Mansur, Anomalous thermal expansion with infrared spectroscopy, Appl. Opt. 11(5), 1194 (1972)
CrossRef ADS Google scholar
[46]
M. Vaccari, R. Grisenti, P. Fornasini, F. Rocca, and A. Sanson, Negative thermal expansion in CuCl: An extended X-ray absorption fine structure study, Phys. Rev. B 75(18), 184307 (2007)
CrossRef ADS Google scholar
[47]
A. M. Gopakumar, M. K. Gupta, R. Mittal, S. Rolsd, and S. L. Chaplot, Investigating anomalous thermal expansion of copper halides by inelastic neutron scattering and ab initio phonon calculations, Phys. Chem. Chem. Phys. 19(19), 12107 (2017)
CrossRef ADS Google scholar
[48]
T. H. K. Barron and R. W. Munn, Analysis of the thermal expansion of anisotropic solids: Application to zinc, Philos. Mag. 15(133), 85 (1967)
CrossRef ADS Google scholar
[49]
C. Ablitt, S. Craddock, M. S. Senn, A. A. Mostofi, and N. C. Bristowe, The origin of uniaxial negative thermal expansion in layered perovskites, npj Comput. Mater. 3, 44 (2017)
CrossRef ADS Google scholar
[50]
N. Mounet and N. Marzari, First-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives, Phys. Rev. B 71(20), 205214 (2005)
CrossRef ADS Google scholar
[51]
G. Lucazeau, Effect of pressure and temperature on Raman spectra of solids: Anharmonicity, J. Raman Spectrosc. 34(7–8), 478 (2003)
CrossRef ADS Google scholar
[52]
L. C. Gallington, K. W. Chapman, C. R. Morelock, P. J. Chupas, and A. P. Wilkinson, Dramatic softening of the negative thermal expansion material HfW2O8 upon heating through its WO4 orientational order–disorder phase transition, J. Appl. Phys. 115(5), 053512 (2014)
CrossRef ADS Google scholar
[53]
S. Allen and J. S. O. Evans, Negative thermal expansion and oxygen disorder in cubic ZrMo2O8, Phys. Rev. B 68(13), 134101 (2003)
CrossRef ADS Google scholar
[54]
A. Kennedy, M. A. White, A. P. Wilkinson, and T. Varga, Low thermal conductivity of the negative thermal expansion material, HfMo2O8, Appl. Phys. Lett. 90(15), 151906 (2007)
CrossRef ADS Google scholar
[55]
J. S. O. Evans, T. A. Mary, and A. W. Sleight, Negative thermal expansion materials, Physica B 241, 311 (1998)
CrossRef ADS Google scholar
[56]
M. G. Tucker, A. L. Goodwin, M. T. Dove, D. A. Keen, S. A. Wells, and J. S. O. Evans, Negative thermal expansion in ZrW2O8: Mechanisms, rigid unit modes, and neutron total scattering, PRL 95(22), 255501 (2005)
CrossRef ADS Google scholar
[57]
D. Cao, F. Bridges, G. R. Kowach, and A. P. Ramirez, Frustrated softmodes and negative thermal expansion in ZrW2O8, Phys. Rev. Lett. 89(21), 215902 (2002)
CrossRef ADS Google scholar
[58]
F. Cao, F. Bridges, G. R. Kowach, and A. P. Ramirez, Correlated atomicmotions in the negative thermal expansion material ZrW2O8: A local structure study, Phys. Rev. B 68(1), 014303 (2003)
CrossRef ADS Google scholar
[59]
F. Bridges, T. Keiber, P. Juhas, S. J. L. Billinge, L. Sutton, J. Wilde, and G. R. Kowach, Local vibrations and negative thermal expansion in ZrW2O8, Phys. Rev. Lett. 112(4), 045505 (2014)
CrossRef ADS Google scholar
[60]
T. R. Ravindran, A. K. Arora, and T. A. Mary, High-pressure Raman spectroscopic study of zirconium tungstate, J. Phys.: Condens. Matter 13(50), 11573 (2001)
CrossRef ADS Google scholar
[61]
E. J. Liang, Y. Liang, Y. Zhao, J. Liu, and Y. J. Jiang, Low frequency phonon modes and negative thermal expansion in A(MO4)2 (A=Zr, Hf and M=W, Mo) by Raman and terahertz time-domain spectroscopy, J. Phys. Chem. A 112(49), 12582 (2008)
CrossRef ADS Google scholar
[62]
J. N. Hancock, C. Turpen, Z. Schlesinger, G. R. Kowach, and A. P. Ramirez, Unusual low-energy phonon dynamics in the negative thermal expansion compound ZrW2O8, Phys. Rev. Lett. 93(22), 225501 (2004)
CrossRef ADS Google scholar
[63]
V. Gava, A. L. Martinotto, and C. A. Perottoni, Firstprinciples mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8, Phys. Rev. Lett. 109(19), 195503 (2012)
CrossRef ADS Google scholar
[64]
M. K. Gupta, R. Mittal, and S. L. Chaplot, Negative thermal expansion in cubic ZrW2O8: Role of phonons in the entire Brillouin zone from ab initio calculations, Phys. Rev. B 88(1), 014303 (2013)
CrossRef ADS Google scholar
[65]
N. Khosrovani, A. W. Sleight, and T. Vogt, Structure of ZrV2O7 from –263 to 470 °C, J. Solid State Chem. 132(2), 355 (1997)
CrossRef ADS Google scholar
[66]
C. Turquat, C. Muller, E. Nigrelli, C. Leroux, J. L. Soubeyroux, and G. Nihoul, Structural investigation of temperature-induced phase transitions in HfV2O7, Eur. Phys. J. Appl. Phys. 10(1), 15 (2000)
CrossRef ADS Google scholar
[67]
R. L. Withers, J. S. O. Evans, J. Hanson, and A. W. Sleight, An in situ temperature-dependent electron and X-ray diffraction study of structural phase transitions in ZrV2O7, J. Solid State Chem. 137(1), 161 (1998)
CrossRef ADS Google scholar
[68]
L. C. Gallington, B. R. Hester, B. S. Kaplan, and A. P. Wilkinson, Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate, J. Solid State Chem. 249, 46 (2017)
CrossRef ADS Google scholar
[69]
V. Korthuis, N. Khosrovani, A. W. Sleight, N. Roberts, R. Dupree, and W. W. Warren, Negative thermal expansion and phase transitions in the ZrV2−xPxO7 series, Chem. Mater. 7(2), 412 (1995)
CrossRef ADS Google scholar
[70]
P. P. Sahoo, S. Sumithra, G. Madras, and T. N. G. Row, Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7, Inorg. Chem. 50(18), 8774 (2011)
CrossRef ADS Google scholar
[71]
H. L. Yuan, B. H. Yuan, F. Li, and E. J. Liang, Phase transition and thermal expansion properties of ZrV2−xPxO7, Acta Physica Sinica 61(22), 226502 (2012)
CrossRef ADS Google scholar
[72]
Q. Q. Liu, J. Yang, X. J. Sun, X. N. Cheng, H. Tang, and H. H. Li, Influence of W doped ZrV2O7 on structure, negative thermal expansion property and photocatalytic performance, Appl. Surf. Sci. 313, 41 (2014)
CrossRef ADS Google scholar
[73]
H. Yanase, H. Chida, and H. Kobayashi, Fabrication and negative thermal expansion properties of P-substituted ZrV2O7 sintered bodies, J. Eur. Ceram. Soc. 38(1), 221 (2018)
CrossRef ADS Google scholar
[74]
T. Hisashige, T. Yamaguchi, T. Tsuji, and Y. Yamamura, Phase transition of Zr1−xHfxV2O7 solid solutions having negative thermal expansion, J. Ceram. Soc. Jpn. 114(1331), 607 (2006)
CrossRef ADS Google scholar
[75]
T. Yanase, T. Kojima, and H. Kobayashi, Effects of Nb and Y substitution on negative thermal expansion of ZrV2−xPxO7 (0≤x≤0.8), Solid State Commun. 151(8), 595 (2011)
CrossRef ADS Google scholar
[76]
B. H. Yuan, H. L. Yuan, W. B. Song, X. S. Liu, Y. G. Cheng, M. J. Chao, and E. J. Liang, High solubility of hetero-valence ion (Cu2+) for reducing phase transition and thermal expansion of ZrV1.6P0.4O7, Chin. Phys. Lett. 31(7), 076501 (2014)
CrossRef ADS Google scholar
[77]
B. H. Yuan, X. S. Liu, W. B. Song, Y. G. Cheng, M. J. Chao, and E. J. Liang, High substitution of Fe3+ for Zr4+ in ZrV1.6P0.4O7 with small amount of FeV0.8P0.2O4 for low thermal expansion, J. Phys. Lett. A 378(45), 3397 (2014)
CrossRef ADS Google scholar
[78]
P. Wang, Q. D. Chen, S. L. Li, Y. J. Ji, W. Y. Mu, W. W. Feng, G. J. Zeng, Y. W. Liu, and E. J. Liang, Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7, Chin. Phys. B 27(6), 066501 (2018)
CrossRef ADS Google scholar
[79]
P. Wang, Q. D. Chen, S. L. Li, Y. J. Ji, G. J. Zeng, Y. W. Liu, and E. J. Liang, Phase transition and nearzero thermal expansion properties of Zr0.5Hf0.5V2−xPxO7 (0≤ x≤1.2), Solid State Commun. 287, 7 (2019)
CrossRef ADS Google scholar
[80]
B. H. Yuan, W. S. Cao, X. H. Ge, Y. G. Cheng, X. S. Liu, and E. J. Liang, Substitutions of dual-ion Al3+/Mo6+ for Zr4+/V5+in ZrV2O7 for realizing near-zero thermal expansion, Acta Physica Sinica 66(7), 076501 (2017)
CrossRef ADS Google scholar
[81]
B. H. Yuan, X. S. Liu, Y. C. Mao, J. Q. Wang, J. Guo, Y. G. Cheng, W. B. Song, E. J. Liang, and M. J. Chao, Low thermal expansion over a wide temperature range of Zr1−xFexV2−xMoxO7 (0≤x≤0.9), Mater. Chem. Phys. 170, 162 (2016)
CrossRef ADS Google scholar
[82]
W. Wei, Q. L. Gao, J. Guo, M. J. Chao, L. H. He, J. Chen, and E. J. Liang, Realizing isotropic negative thermal expansion covering room temperature by breaking the superstructure of ZrV2O7, Appl. Phys. Lett. 116(18), 181902 (2020)
CrossRef ADS Google scholar
[83]
R. Mittal and S. L. Chaplot, Lattice dynamical calculation of negative thermal expansion in ZrV2O7 and HfV2O7, Phys. Rev. B 78(17), 174303 (2008)
CrossRef ADS Google scholar
[84]
M. Maczka, W. Paraguassu, A. G. S. Filho, P. T. C. Freire, J. M. Filho, F. E. A. Melo, and J. Hanuza, High-pressure Raman study of Al2(WO4)3, J. Solid State Chem. 177(6), 2002 (2004)
CrossRef ADS Google scholar
[85]
G. J. Zeng, H. L. Yuan, J. Guo, Q. Sun, Q. L. Gao, M. J. Chao, X. Ren, and E. J. Liang, Hydrate formation and its effects on the thermal expansion properties of HfMgW3O12, Phys. Chem. Chem. Phys. 22(22), 12605 (2020)
CrossRef ADS Google scholar
[86]
J. Pommer, V. Kataev, K. Y. Choi, P. Lemmens, A. Ionescu, Y. Pashkevich, A. Freimuth, and G. Güntherodt, Interplay between structure and magnetism in the spinchain compound (Cu, Zn)2V2O7, Phys. Rev. B 67(21), 214410 (2003)
CrossRef ADS Google scholar
[87]
M. Schindler and F. C. Hawthorne, Structural characterization of the β-Cu2V2O7–α-Zn2V2O7 solid solution, J. Solid State Chem. 146(1), 271 (1999)
CrossRef ADS Google scholar
[88]
B. V. Slobodin and R. F. Samigullina, Thermoanalytical study of the polymorphism and melting behavior of Cu2V2O7, Inorg. Mater. 46(2), 196 (2010)
CrossRef ADS Google scholar
[89]
K. Katayama, K. Otsuka, M. Mitamura, Y. Yokoyama, Y. Okamoto, and K. Takenaka, Microstructural effects on negative thermal expansion extending over a wide temperature range in β-Cu1.8Zn0.2V2O7, Appl. Phys. Lett. 113(18), 181902 (2018)
CrossRef ADS Google scholar
[90]
L. Wang, J. Werner, A. Ottmann, R. Weis, M. Abdel-Hafiez, J. Sannigrahi, S. Majumdar, C. Koo, and R. Klingeler, Magnetoelastic coupling and ferromagnetic-type ingap spin excitations in multiferroic α-Cu2V2O7, New J. Phys. 20(6), 063045 (2018)
CrossRef ADS Google scholar
[91]
K. Shi, A. Sanson, A. Venier, L. L. Fan, C. L. Sun, X. R. Xing, and J. Chen, Negative and zero thermal expansion in α-(Cu2−xZnx)V2O7 solid solutions, Chem. Commun. (Camb.) 56(73), 10666 (2020)
CrossRef ADS Google scholar
[92]
M. Sato, V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto, and K. Takenaka, Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion, AIP Adv. 10(7), 075207 (2020)
CrossRef ADS Google scholar
[93]
Y. W. Lee, T. H. Jang, S. E. Dissanayake, S. Lee, and Y. H. Jeong, Magnetism and magnetoelectricity in the polar oxide α-Cu2V2O7,Europhys. Lett. 113(2), 27007 (2016)
CrossRef ADS Google scholar
[94]
H. Wang, M. Yang, M. Chao, J. Guo, Q. Gao, Y. Jiao, X. Tang, and E. Liang, Negative thermal expansion property of β-Cu2V2O7, Solid State Ion. 343, 115086 (2019)
CrossRef ADS Google scholar
[95]
H. Wang, M. Yang, M. Chao, J. Guo, X. Tang, Y. Jiao, and E. Liang, Negative thermal expansion properties of Cu1.5Mg0.5V2O7, Ceram. Int. 45(8), 9814 (2019)
CrossRef ADS Google scholar
[96]
K. Takenaka, Y. Okamoto, T. Shinoda, N. Katayama, and Y. Sakai, Colossal negative thermal expansion in reduced layered ruthenate, Nat. Commun. 8(1), 14102 (2017)
CrossRef ADS Google scholar
[97]
K. Takenaka, N. Inoue, Y. Mizuno, Y. Okamoto, N. Katayama, Y. Sakai, T. Nishikubo, and M. Azuma, Extended operating temperature window of giant negative thermal expansion in Sn-doped Ca2RuO4, Appl. Phys. Lett. 113(7), 071902 (2018)
CrossRef ADS Google scholar
[98]
S. Xu, Y. M. Hu, Y. Liang, C. F. Shi, Y. L. Su, J. Guo, Q. L. Gao, M. J. Chao, and E. J. Liang, Negative thermal expansion of Ca2RuO4 with oxygen vacancies, Chin. Phys. B 29(8), 086501 (2020)
CrossRef ADS Google scholar
[99]
A. K. Tyagi, S. N. Achary, and M. D. Mathews, Phase transition and negative thermal expansion in A2(MoO4)3 system (A= Fe3+, Cr3+ and Al3+), J. Alloys Compd. 339(1–2), 207 (2002)
CrossRef ADS Google scholar
[100]
T. Varga, J. L. Moats, S. V. Ushakov, and A. Navrotsky, Thermochemistry of A2M3O12 negative thermal expansion materials, J. Mater. Res. 22(9), 2512 (2007)
CrossRef ADS Google scholar
[101]
X. S. Liu, B. H. Yuan, Y. G. Cheng, E. J. Liang, and W. F. Zhang, Combined influences of A3+ and Mo6+ on monoclinic–orthorhombic phase transition of negativethermal- expansion A2Mo3O12, J. Alloys Compd. 776, 236 (2019)
CrossRef ADS Google scholar
[102]
G. Yang, X. S. Liu, X. W. Sun, E. J. Liang, and W. F. Zhang, Synthesis process control of low-thermalexpansion Fe2W3O12 by suppressing the intermediate phase Fe2WO6, Ceram. Int. 44(17), 22032 (2018)
CrossRef ADS Google scholar
[103]
Z. P. Zhang, W. K. Sun, H. F. Liu, B. T. Xiao, X. H. Zeng, and X. B. Chen, Densification and negative thermal expansion property of In0.5Sc1.5(MoO4)3 ceramics, J. Alloys Compd. 783, 77 (2019)
CrossRef ADS Google scholar
[104]
T. Suzuki and A. Omote, Negative thermal expansion in (HfMg)(WO4)3, J. Am. Ceram. Soc. 87(7), 1365 (2004)
CrossRef ADS Google scholar
[105]
B. A. Marinkovic, P. M. Jardim, M. Ari, R. R. de Avillez,F. Rizzo, and F. F. Ferreira, Low positive thermal expansion in HfMgMo3O12, Phys. Status Solidi. (b) 245(11), 2514 (2008)
CrossRef ADS Google scholar
[106]
W. B. Song, E. J. Liang, X. S. Liu, Z. Y. Li, B. H. Yuan, and J. Q. Wang, A negative thermal expansion material of ZrMgMo3O12, Chin. Phys. Lett. 30(12), 126502 (2013)
CrossRef ADS Google scholar
[107]
F. Li, X. S. Liu, W. B. Song, B. Yuan, Y. G. Cheng, H. L. Yuan, F. X. Cheng, M. J. Chao, and E. liang, Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O), Solid State Chem. 218, 15 (2014)
CrossRef ADS Google scholar
[108]
X. H. Ge, Y. C. Mao, L. Li, L. P. Li, N. Yuan, Y. G. Cheng, J. Guo, M. J. Chao, and E. J. Liang, Phase transition and negative thermal expansion property of ZrMnMo3O12, Chin. Phys. Lett. 33(4), 046503 (2016)
CrossRef ADS Google scholar
[109]
Y. Y. Liu, B. H. Yuan, Y. G. Cheng, E. J. Liang, X. H. Ge, H. L. Yuan, Y. Zhang, J.Guo, and M. J. Chao, Phase transition and negative thermal expansion of HfMnMo3O12,Mater. Res. Bull. 99, 255 (2018)
CrossRef ADS Google scholar
[110]
X. H. Ge, X. S. Liu, Y. G. Cheng, B. H. Yuan, D. X. Chen, M. J. Chao, J. Guo, J. Q. Wang, and E. J. Liang, Negative thermal expansion and photoluminescence properties in a novel material ZrScW2PO12, J. Appl. Phys. 120(20), 205101 (2016)
CrossRef ADS Google scholar
[111]
Y. G. Cheng, Y. Liang, X. H. Ge, X. S. Liu, B. H. Yuan, J. Guo, M. J. Chao, and E. J. Liang, A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission, RSC Advances 6(59), 53657 (2016)
CrossRef ADS Google scholar
[112]
Y. G. Cheng, Y. Liang, Y. C. Mao, X. H. Ge, B. H. Yuan, J. Guo, M. J. Chao, and E. J. Liang, A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence, Mater. Res. Bull. 85, 176 (2017)
CrossRef ADS Google scholar
[113]
X. Chen, B. H. Yuan, Y. G. Cheng, X. H. Ge, Y. Jia, E. J. Liang, and M. J. Chao, Phase transition and nearzero thermal expansion in ZrFeMo2VO12, Phys. Lett. A 380(48), 4070 (2016)
CrossRef ADS Google scholar
[114]
D. X. Chen, Y. Zhang, X. H. Ge, Y. G. Cheng, Y. Y. Liu, H. L. Yuan, J. Guo, M. J. Chao, and E. J. Liang, Structural, vibrational and thermal expansion properties of Sc2W4O15, Phys. Chem. Chem. Phys. 20(27), 20160 (2018)
CrossRef ADS Google scholar
[115]
Y. Liang, Y. G. Cheng, X. H. Ge, B. H. Yuan, J. Guo, Q. Sun, and E. J. Liang, Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12−δ, Chin. Phys. B 26(10), 106501 (2017)
CrossRef ADS Google scholar
[116]
L. Wang, F. Wang, P. F. Yuan, Q. Sun, E. J. Liang, Y. Jia, and Z. X. Guo, Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12, Mater. Res. Bull. 48(7), 2724 (2013)
CrossRef ADS Google scholar
[117]
H. L. Yuan, C. Y. Wang, Q. L. Gao, X. H. Ge, H. Sun, S. H. Lapidus, J. Guo, M. J. Chao, Y. Jia, and E. J. Liang, Structure and negative thermal expansion in Zr0.3Sc1.7Mo2.7V0.3O12, Inorg. Chem. 59(6), 4090 (2020)
CrossRef ADS Google scholar
[118]
T. G. Amos, A. Yokochi, and A. W. Sleight, Phase transition and negative thermal expansion in tetragonal NbOPO4, J. Solid State Chem. 141(1), 303 (1998)
CrossRef ADS Google scholar
[119]
T. G. Amos and A. W. Sleight, Negative thermal expansion in orthorhombic NbOPO4, J. Solid State Chem. 160(1), 230 (2001)
CrossRef ADS Google scholar
[120]
X. Wang, Q. Huang, J. Deng, R. Yu, J. Chen, and X. Xing, Phase transformation and negative thermal expansion in TaVO5, Inorg. Chem. 50(6), 2685 (2011)
CrossRef ADS Google scholar
[121]
J. Wang, J. Deng, R. Yu, J. Chen, and X. Xing, Coprecipitation synthesis and negative thermal expansion of NbVO5, Dalton Trans. 40(13), 3394 (2011)
CrossRef ADS Google scholar
[122]
N. P. Salke, M. K. Gupta, R. Rao, R. Mittal, J. Deng, and X. Xing, Raman and ab initio investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity, J. Appl. Phys. 117(23), 235902 (2015)
CrossRef ADS Google scholar
[123]
N. P. Salke, R. Rao, S. N. Achary, C. Nayak, A. B. Garg, P. S. R. Krishna, A. B. Shinde, S. N. Jha, D. Bhattacharyya, Jagannath, and A. K. Tyagi, High pressure phases and amorphization of a negative thermal expansion compound TaVO5, Inorg. Chem. 57(12), 6973 (2018)
CrossRef ADS Google scholar
[124]
M. Ivanda, D. Waasmaier, A. Endriss, J. Ihringer, A. Kirfel, and W. Kiefer, Low-temperature anomalies of cuprite observed by Raman spectroscopy and X-ray powder diffraction, J. Raman Spectrosc. 28(7), 487 (1997)
CrossRef ADS Google scholar
[125]
A. Sanson, G. Dalba, P. Fornasini, R. Grisenti, F. Rocca, G. Artioli, M. Dapiaggi, and W. Tiano, EXAFS and XRD study of local dynamics in Cu2O and Ag2O, Phys. Scr. T 115, 271 (2005)
CrossRef ADS Google scholar
[126]
S. A. Beccara, G. Dalba, P. Fornasini, R. Grisenti, A. Sanson, and F. Rocca, Local thermal expansion in a cuprite structure: The case of Ag2O, Phys. Rev. Lett. 89(2), 025503 (2002)
CrossRef ADS Google scholar
[127]
M. K. Gupta, R. Mittal, S. Rols, and S. L. Chaplot, Inelastic neutron scattering an ab–initio calculation of negative thermal expansion in Ag2O, Physica B 407(12), 2146 (2012)
CrossRef ADS Google scholar
[128]
T. Lan, C. W. Li, J. L. Niedziela, H. Smith, D. L. Abernathy, G. R. Rossman, and B. Fultz, Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations, Phys. Rev. B 89(5), 054306 (2014)
CrossRef ADS Google scholar
[129]
G. Wallez, N. Clavier, N. Dacheux, and D. Bregiroux, Negative thermal expansion in Th2O(PO4)2, Mater. Res. Bull. 46(11), 1777 (2011)
CrossRef ADS Google scholar
[130]
J. Xu, L. Hu, Y. Song, F. Han, Y. Qiao, J. Deng, J. Chen, and X. Xing, Zero thermal expansion in cubic MgZrF6, J. Am. Ceram. Soc. 100(12), 5385 (2017)
CrossRef ADS Google scholar
[131]
B. R. Hester and A. P. Wilkinson, Negative thermal expansion, response to pressure and phase transitions in CaTiF6, Inorg. Chem. 57(17), 11275 (2018)
CrossRef ADS Google scholar
[132]
M. T. Dove, J. Du, A. E. Phillips, D. A. Keen, and M. G. Tucker, A real-space experimental model for negative thermal expansion in scandium trifluoride, arXiv: 1905.09250 (2019)
[133]
Y. Oba, T. Tadano, R. Akashi, and S. Tsuneyuki, Firstprinciples study of phonon anharmonicity and negative thermal expansion in ScF3, Phys. Rev. Mater. 3(3), 033601 (2019)
CrossRef ADS Google scholar
[134]
D. Bocharov, M. Krack, Y. Rafalskij, A. Kuzmin, and J. Purans, Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: The effect of the supercell size, Comput. Mater. Sci. 171, 109198 (2020)
CrossRef ADS Google scholar
[135]
M. K. Gupta, B. Singh, R. Mittal, and S. L. Chaplot, Negative thermal expansion behavior in MZrF6 (M= Ca, Mg, Sr): Ab initio lattice dynamical studies, Phys. Rev. B 98(1), 014301 (2018)
CrossRef ADS Google scholar
[136]
T. A. Bird, J. Woodland-Scott, L. Hu, M. T. Wharmby, J. Chen, A. L. Goodwin, and M. S. Senn, Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6, Phys. Rev. B 101(6), 064306 (2020)
CrossRef ADS Google scholar
[137]
A. Sanson, M. Giarola, G. Mariotto, L. Hu, J. Chen, and X. R. Xing, Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations, Mater. Chem. Phys. 180, 213 (2016)
CrossRef ADS Google scholar
[138]
T. Chatterji, T. C. Hansen, M. Brunelli, and P. F. Henry, Negative thermal expansion of ReO3 in the extended temperature range, Appl. Phys. Lett. 94(24), 241902 (2009)
CrossRef ADS Google scholar
[139]
Y. M. Liu, Z. H. Wang, M. Wu, Q. Sun, M. J. Chao, and Y. Jia, Negative thermal expansion in isostructural cubic ReO3 and ScF3: A comparative study, Comput. Mater. Sci. 107, 157 (2015)
CrossRef ADS Google scholar
[140]
A. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove, J. S. O. Evans, D. A. Keen, L. Peters, and M. G. Tucker, Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6], Science 319(5864), 794 (2008)
CrossRef ADS Google scholar
[141]
L. Gao, N. K. Shi, Q. Sun, A. Sanson, R. Milazzo, A. Carnera, H. Zhu, S. H. Lapidus, Y. Ren, Q. Huang, J. Chen, and X. Xing, Low-frequency phonon driven negative thermal expansion in cubic GaFe(CN)6 Prussian blue analogues, Inorg. Chem. 57(17), 10918 (2018)
CrossRef ADS Google scholar
[142]
L. Gao, Y. Sun, N. Shi, R. Milazzo, S. Pollastri, L. Olivi, Q. Huang, H. Liu, A. Sanson, Q. Sun, E. Liang, X. Xing, and J. Chen, Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6, Scr. Mater. 187, 119 (2020)
CrossRef ADS Google scholar
[143]
P. Ding, E. J. Liang, Y. Jia, and Z. Y. Du, Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2, J. Phys.: Condens. Matter 20(24), 275224 (2008)
CrossRef ADS Google scholar
[144]
Z. Y. Du, E. J. Liang, P. Ding, J. P. Wang, and E. M. Xu, Lattice vibrational analysis of the negative thermal expansion materials of Zn(CN)2 and Zn(CN)2, Chin. J. Light Scatt. 20(2),145 (2008)
[145]
J. Hibble, A. M. Chippindale, E. Marelli, S. Kroeker, V. K. Michaelis, B. J. Greer, P. M. Aguiar, E. J. Bilbe, E. R. Barney, and A. C. Hannon, Local and average structure in zinc cyanide: Toward an understanding of the atomistic origin of negative thermal expansion, J. Am. Chem. Soc. 135(44), 16478 (2013)
CrossRef ADS Google scholar
[146]
M. K. Gupta, B. Singh, R. Mittal, M. Zbiri, A. B. Cairns, A. L. Goodwin, H. Schober, and S. L. Chaplot, Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN)4: Neutron inelastic scattering and lattice dynamics studies, Phys. Rev. B 96(21), 214303 (2017)
CrossRef ADS Google scholar
[147]
M. Mittal, H. Zbiri, E. Schober, S. J. Marelli, A. M. Hibble, A. M. Chippindale, and S. L. Chaplot, Relationship between phonons and thermal expansion in Zn(CN)2 and Ni(CN)2 from inelastic neutron scattering and ab initio calculations, Phys. Rev. B 83(2), 024301 (2011)
CrossRef ADS Google scholar
[148]
H. Fang, M. T. Dove, L. H. N. Rimmer, and A. J. Misquitta, Simulation study of pressure and temperature dependence of the negative thermal expansion in Zn(CN)2, Phys. Rev. B 88(10), 104306 (2013)
CrossRef ADS Google scholar
[149]
J. Hibble, A. M. Chippindale, A. H. Pohl, and A. C. Hannon, Surprises from a simple material — The structure and properties of nickel cyanide, Angew. Chem. Int. Ed. 46(37), 7116 (2007)
CrossRef ADS Google scholar
[150]
A. M. Chippindale, S. J. Hibble, E. Marelli, E. J. Bilbé, A. C. Hannon, and M. Zbiri, Chemistry and structure by design: Ordered CuNi(CN)4 sheets with copper(ii) in a square-planar environment, Dalton Trans. 44(25), 12502 (2015)
CrossRef ADS Google scholar
[151]
S. d’Ambrumenil,M. Zbiri, A. M. Chippindale, and S. J. Hibble, Phonon dynamics in the layered negative thermal expansion compounds CuxNi2−x(CN)4, Phys. Rev. B 100(9), 094312 (2019)
CrossRef ADS Google scholar
[152]
M. Li, Y. Li, C. Y. Wang, and Q. Sun, Negative thermal expansion of GaFe(CN)6 and effect of Na insertion by first-principles calculations, Chin. Phys. Lett. 36(6), 066301 (2019)
CrossRef ADS Google scholar
[153]
Y. Li, Q. L. Gao, D. H. Chang, P. J. Sun, J. Z. Liu, Y. Jia, E. J. Liang, and Q. Sun, Effect of bond on negative thermal expansion of Prussian blue analogues MCo(CN)6 (M= Fe, Ti and Sc): A first-principles study, J. Phys.: Condens. Matter 32(45), 455703 (2020)
CrossRef ADS Google scholar
[154]
P. Kroll, M. Andrade, X. Yan, E. Ionescu, G. Miehe, and R. Riedel, Isotropic negative thermal expansion in β-Si(NCN)2 and itsorigin, J. Phys. Chem. C 116(1), 526 (2012)
CrossRef ADS Google scholar
[155]
L. Li, K. Refson, and M. T. Dove, Negative thermal expansion of cubic silicon dicarbodiimide, Si(NCN)2, studied by ab initio lattice dynamics, J. Phys.: Condens. Matter 32(46), 465402 (2020)
CrossRef ADS Google scholar
[156]
D. Dubbeldam, K. S. Walton, D. Ellis, and R. Snurr, Exceptional negative thermal expansion in isoreticular metal–organic frameworks, Angew. Chem. Int. Ed. 119(24), 4580 (2007)
CrossRef ADS Google scholar
[157]
S. S. Han, and W. A. Goddard, Metal-organic frameworks provide large negative thermal expansion behavior, J. Phys. Chem. C 111(42), 15185 (2007)
CrossRef ADS Google scholar
[158]
W. Zhou, H. Wu, T. Yildirim, J. R. Simpson, and A. R. H. Walker, Originof the exceptional negative thermal expansion in metal–organic framework-5 Zn4O(1, 4-benzenedicarboxylate)3, Phys. Rev. B 78(5), 054114 (2008)
CrossRef ADS Google scholar
[159]
N. Lock, M. Christensen, Y. Wu, V. K. Peterson, M. K. Thomsen, R. O. Piltz, A. J. Ramirez-Cuesta,G. J. McIntyre, K. Norén,R. Kutteh, C. J. Kepert, G. J. Kearley, and B. B. Iversen, Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations, Dalton Trans. 42(6), 1996 (2013)
CrossRef ADS Google scholar
[160]
L. H. N. Rimmer, M. T. Dove, A. L. Goodwin, and D. C. Palmer, Acoustic phonons and negative thermal expansion in MOF-5, Phys. Chem. Chem. Phys. 16(39), 21144 (2014)
CrossRef ADS Google scholar
[161]
Y. Wu, A. Kobayashi, G. Halder, V. Peterson, K. Chapman, N. Lock, P. Southon, and C. Kepert, Negative thermal expansion in the metal–organic framework material Cu3(1, 3, 5-benzenetricarboxylate)2, Angew. Chem. Int. Ed. 47(46), 8929 (2008)
CrossRef ADS Google scholar
[162]
W. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson, and O. M. Yaghi, Site specific CO2 adsorption and zero thermal expansion in ananisotropic pore network, J. Phys. Chem. C 115(50), 24915 (2011)
CrossRef ADS Google scholar
[163]
S. Henke, A. Schneemann, and R. A. Fischer, Massive anisotropic thermal expansion and thermo-responsive breathing in metal–organic frameworks modulated by linker functionalization, Adv. Funct. Mater. 23(48), 5990 (2013)
CrossRef ADS Google scholar
[164]
Z. N. Liu, Q. Li, H. Zhu, K. Lin, J. X. Deng, J. Chen, and X. Xing, 3D negative thermal expansion in orthorhombic MIL-68(In), Chem. Commun. (Camb.) 54(45), 5712 (2018)
CrossRef ADS Google scholar
[165]
F. X. Coudert and J. D. Evans, Nanoscale metamaterials: Meta-MOFs and framework materials with anomalous behavior, Coord. Chem. Rev. 388, 48 (2019)
CrossRef ADS Google scholar
[166]
Z. Y. Wang, Y. L. Zhou, X. Q. Wang, F. Wang, Q. Sun, Z. X. Guo, and Y. Jia, Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide, Chin. Phys. B 24(2), 026501 (2015)
CrossRef ADS Google scholar
[167]
D. Kumar, B. Singh, P. Kumar, V. Balakrishnan, and P. Kumar, Thermal expansion coefficient and phonon dynamics in coexisting allotropes of monolayer WS2 probed by Raman scattering, J. Phys.: Condens. Matter 31(50), 505403 (2019)
CrossRef ADS Google scholar
[168]
Y. Aierken, D. Cakir, C. Sevik, and F. M. Peeters, Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach, Phys. Rev. B 92(8), 081408 (2015)
CrossRef ADS Google scholar
[169]
L. Wang, C. Wang, and Y. Chen, Black phosphorene exhibiting negative thermal expansion and negative linear compressibility, J. Phys.: Condens. Matter 31(46), 465003 (2019)
CrossRef ADS Google scholar
[170]
H. Sun, G. Liu, Q. Li, and X. G. Wan, First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus, Phys. Lett. A 380(24), 2098 (2016)
CrossRef ADS Google scholar
[171]
X. J. Ge, K. L. Yao, and J. T. Lü, Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene, Phys. Rev. B 94(16), 165433 (2016)
CrossRef ADS Google scholar
[172]
P. R. Shaina, L. George, V. Yadav, and M. Jaiswal, Estimating the thermal expansion coefficient of graphene: The role of graphene-substrate interactions, J. Phys.: Condens. Matter 28(8), 085301 (2016)
CrossRef ADS Google scholar
[173]
C. W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp2 hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)
CrossRef ADS Google scholar
[174]
A. I. Lebedev, Negative thermal expansion in CdSe quasitwo- dimensional nanoplatelets, Phys. Rev. B 100(3), 035432 (2019)
CrossRef ADS Google scholar
[175]
Y. Hu, J. Chen, and B. Wang, On the intrinsic ripples and negative thermal expansion of graphene, Carbon 95, 239 (2015)
CrossRef ADS Google scholar
[176]
H. Sun, G. Liu, Q. Li, and X. G. Wan, First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus, Phys. Lett. A 380(24), 2098 (2016)
CrossRef ADS Google scholar
[177]
C. W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp2 hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)
CrossRef ADS Google scholar
[178]
Y. X. Gao, C. Y. Wang, Q. L. Gao, J. Guo, M. J. Chao, Y. Jia, and E. J. Liang, Zero thermal expansion in Ta2Mo2O11 by compensation effects, Inorg. Chem. 59(24), 18427 (2020)
CrossRef ADS Google scholar
[179]
C. Guillaume, Recherches sur les aciers au nickel, Dilatations auxtemperatures elevees, resistance electrique, CR Acad. Sci. 125(235), 18 (1897)
[180]
R. J. Weiss, The origin of the “Invar” effect, Proc. Phys. Soc. 82(2), 281 (1963)
CrossRef ADS Google scholar
[181]
T. Moriya and K. Usami, Magneto-volume effect and invar phenomena in ferromagnetic metals, Solid State Commun. 34(2), 95 (1980)
CrossRef ADS Google scholar
[182]
H. Yamada, Metamagnetic transition and susceptibility maximum in an itinerant-electron system, Phys. Rev. B 47(17), 11211 (1993)
CrossRef ADS Google scholar
[183]
H. Akai and P. H. Dederichs, Local moment disorder in ferromagnetic alloys, Phys. Rev. B 47(14), 8739 (1993)
CrossRef ADS Google scholar
[184]
V. Crisan, P. Entel, H. Ebert, H. Akai, D. D. Johnson, and J. B. Staunton, Magnetochemical origin for Invar anomalies in iron–nickel alloys, Phys. Rev. B 66(1), 014416 (2002)
CrossRef ADS Google scholar
[185]
Y. Wang, G. M. Stocks, D. M. C. Nicholson, W. A. Shelton, V. P. Antropov, and B. N. Harmon, Noncollinear magnetic structure in Ni0.35Fe0.65, J. Appl. Phys. 81(8), 3873 (1997)
CrossRef ADS Google scholar
[186]
M. Schilfgaarde, I. A. Abrikosov, and B. Johansson, Origin of the Invar effect in iron–nickel alloys, Nature 400(6739), 46 (1999)
CrossRef ADS Google scholar
[187]
H. Yamada, Pressure effect in an itinerant-electron metamagnet at finite temperature, J. Magn. Magn. Mater. 139(1–2), 162 (1995)
CrossRef ADS Google scholar
[188]
G. G. Lonzarich and L. TaiUefer, Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals, J. Phys. (Paris) 18, 4339 (1985)
CrossRef ADS Google scholar
[189]
T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin, 1985
CrossRef ADS Google scholar
[190]
A. V. Andreev, F. R. de Boer, T. H. Jacobs, and K. H. J. Buschow, Thermal expansion anomalies and spontaneous magnetostriction in R2Fe17Cx intermetallic compounds, Physica B 175(4), 361 (1991)
CrossRef ADS Google scholar
[191]
Y. M. Hao, X. M. Zhang, B. W. Wang, Y. Z. Yuang, and F. Wang, Anomalous thermal expansion and magnetic properties of Tm2Fe17−xCrx compounds, J. Appl. Phys. 108(2), 023915 (2010)
CrossRef ADS Google scholar
[192]
P. Álvarez-Alonso, P. Gorria, J. A. Blanco, J. Sánchez- Marcos, G. J. Cuello, I. Puente-Orench, J. A. Rodríguez- Velamazán, G. Garbarino, I. dePedro, J. R. Fernández, and J. L. S. Llamazares, Magnetovolume and magnetocaloric effects in Er2Fe17, Phys. Rev. B 86, 184411 (2012)
CrossRef ADS Google scholar
[193]
D. Givord and R. Lemaire, Magnetic transition and anomalous thermal expansion in R2Fe17 compounds, IEEE Trans. Magn. 10(2), 109 (1974)
CrossRef ADS Google scholar
[194]
R. J. Huang, Y. Liu, W. Fan, J. Tan, F. Xiao, L. Qian, and L. Li, Giant negative thermal expansion in NaZn13- type La(Fe, Si, Co)13 compounds, J. Am. Chem. Soc. 135(28), 11469 (2013)
CrossRef ADS Google scholar
[195]
B. Li, X. H. Luo, H. Wang, W. J. Ren, S. Yano, C. W. Wang, J. S. Gardner, K. D. Liss, P. Miao, S. H. Lee, T. Kamiyama, R. Q. Wu, Y. Kawakita, and Z. D. Zhang, Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf, Ta)Fe2, Phys. Rev. B 93(22), 224405 (2016)
CrossRef ADS Google scholar
[196]
Y. Song, J. Chen, X. Liu, C. Wang, Q. Gao, Q. Li, L. Hu, J. Zhang, S. Zhang, and X. Xing, Structure, magnetism, and tunable negative thermal expansion in (Hf, Nb)Fe2 alloys, Chem. Mater. 29(17), 7078 (2017)
CrossRef ADS Google scholar
[197]
L. F. Li, P. Tong, Y. M. Zou, W. Tong, W. B. Jiang, Y. Jiang, X. K. Zhang, J. C. Lin, M. Wang, C. Yang, X. B. Zhu, W. H. Song, and Y. P. Sun, Good comprehensive performance of Laves phase Hf1−xTaxFe2 as negative thermal expansion materials, Acta Mater. 161, 258 (2018)
CrossRef ADS Google scholar
[198]
H. Yibole, A. K. Pathak, Y. Mudryk, F. Guillou, N. Zarkevich, S. Gupta, V. Balema, and V. K. Pecharsky, Manipulating the stability of crystallographic and magnetic sub-lattices: A first-order magnetoelastic transformation in transition metal based Laves phase, Acta Mater. 154, 365 (2018)
CrossRef ADS Google scholar
[199]
K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87(23), 261902 (2005)
CrossRef ADS Google scholar
[200]
K. Takenaka, K. Asano, M. Misawa, and H. Takagi, Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect, Appl. Phys. Lett. 92(1), 011927 (2008)
CrossRef ADS Google scholar
[201]
C. Wang, Y. Sun, Y. C. Wen, L. H. Chu, and M. Nie, Investigation of lattice contraction in Mn3XN (X=Zn, Cu, Sn), Mater. Sci. Forum 638– 642, 2195 (2010)
CrossRef ADS Google scholar
[202]
R. J. Huang, L. F. Li, F. S. Cai, X. D. Xu, and L. H. Qian, Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si, Appl. Phys. Lett. 93(8), 081902 (2008)
CrossRef ADS Google scholar
[203]
T. Hamada and K. Takenaka, Giant negative thermal expansion in antiperovskite manganese nitrides, J. Appl. Phys. 109(7), 07E309 (2011)
CrossRef ADS Google scholar
[204]
K. Takenaka and H. Takagi, Zero thermal expansion in a pure-form antiperovskite manganese nitride, Appl. Phys. Lett. 94(13), 131904 (2009)
CrossRef ADS Google scholar
[205]
C. Wang, L. H. Chu, Q. R. Yao, Y. Sun, M. M. Wu, L. Ding, J. Yan, Y. Y. Na, W. H. Tang, G. N. Li, Q. Huang, and J. W. Lynn, Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)xN (M= Ag, Ge), Phys. Rev. B 85(22), 220103 (2012)
CrossRef ADS Google scholar
[206]
E. F. Wasserman, in: Ferromagnetic Materials, ed. K. H. J. Buschow and E. P. Wohlfartht, Elsevier Science Publishers B. V., Ch. 3, Vol. 5, pp 238–322, 1990
[207]
E. F. Wassermann, The Invar problem, J. Magn. Magn. Mater. 100(1–3), 346 (1991)
CrossRef ADS Google scholar
[208]
M. Shiga, Invar alloys, Curr. Opin. Solid State Mater. Sci. 1(3), 340 (1996)
CrossRef ADS Google scholar
[209]
J. Chen, L. Hu, J. Deng, and X. Xing, Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications, Chem. Soc. Rev. 44(11), 3522 (2015)
CrossRef ADS Google scholar
[210]
S. Khmelevskyi, I. Turek, and P. Mohn, Large negative magnetic contribution to the thermal expansion in ironplatinum alloys: Quantitative theory of the Invar effect, Phys. Rev. Lett. 91(3), 037201 (2003)
CrossRef ADS Google scholar
[211]
D. D. Johnson and W. A. Shelton, in: The Invar effect: A centennial symposium, Ed. J. Wittenauer, The Minerals, Metals and Materials Society, Warrendale, PA, pp 63–74, 1997
[212]
M. Shiga and Y. Nakamura, Magnetovolume effects and Invar characters of (Zr1−xNbx)Fe2, J. Phys. Soc. Jpn. 47(5), 1446 (1979)
CrossRef ADS Google scholar
[213]
H. Wada and M. Shigaand, Thermal expansion anomaly and Invar effect of Mn1−xCoxB, J. Magn. Magn. Mater. 104– 107, 1925 (1992)
CrossRef ADS Google scholar
[214]
A. G. Kuchin, I. V. Medvedeva, V. S. Gaviko, and V. A. Kazantsev, Magnetovolume properties of Y2Fe17−xMx alloys (M= Si orAl), J. Alloys Compd. 289(1–2), 18 (1999)
CrossRef ADS Google scholar
[215]
P. Álvare, P. Gorria, J. S. Marcos, I. P. Orench, J. A. R. Velamazán, G. Cuello, J. L. S. Llamazares, and J. A. Blanco, Magnetic structure and magneto-volume anomalies in Er2Fe17 compound, J. Phys.: Conf. Ser. 325, 01 (2011)
CrossRef ADS Google scholar
[216]
A. Shuitcev, R. N. Vasin, A. M. Balagurov, L. Li, I. A. Bobrikov, and Y. X. Tong, Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy, Intermetalllics 125, 106889 (2020)
CrossRef ADS Google scholar
[217]
I. S. Winter, J. Montoya, K. A. Persson, and D. C. Chrzan, Ab initio calculation of thermal expansion with application to understanding Invar behavior in gum metal, Phys. Rev. Mater. 2(7), 073601 (2018)
CrossRef ADS Google scholar
[218]
R. Li, R. Huang, W. Wang, H. Liu, Y. Han, C. Huang, and L. Li, Low-temperature negative thermal expansion property of Mn doped La(Fe, Si)13 compounds, J. Alloys Compd. 628, 308 (2015)
CrossRef ADS Google scholar
[219]
F. Shen, H. Zhou, F. Hu, J. T. Wang, S. Deng, B. Wang, H. Wu, Q. Huang, J. Wang, J. Chen, L. He, J. Hao, Z. Yu, F. Liang, T. Liang, J. Sun, and B. Shen, Cone-spiral magnetic ordering dominated lattice distortion and giantnegative thermal expansion in Fe-doped MnNiGe compounds, Mater. Horiz. 7(3), 804 (2020)
CrossRef ADS Google scholar
[220]
J. Xu, X. Zheng, S. Yang, L. Xi, S. Wang, L. Zhang, W. Yang, J. Yang, X. Ma, D. Chen, L. He, S. Deng, J. Zhang, Y. Wu, and B. Shen, Large linear negative thermal expansion in NiAs-type magnetic intermetallic Cr−Te−Se compounds, Inorg. Chem. 59(12), 8603 (2020)
CrossRef ADS Google scholar
[221]
L. Y. Hao, T. Yang, and M. Tan, Negative thermal expansion and spontaneous magnetostriction of Nd2Fe16.5Cr0.5 compound, Chin. Phys. Lett. 37(1), 016501 (2020)
CrossRef ADS Google scholar
[222]
Y. Yan, J. Yang, N. Zhao, G. Yao, X. Fu, Y. Zhang, and W. Cui, Large negative thermal expansion and magnetoelastic coupling in metamagnetic tetragonal (Mn, T)2Sb (T= Cr, V) alloys, J. Supercond. Nov. Magn. 33(9), 2551 (2020)
CrossRef ADS Google scholar
[223]
J. H. Belo, A. L. Pires, I. T. Gomes, V. Andrade, J. B. Sousa, R. L. Hadimani, and C. David, Giant negative thermal expansion at the nanoscale in the multifunctional material Gd5(Si, Ge)4, Phys. Rev. B 100(13), 134303 (2019)
CrossRef ADS Google scholar
[224]
Y. Z. Song, Q. Sun, T. Yokoyama, H. H. Zhu, Q. Li, R. J. Huang, Y. Ren, Q. Z. Huang, X. R. Xing, and J. Chen, Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2, J. Phys. Chem. Lett. 11(5), 1954 (2020)
CrossRef ADS Google scholar
[225]
Y. Z. Song, Q. Sun, M. Xu, J. Zhang, Y. Q. Hao, Y. Q. Qiao, S. T. Zhang, Q. Z. Huang, X. R. Xing, and J. Chen, Negative thermal expansion in (Sc, Ti)Fe2 induced by an unconventional magnetovolume effect, Mater. Horiz. 7(1), 275 (2020)
CrossRef ADS Google scholar
[226]
T. Yokoyama, A. Koide, and Y. Uemura, Local thermal expansions and lattice strains in Elinvar and stainless steel alloys, Phys. Rev. Mater. 2(2), 023601 (2018)
CrossRef ADS Google scholar
[227]
X. Y. Song, Z. G. Sun, Q. Z. Huang, M. Rettenmayr, X. M. Liu, M. Seyring, G. N. Li, G. G. Rao, and F. X. Yin, Adjustable zero thermal expansion in antiperovskite manganese nitride, Adv. Mater. 23(40), 4690 (2011)
CrossRef ADS Google scholar
[228]
M. Kobayashi and M. Mochizuki, Theory of magnetismdriven negative thermal expansion in inverse perovskite antiferromagnets, Phys. Rev. Mater. 3(2), 024407(2019)
CrossRef ADS Google scholar
[229]
K. Takenaka, M. Ichigo, T. Hamada, A. Ozawa, T. Shibayama, T. Inagaki, and K. Asano, Magnetovolume effects in manganese nitrides with antiperovskite structure, Sci. Technol. Adv. Mater. 15(1), 015009 (2014)
CrossRef ADS Google scholar
[230]
H. Lu, Y. Sun, S. Deng, K. Shi, L. Wang, W. Zhao, H. Han, S. Deng, and C. Wang, Tunable negative thermal expansion and structural evolution in antiperovskite Mn3Ga1−xGexN (0≤x≤1.0), J. Am. Ceram. Soc. 100(12), 5739 (2017)
CrossRef ADS Google scholar
[231]
S. Tan, C. Gao, C. Wang, T. Zhou, G. Yin, M. Sun, F. Xing, R. Cao, and Y. Sun, The tunable negative thermal expansion covering a wide temperature range around room temperature in Sn, Mn co-substituted Mn3ZnN, Dalton Trans. 49(27), 10407 (2020)
CrossRef ADS Google scholar
[232]
S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1−xGexN, Phys. Rev. Lett. 101(20), 205901 (2008)
CrossRef ADS Google scholar
[233]
P. Tong, D. Louca, G. King, A. Llobet, J. C. Lin, and Y. P. Sun, Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3, Appl. Phys. Lett. 102(4), 041908 (2013)
CrossRef ADS Google scholar
[234]
J. C. Lin, P. Tong, X. J. Zhou, H. Lin, Y. W. Ding, Y. X. Bai, L. Chen, X. G. Guo, C. Yang, B. Song, Y. Wu, S. Lin, W. H. Song, and Y. P. Sun, Giant negative thermal expansion covering room temperature in nanocrystalline- GaNxMn3,App, Phys. Lett. 107, 131902 (2015)
CrossRef ADS Google scholar
[235]
J. Tan, R. Huang, W. Wang, W. Li, Y. Zhao, S. Li, Y. Han, C. Huang, and L. Li, Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites, Nano Res. 8(7), 2302 (2015)
CrossRef ADS Google scholar
[236]
B. Paul, S. Chatterjee, A. Roy, A. Midya, P. Mandal, V. Grover, and A. K. Tyagi, Geometrically frustrated GdInO3: An exotic system to study negative thermal expansion and spin-lattice coupling, Phys. Rev. B 95(5), 054103 (2017)
CrossRef ADS Google scholar
[237]
P. Miao, X. Lin, A. Koda, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Mochiku, H. Sagayama, S. Itoh, K. Ikeda, T. Otomo, Y. Wang, R. Kadono, and T. Kamiyama, Large magnetovolume effect induced by embedding ferromagnetic clusters into antiferromagnetic matrix of cobaltite perovskite, Adv. Mater. 29(24), 1605991 (2017)
CrossRef ADS Google scholar
[238]
B. Ranjbar and B. J. Kennedy, Unusual thermal expansion of Sr2IrO4: A variable temperature synchrotron Xray diffraction study, J. Solid State Chem. 232, 178 (2015)
CrossRef ADS Google scholar
[239]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, Negative thermal expansion in hybrid improper ferroelectric Ruddlesden– Popper perovskites by symmetry trapping, Phys. Rev. Lett. 114(3), 035701 (2015)
CrossRef ADS Google scholar
[240]
S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics, Phys. Rev. 172(2), 551 (1968)
CrossRef ADS Google scholar
[241]
J. Chen, F. Wang, Q. Huang, L. Hu, X. Song, J. Deng, R. Yu, and X. Xing, Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3- (Bi, La)FeO3 over a giant range, Sci. Rep. 3(1), 2458 (2013)
CrossRef ADS Google scholar
[242]
J. Chen, K. Nittala, J. S. Forrester, J. L. Jones, J. X. Deng, R. Yu, and X. R. Xing, The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds, J. Am. Chem. Soc. 133(26), 11114 (2011)
CrossRef ADS Google scholar
[243]
P. E. Janolin, P. Bouvier, J. Kreisel, P. A. Thomas, I. A. Kornev, L. Bellaiche, W. Crichton, M. Hanfland, and B. Dkhil, High-pressure effect on PbTiO3: An investigation by Raman and X-ray scattering up to 63 GPa, Phys. Rev. Lett. 101(23), 237601 (2008)
CrossRef ADS Google scholar
[244]
L. Wang, P. Yuan, F. Wang, E. Liang, Q. Sun, Z. Guo, and Y. Jia, First-principles study of tetragonal PbTiO3: Phonon and thermal expansion, Mater. Res. Bull. 49, 509 (2014)
CrossRef ADS Google scholar
[245]
H. Fang, Y. Wang, S. Shang, and Z. K. Liu, Nature of ferroelectric–paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B 91(2), 024104 (2015)
CrossRef ADS Google scholar
[246]
D. Zhou, W. Tan, W. Xiao, M. Song, M. Chen, X. Xiong, and J. Xu, Structural properties of PbVO3 perovskites under hydrostatic pressure conditions up to 10.6 GPa, J. Phys.: Condens. Matter 24(43), 435403 (2012)
CrossRef ADS Google scholar
[247]
K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Ohishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, Experimental and theoretical studies of the metallic conductivity in cubic PbVO3 under high pressure, J. Phys. Soc. Jpn. 87(2), 024801 (2018)
CrossRef ADS Google scholar
[248]
T. Ogata, K. Oka, and M. Azuma, Negative thermal expansion in electron doped PbVO3−xFx, Appl. Phys. Express 12(2), 023005 (2019)
CrossRef ADS Google scholar
[249]
T. Ogata, Y. Sakai, H. Yamamoto, S. Patel, P. Keil, J. Koruza, S. Kawaguchi, Z. Pan, T. Nishikubo, J. Rödel, and M. Azuma, Melting of dxy orbital ordering accompanied by suppression of giant tetragonal distortion and insulator-to-metal transition in Cr-substituted PbVO3, Chem. Mater. 31(4), 1352 (2019)
CrossRef ADS Google scholar
[250]
H. Ishizaki, Y. Sakai, T. Nishikubo, Z. Pan, K. Oka, H. Yamamoto, and M. Azuma, Negative thermal expansion in lead-free La-substituted Bi0.5Na0.5VO3, Chem. Mater. 32(11), 4832 (2020)
CrossRef ADS Google scholar
[251]
M. Rong, M. Li, J. Chen, M. Zhou, K. Lin, L. Hu, W. Yuan, W. Duan, J. Deng, and X. Xing, Large negative thermal expansion in non-perovskitelead-free ferroelectric Sn2P2S6, Phys. Chem. Chem. Phys. 18(8), 6247 (2016)
CrossRef ADS Google scholar
[252]
T. Chattopadhyay, J. X. Boucherle, and H. G. von Schnering, Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C: Solid State Phys. 20(10), 1431 (1987)
CrossRef ADS Google scholar
[253]
T. Chatterji, C. M. N. Kumar, and U. D. Wdowik, Anomalous temperature-induced volume contraction in GeTe, Phys. Rev. B 91(5), 054110 (2015)
CrossRef ADS Google scholar
[254]
Đ. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, and I. Savić, Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion of GeTe near the ferroelectric phase transition, Phys. Rev. B 97(22), 224106 (2018)
CrossRef ADS Google scholar
[255]
R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides, Acta Crystallogr. A 32(5), 751 (1976)
CrossRef ADS Google scholar
[256]
J. Arvanitidis, K. Papagelis, S. Margadonna, K. Prassides, and A. N. Fitch, Temperature-induced valence transition and associated lattice collapse in samarium fulleride, Nature 425(6958), 599 (2003)
CrossRef ADS Google scholar
[257]
S. Margadonna, J. Arvanitidis, K. Papagelis, and K. Prassides, Negative thermal expansion in the mixed valence ytterbium fulleride, Yb2.75C60, Chem. Mater. 17(17), 4474 (2005)
CrossRef ADS Google scholar
[258]
A. Jayaraman, P. Dernier, and L. D. Longinotti, Study of valence transition in SmS induced by alloying, temperature, and pressure,Phys. Rev. B 11(8), 2783 (1975)
CrossRef ADS Google scholar
[259]
K. Takenaka, D. Asai, R. Kaizu, Y. Mizuno, Y. Yokoyama, Y. Okamoto, N. Katayama, H. S. Suzuki, and Y. Imanaka, Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer, Sci. Rep. 9(1), 122 (2019)
CrossRef ADS Google scholar
[260]
D. Asai, Y. Mizuno, H. Hasegawa, Y. Yokoyama, Y. Okamoto, N. Katayama, H. S. Suzuki, Y. Imanaka, and K. Takenaka, Valence fluctuations and giant isotropic negative thermal expansion in Sm1−xRxS (R= Y, La, Ce, Pr, Nd), Appl. Phys. Lett. 114(14), 141902 (2019)
CrossRef ADS Google scholar
[261]
D. G. Mazzone, M. Dzero, A. M. M. Abeykoon, H. Yamaoka, H. Ishii, N. Hiraoka, J. P. Rueff, J. M. Ablett, K. Imura, H. S. Suzuki, J. N. Hancock, and I. Jarrige, Kondo-induced giant isotropic negative thermal expansion, Phys. Rev. Lett. 124(12), 125701 (2020)
CrossRef ADS Google scholar
[262]
H. Li, S. Lv, Z. Wang, Y. Xia, Y. Bai, X. Liu, and J. Meng, Machanism of A-B intersite charge transfer and negative thermal expansion in A-site-ordered perovskite LaCu3Fe4O12, J. Appl. Phys. 111(10), 103718 (2012)
CrossRef ADS Google scholar
[263]
K. Yamada, K. Shiro, H. Etani, S. Marukawa, N. Hayashi, M. Mizumaki, Y. Kusano, S. Ueda, H. Abe, and T. Irifune, Valence transitions in negative thermal expansion material SrCu3Fe4O12, Inorg. Chem. 53(19), 10563 (2014)
CrossRef ADS Google scholar
[264]
M. W. Shimakawa, M. W. Lufaso, and P. M. Woodward, Negative and positive thermal expansion-like volume changes due to intermetallic charge transfer based on an ionic crystal model of transition-metal oxides, APL Mater. 6(8), 086106 (2018)
CrossRef ADS Google scholar
[265]
Z. Liu, Z. Wang, D. Chang, Q. Sun, M. Chao, and Y. Jia, Charge transfer induced negative thermal expansion in perovskite BiNiO3, Comput. Mater. Sci. 113, 198 (2016)
CrossRef ADS Google scholar
[266]
M. Naka, H. Seo, and Y. Motome, Theory of valence transition in BiNiO3, Phys. Rev. Lett. 116(5), 056402 (2016)
CrossRef ADS Google scholar
[267]
E. Pachoud, J. Cumby, J. Wright, B. Raguž, R. Glaum, and J. P. Attfield, Charge order and negative thermal expansion in V2OPO4, J. Am. Chem. Soc. 140(2), 636 (2018)
CrossRef ADS Google scholar
[268]
E. Pachoud, J. Cumby, J. Wright, B. Raguz, R. Glaumc, and J. P. Attfield, Electronic origin of negative thermal expansion in V2OPO4, Chem. Commun. (Camb.) 56(48), 6523 (2020)
CrossRef ADS Google scholar
[269]
K. Nabetani, Y. Muramatsu, K. Oka, K. Nakano, H. Hojo, M. Mizumaki, A. Agui, Y. Higo, N. Hayashi, M. Takano, and M. Azuma, Suppression of temperature hysteresis in negative thermal expansion compound BiNixFexO3 and zero-thermal expansion composite, Appl. Phys. Lett. 106(6), 061912 (2015)
CrossRef ADS Google scholar
[270]
S. Yamada, S. Marukawa, M. Murakami, and S. Mori, “True” negative thermal expansion in Mndoped LaCu3Fe4O12 perovskite oxides, Appl. Phys. Lett. 105(23), 231906 (2014)
CrossRef ADS Google scholar
[271]
E. E. McCabe, E. Bousquet, C. P. J. Stockdale, C. A. Deacon, T. T. Tran, P. S. Halasyamani, M. C. Stennett, and N. C. Hyatt, Proper ferroelectricity in the Dion– Jacobson material CsBi2Ti2NbO10: Experiment and theory, Chem. Mater. 27(24), 8298 (2015)
CrossRef ADS Google scholar
[272]
M. J. Pitcher, P. Mandal, M. S. Dyer, J. Alaria, P. Borisov, H. Niu, J. B. Claridge, and M. J. Rosseinsky, Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite, Science 347(6220), 420 (2015)
CrossRef ADS Google scholar
[273]
J. Mangeri, K. C. Pitike, S. P. Alpay, and S. Nakhmanson, Amplitudon and phason modes of electrocaloric energy interconversion, npj Comput. Mater. 2(1), 16020 (2016)
CrossRef ADS Google scholar
[274]
Y. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura, and Y. Tokura, Interplane tunneling magnetoresistance in a layered manganite crystal, Science 274(5293), 1698 (1996)
CrossRef ADS Google scholar
[275]
L. F. Huang, X. Z. Lu, and J. M. Rondinelli, Tunable negative thermal expansion in layered perovskites from quasi-two-dimensional vibrations, Phys. Rev. Lett. 117(11), 115901 (2016)
CrossRef ADS Google scholar
[276]
T. Vogt and D. Buttrey, Temperature dependent structural behavior of Sr2RhO4, J. Solid State Chem. 123(1), 186 (1996)
CrossRef ADS Google scholar
[277]
B. Ranjbar and B. J. Kennedy, Anisotropic thermal expansion in Sr2RhO4 — A variable temperature synchrotron X-ray diffraction study, Solid State Sci. 49, 43 (2015)
CrossRef ADS Google scholar
[278]
J. Takahashi and N. Kamegashira, X-ray structural study of calcium manganese oxide by Rietveld analysis at high temperatures, MRS Bull. 28(6), 565 (1993)
CrossRef ADS Google scholar
[279]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, Negative thermal expansion in hybrid improper ferroelectric Ruddlesden–Popper perovskites by symmetry trapping, Phys. Rev. Lett. 114(3), 035701 (2015)
CrossRef ADS Google scholar
[280]
K. J. Cordrey, M. Stanczyk, C. A. L. Dixon, K. S. Knight, J. Gardner, F. D. Morrison, and P. Lightfoot, Structural and dielectric studies of the phase behaviour of the topological ferroelectric La1−xNdxTaO4, Dalton Trans. 44(23), 10673 (2015)
CrossRef ADS Google scholar
[281]
J. W. Zhang, A. S. McLeod, Q. Han, X. Chen, H. A. Bechtel, Z. Yao, S. N. Gilbert Corder, T. Ciavatti, T. H. Tao, M. Aronson, G. L. Carr, M. C. Martin, C. Sow, S. Yonezawa, F. Nakamura, I. Terasaki, D. N. Basov, A. J. Millis, Y. Maeno, and M. Liu, Nano-resolved currentinduced insulator–metal transition in the Mott insulator Ca2RuO4, Phys. Rev. X 9(1), 011032 (2019)
CrossRef ADS Google scholar
[282]
G. Zhang and E. Pavarini, Mott transition, spin–orbit effects, and magnetism in Ca2RuO4, Phys. Rev. B 95(7), 075145 (2017)
CrossRef ADS Google scholar
[283]
Q. Han and A. Millis, Lattice energetics and correlationdriven metal–insulator transitions: The case of Ca2RuO4, Phys. Rev. Lett. 121(6), 067601 (2018)
CrossRef ADS Google scholar
[284]
M. Braden, G. Andre, S. Nakatsuji, and Y. Maeno, Crystal and magnetic structure of Ca2RuO4: Magnetoelastic coupling and the metal–insulator transition, Phys. Rev. B 58(2), 847 (1998)
CrossRef ADS Google scholar
[285]
O. Friedt, M. Braden, G. Andre, P. Adelmann, S. Nakatsuji, and Y. Maeno, Structural and magnetic aspects of the metal–insulator transition in Ca2−xSrxRuO4, Phys. Rev. B 63(17), 174432 (2001)
CrossRef ADS Google scholar
[286]
A. S. Alexander, G. Cao, V. Dobrosavljevic, S. McCall, J. E. Crow, E. Lochner, and R. P. Guertin, Destruction of the Mott insulating ground state of Ca2RuO4 by a structural transition, Phys. Rev. B 60(12), R8422 (1999)
CrossRef ADS Google scholar
[287]
T. F. Qi, O. B. Korneta, S. Parkin, L. E. De Long, P. Schlottmann, and G. Cao, Negative volume thermal expansion via orbital and magnetic orders in Ca2Ru1−xCrxO4 (0<x<0.13), Phys. Rev. Lett. 105(17), 177203 (2010)
CrossRef ADS Google scholar
[288]
T. F. Qi, O. B. Korneta, S. Parkin, J. P. Hu, and G. Cao, Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators Ca2Ru1−xMxO4 (M= Mn and Fe), Phys. Rev. B 85(16), 165143 (2012)
CrossRef ADS Google scholar
[289]
K. Takenaka, T. Shinoda, N. Inoue, Y. Okamoto, N. Katayama, Y. Sakai, T. Nishikubo, and M. Azuma, Giant negative thermal expansion in Fe-doped layered ruthenate ceramics, Appl. Phys. Express 10(11), 115501 (2017)
CrossRef ADS Google scholar
[290]
Y. G. Cheng, Y. C. Mao, B. H. Yuan, X. H. Ge, J. Guo, M. J. Chao, and E. J. Liang, Enhanced negative thermal expansion and optical absorption of In0.6(HfMg)0.7Mo3O12 with oxygen vacancies, Phys. Lett. A 381(24), 2195 (2017)
CrossRef ADS Google scholar
[291]
J. Zegkinoglou, J. Strempfer, C. S. Nelson, J. P. Hill, J. Chakhalian, C. Bernhard, J. C. Lang, G. Srajer, H. Fukazawa, S. Nakatsuji, Y. Maeno, and B. Keimer, Orbital ordering transition in Ca2RuO4 observed with resonant X-ray diffraction, Phys. Rev. Lett. 95(13), 136401 (2005)
CrossRef ADS Google scholar
[292]
M. C. Lee, C. H. Kim, I. Kwak, J. Kim, S. Yoon, B. C. Park, B. Lee, F. Nakamura, C. Sow, Y. Maeno, T. W. Noh, and K. W. Kim, Abnormal phase flip in the coherent phonon oscillations of Ca2RuO4, Phys. Rev. B 98(16), 161115 (2018)
CrossRef ADS Google scholar
[293]
M. C. Lee, C. H. Kim, I. Kwak, C. W. Seo, C. H. Sohn, F. Nakamura, C. Sow, Y. Maeno, E. A. Kim, T. W. Noh, and K. W. Kim, Strong spin–phonon coupling unveiled by coherent phonon oscillations in Ca2RuO4, Phys. Rev. B 99(14), 144306 (2019)
CrossRef ADS Google scholar
[294]
V. Sivasubramanian, T. R. Ravindran, R. Nithya, and A. K. Arora, Structural phase transition in indium tungstate, J. Appl. Phys. 96(1), 387 (2004)
CrossRef ADS Google scholar
[295]
B. A. Marinkovic, M. Ari, P. M. Jardim, R. R. de Avillez, F. Rizzo, and F. F. Ferreira, In2Mo3O12: A low negative thermal expansion compound, Thermochim. Acta 499(1– 2), 48 (2010)
CrossRef ADS Google scholar
[296]
J. S. O. Evans, T. A. Mary, and A. W. Sleight, Negative thermal expansion in Sc2(WO4)3, J. Solid State Chem. 137(1), 148 (1998)
CrossRef ADS Google scholar
[297]
J. S. O. Evans and T. A. Mary, Structural phase transitions and negative thermal expansion in Sc2(MoO4)3, Inter. J. Inorg. Mater. 2(1), 143 (2000)
CrossRef ADS Google scholar
[298]
H. Liu, W. Sun, Z. Zhang, X. Zhang, Y. Zhou, J. Zhua, and X. Zeng, Tailored phase transition temperature and negative thermal expansion of Sc-substituted Al2Mo3O12 synthesized by a co-precipitation method, Inorg. Chem. Front. 6(7), 1842 (2019)
CrossRef ADS Google scholar
[299]
H. F. Liu, Z. P. Zhang, J. Ma, J. Zhu, and X. H. Zeng, Effect of isovalent substitution on phase transition and negative thermal expansion of In2−xScxW3O12 ceramics, Ceram. Int. 41(8), 9873 (2015)
CrossRef ADS Google scholar
[300]
Y. G. Cheng, Y. C. Mao, X. S. Liu, B. H. Yuan, M. J. Chao, and E. J. Liang, Near-zero thermal expansion of In2(1−x)(HfMg)xMo3O12 with tailored phase transition, Chin. Phys. B 25(8), 086501 (2016)
CrossRef ADS Google scholar
[301]
W. B. Song, B. H. Yuan, X. S. Liu, Z. Y. Li, J. Q. Wang, and E. J. Liang, Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional coincorporation of Zr4+ and Mg2+, Mater. Res. 29(7), 849 (2014)
CrossRef ADS Google scholar
[302]
W. B. Song, J. Q. Wang, Z. Y. Li, X. S. Liu, B. H. Yuan, and E. J. Liang, Phase transition and thermal expansion property of Cr2−xZr0.5xMg0.5xMo3O12 solid solution, Chin. Phys. B 23(6), 066501 (2014)
CrossRef ADS Google scholar
[303]
K. J. Miller, C. P. Romao, M. Bieringer, B. A. Marinkovic, L. Prisco, and M. A. White, Near-zero thermal expansion in In(HfMg)0.5Mo3O12, J. Am. Ceram. Soc. 96(2), 561 (2013)
CrossRef ADS Google scholar
[304]
S. L. Li, X. H. Ge, H. L. Yuan, D. X. Chen, J. Guo, R. F. Shen, M. J. Chao, and E. J. Liang, Near-zero thermal expansion and phase transitions in HfMg1−xZnxMo3O12, Front. Chem. 6, 115 (2018)
CrossRef ADS Google scholar
[305]
A. Madrid, P. I. Ponton, F. Garcia, M. B. Johnson, M. A. White, and B. A. Marinkovic, Solubility limit of Zn2+ in low thermal expansion ZrMgMo3O12 and its influence on phase transition temperature, Ceram. Int. 46(3), 3979 (2020)
CrossRef ADS Google scholar
[306]
R. F. Shen, B. H. Yuan, S. L. Li, X. H. Ge, J. Guo, and E. J. Liang, Near-zero thermal expansion of ZrxHf1−xMgMo3O12 in a larger temperature range, Optik (Stuttg.) 165, 1 (2018)
CrossRef ADS Google scholar
[307]
S. Sumithra and A. M. Umarji, Role of crystal structure on the thermal expansion of Ln2W3O12 (Ln=La, Nd, Dy, Y, Er and Yb), Solid State Sci. 6(12), 1313 (2004)
CrossRef ADS Google scholar
[308]
X. L. Xiao, Y. Z. Cheng, J. Peng, M. M. Wu, D. F. Chen, Z. B. Hu, R. Kiyanagi, J. S. Fieramosca, S. Short, and J. Jorgensen, Thermal expansion properties of A2(MO4)3 (A= Ho and Tm; M=W and Mo) , Solid State Sci. 10(3), 321 (2008)
CrossRef ADS Google scholar
[309]
E. J. Liang, H. Huo, J. Wang, and M. J. Chao, Effect of water species on the phonon modes in orthorhombic Y2(MoO4)3 revealed by Raman spectroscopy, J. Phys. Chem. C 112(16), 6577 (2008)
CrossRef ADS Google scholar
[310]
Z. Y. Li, W. B. Song, and E. J. Liang, Structures, phase transition, and crystal water of Fe2−xYxMo3O12, J. Phys. Chem. C 115(36), 17806 (2011)
CrossRef ADS Google scholar
[311]
N. A. Banek, H. I. Baiz, A. Latigo, and C. Lind, Autohydration of nanosized cubic zirconium tungstate, J. Am. Chem. Soc. 132(24), 8278 (2010)
CrossRef ADS Google scholar
[312]
N. Duan, U. Kameswari, and A. W. Sleight, Further contraction of ZrW2O8, J. Am. Chem. Soc. 121(44), 10432 (1999)
CrossRef ADS Google scholar
[313]
Q. L. Gao, J. Chen, Q. Sun, D. H. Chang, Q. Z. Huang, H. Wu, A. Sanson, R. Milazzo, H. Zhu, Q. Li, Z. N. Liu, J. X. Deng, and X. R. Xing, Switching between giant positive and negative thermal expansions of a YFe(CN)6- based Prussian blue analogue induced by guest species, Angew. Chem. Int. Ed. 56(28), 9023 (2017)
CrossRef ADS Google scholar
[314]
A. L. Goodwin, K. W. Chapman, and C. J. Kepert, Guest-dependent negative thermal expansion in nanoporous Prussian blue analogues MII PtIV (CN)6 · x(H2O) (0≤ x≤2; M=Zn, Cd), J. Am. Chem. Soc. 127(51), 17980 (2005)
CrossRef ADS Google scholar
[315]
T. Pretsch, K. W. Chapman, G. J. Halder, and C. J. Kepert, Dehydration of the nanoporous coordination framework ErIII [CoIII (CN)6]·4(H2O): Single crystal tosingle crystal transformation and negative thermal expansion in ErIII [CoIII (CN)6], Chem. Commun. (Camb.) 17(17), 1857 (2006)
CrossRef ADS Google scholar
[316]
M. K. Gupta, R. Mittal, B. Singh, and S. L. Chaplot, Effect of hydration and ammonization on the thermal expansion behavior of ZrW2O8: Ab initio lattice dynamical perspective, Phys. Rev. B 98(22), 224303 (2018)
CrossRef ADS Google scholar
[317]
H. Liu, Z. Zhang, W. Zhang, X. Zeng, and X. Chen, Synthesis and negative thermal expansion property of Y2−xLaxW3O12 (0≤x≤2), Ceram. Int. 39(3), 2781 (2013)
CrossRef ADS Google scholar
[318]
Q. J. Li, B. H. Yuan, W. B. Song, E. J. Liang, and B. Yuan, Phase transition, hygroscopicity and thermal expansion properties of Yb2−xAlxMo3O12, Chin. Phys. B 21(4), 046501 (2012)
CrossRef ADS Google scholar
[319]
X. S. Liu, Y. G. Cheng, E. J. Liang, and M. J. Chao, Interaction of crystal water with the building block in Y2Mo3O12 and the effect of Ce3+ doping, Phys. Chem. Chem. Phys. 16(22), 12848 (2014)
CrossRef ADS Google scholar
[320]
X. S. Liu, B. H. Yuan, Y. G. Cheng, X. H. Ge, E. J. Liang, and W. F. Zhang, Avoiding the invasion of H2O into Y2Mo3O12 by coating with C3N4 to improve negative thermal expansion properties, Phys. Chem. Chem. Phys. 19(21), 13443 (2017)
CrossRef ADS Google scholar
[321]
A. Sanson, On the switching between negative and positive thermal expansion in framework materials, Mater. Res. Lett. 7(10), 412 (2019)
CrossRef ADS Google scholar
[322]
M. Cetinkol and A. P. Wilkinson, Pressure dependence of negative thermal expansion in Zr2(WO4)(PO4)2, Solid State Commun. 149(11–12), 421 (2009)
CrossRef ADS Google scholar
[323]
M. Cetinkol, A. P. Wilkinson, and P. L. Lee, Structural changes accompanying negative thermal expansion in Zr2(MoO4)(PO4)2, J. Solid State Chem. 182(6), 1304 (2009)
CrossRef ADS Google scholar
[324]
M. Y. Wu, L. Wang, Y. Jia, Z. X. Guo, and Q. Sun, Theoretical study of hydration in Y2Mo3O12: Effects on structure and negative thermal expansion, AIP Adv. 5(2), 027126 (2015)
CrossRef ADS Google scholar
[325]
M. Y. Wu, Y. Jia, and Q. Sun, Effects of A3+ cations on hydration in A2M3O12 family materials: A firstprinciples study, Comput. Mater. Sci. 111, 28 (2016)
CrossRef ADS Google scholar
[326]
G. Jefferson, T. A. Parthasarathy, and R. J. Kerans, Tailorable thermal expansion hybrid structures, Int. J. Solids Struct. 46(11–12), 2372 (2009)
CrossRef ADS Google scholar
[327]
L. Wu, B. Li, and J. Zhou, Isotropic negative thermal expansion metamaterials, ACS Appl. Mater. Interfaces 8(24), 17721 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(4435 KB)

Accesses

Citations

Detail

Sections
Recommended

/