Topological non-Hermitian skin effect

Rijia Lin, Tommy Tai, Linhu Li, Ching Hua Lee

PDF(12753 KB)
PDF(12753 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53605. DOI: 10.1007/s11467-023-1309-z
REVIEW ARTICLE
REVIEW ARTICLE

Topological non-Hermitian skin effect

Author information +
History +

Abstract

This article reviews recent developments in the non-Hermitian skin effect (NHSE), particularly on its rich interplay with topology. The review starts off with a pedagogical introduction on the modified bulk-boundary correspondence, the synergy and hybridization of NHSE and band topology in higher dimensions, as well as, the associated topology on the complex energy plane such as spectral winding topology and spectral graph topology. Following which, emerging topics are introduced such as non-Hermitian criticality, dynamical NHSE phenomena, and the manifestation of NHSE beyond the traditional linear non-interacting crystal lattices, particularly its interplay with quantum many-body interactions. Finally, we survey the recent demonstrations and experimental proposals of NHSE.

Graphical abstract

Keywords

non-Hermitian skin effect / topological phases

Cite this article

Download citation ▾
Rijia Lin, Tommy Tai, Linhu Li, Ching Hua Lee. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605 https://doi.org/10.1007/s11467-023-1309-z

References

[1]
C. M. Bender , S. Boettcher . Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
CrossRef ADS Google scholar
[2]
C. M. Bender . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
CrossRef ADS Google scholar
[3]
I. Rotter . A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor., 2009, 42(15): 153001
CrossRef ADS Google scholar
[4]
T. Yoshida , R. Peters , N. Kawakami . Non-Hermitian perspective of the band structure in heavy-Fermion systems. Phys. Rev. B, 2018, 98(3): 035141
CrossRef ADS Google scholar
[5]
H. Shen , L. Fu . Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett., 2018, 121(2): 026403
CrossRef ADS Google scholar
[6]
K. Yamamoto , M. Nakagawa , K. Adachi , K. Takasan , M. Ueda , N. Kawakami . Theory of non-Hermitian Fermionic superfluidity with a complex-valued interaction. Phys. Rev. Lett., 2019, 123(12): 123601
CrossRef ADS Google scholar
[7]
G. Ma , P. Sheng . Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv., 2016, 2(2): e1501595
CrossRef ADS Google scholar
[8]
J. C. S. A. Cummer , A. Alù . Controlling sound with acoustic metamaterials. Nat. Rev. Mater., 2016, 1(3): 16001
CrossRef ADS Google scholar
[9]
F. Zangeneh-Nejad , R. Fleury . Active times for acoustic metamaterials. Reviews in Physics, 2019, 4: 100031
CrossRef ADS Google scholar
[10]
L. Feng , R. El-Ganainy , L. Ge . Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11(12): 752
CrossRef ADS Google scholar
[11]
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , D. N. Christodoulides . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
CrossRef ADS Google scholar
[12]
S. Longhi . Parity−time symmetry meets photonics: A new twist in non-Hermitian optics. Europhys. Lett., 2017, 120(6): 64001
CrossRef ADS Google scholar
[13]
T. Ozawa , H. M. Price , A. Amo , N. Goldman , M. Hafezi , L. Lu , M. C. Rechtsman , D. Schuster , J. Simon , O. Zilberberg , I. Carusotto . Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
CrossRef ADS Google scholar
[14]
L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , P. Xue . Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys., 2020, 16(7): 761
CrossRef ADS Google scholar
[15]
A. Mostafazadeh . Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys., 2002, 43(1): 205
CrossRef ADS Google scholar
[16]
U. Günther , I. Rotter , B. F. Samsonov . Projective Hilbert space structures at exceptional points. J. Phys. A Math. Theor., 2007, 40(30): 8815
CrossRef ADS Google scholar
[17]
L. E. F. Foa Torres . Perspective on topological states of non-Hermitian lattices. Journal of Physics: Materials, 2019, 3: 014002
CrossRef ADS Google scholar
[18]
Z. Lin , H. Ramezani , T. Eichelkraut , T. Kottos , H. Cao , D. N. Christodoulides . Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
CrossRef ADS Google scholar
[19]
L. Feng , Y. L. Xu , W. S. Fegadolli , M. H. Lu , J. E. B. Oliveira , V. R. Almeida , Y. F. Chen , A. Scherer . Experimental demonstration of a unidirectional reflectionless parity−time metamaterial at optical frequencies. Nat. Mater., 2013, 12(2): 108
CrossRef ADS Google scholar
[20]
J. Wiersig . Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 2014, 112(20): 203901
CrossRef ADS Google scholar
[21]
Z. P. Liu , J. Zhang , Ş. K. Özdemir , B. Peng , H. Jing , X. Y. Lü , C. W. Li , L. Yang , F. Nori , Y. Liu . Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
CrossRef ADS Google scholar
[22]
H. Hodaei , A. U. Hassan , S. Wittek , H. Garcia-Gracia , R. El-Ganainy , D. N. Christodoulides , M. Khajavikhan . Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666): 187
CrossRef ADS Google scholar
[23]
W. Chen , Ş. K. Özdemir , G. Zhao , J. Wiersig , L. Yang . Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192
CrossRef ADS Google scholar
[24]
C. Dembowski , H. D. Gräf , H. L. Harney , A. Heine , W. D. Heiss , H. Rehfeld , A. Richter . Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 2001, 86(5): 787
CrossRef ADS Google scholar
[25]
T. Gao , E. Estrecho , K. Y. Bliokh , T. C. H. Liew , M. D. Fraser , S. Brodbeck , M. Kamp , C. Schneider , S. Höfling , Y. Yamamoto , F. Nori , Y. S. Kivshar , A. G. Truscott , R. G. Dall , E. A. Ostrovskaya . Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 2015, 526(7574): 554
CrossRef ADS Google scholar
[26]
A. A. Mailybaev , O. N. Kirillov , A. P. Seyranian . Geometric phase around exceptional points. Phys. Rev. A, 2005, 72(1): 014104
CrossRef ADS Google scholar
[27]
T. E. Lee . Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett., 2016, 116(13): 133903
CrossRef ADS Google scholar
[28]
D. Leykam , K. Y. Bliokh , C. Huang , Y. D. Chong , F. Nori . Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett., 2017, 118(4): 040401
CrossRef ADS Google scholar
[29]
C. Yin , H. Jiang , L. Li , R. Lü , S. Chen . Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems. Phys. Rev. A, 2018, 97(5): 052115
CrossRef ADS Google scholar
[30]
H. Shen , B. Zhen , L. Fu . Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120(14): 146402
CrossRef ADS Google scholar
[31]
L. Li , C. H. Lee , J. Gong . Geometric characterization of non-Hermitian topological systems through the singularity ring in pseudospin vector space. Phys. Rev. B, 2019, 100(7): 075403
CrossRef ADS Google scholar
[32]
W. Hu , H. Wang , P. P. Shum , Y. D. Chong . Exceptional points in a non-Hermitian topological pump. Phys. Rev. B, 2017, 95(18): 184306
CrossRef ADS Google scholar
[33]
A. U. Hassan , B. Zhen , M. Soljačić , M. Khajavikhan , D. N. Christodoulides . Dynamically encircling exceptional points: Exact evolution and polarization state conversion. Phys. Rev. Lett., 2017, 118(9): 093002
CrossRef ADS Google scholar
[34]
M. Z. Hasan , C. L. Kane . Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[35]
X. L. Qi , S. C. Zhang . Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef ADS Google scholar
[36]
B.A. BernevigT.L. Hughes, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
[37]
M. S. Rudner , L. S. Levitov . Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett., 2009, 102(6): 065703
CrossRef ADS Google scholar
[38]
Y. C. Hu , T. L. Hughes . Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians. Phys. Rev. B, 2011, 84(15): 153101
CrossRef ADS Google scholar
[39]
K. Esaki , M. Sato , K. Hasebe , M. Kohmoto . Edge states and topological phases in non-Hermitian systems. Phys. Rev. B, 2011, 84(20): 205128
CrossRef ADS Google scholar
[40]
S. Diehl , E. Rico , M. A. Baranov , P. Zoller . Topology by dissipation in atomic quantum wires. Nat. Phys., 2011, 7(12): 971
CrossRef ADS Google scholar
[41]
B. Zhu , R. Lü , S. Chen . PT symmetry in the non-Hermitian Su−Schrieffer−Heeger model with complex boundary potentials. Phys. Rev. A, 2014, 89(6): 062102
CrossRef ADS Google scholar
[42]
S. Malzard , C. Poli , H. Schomerus . Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity−time symmetry. Phys. Rev. Lett., 2015, 115(20): 200402
CrossRef ADS Google scholar
[43]
A. K. Harter , T. E. Lee , Y. N. Joglekar . PT-breaking threshold in spatially asymmetric Aubry−André and Harper models: Hidden symmetry and topological states. Phys. Rev. A, 2016, 93(6): 062101
CrossRef ADS Google scholar
[44]
Y. Xiong . Why does bulk boundary correspondence fail in some non-Hermitian topological models. J. Phys. Commun., 2018, 2(3): 035043
CrossRef ADS Google scholar
[45]
V. M. Martinez Alvarez , J. E. Barrios Vargas , L. E. F. Foa Torres . Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B, 2018, 97(12): 121401
CrossRef ADS Google scholar
[46]
S. Yao , Z. Wang . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
CrossRef ADS Google scholar
[47]
K. Yokomizo , S. Murakami . Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
CrossRef ADS Google scholar
[48]
C. H. Lee , L. Li , R. Thomale , J. Gong . Unraveling non-Hermitian pumping: Emergent spectral singularities and anomalous responses. Phys. Rev. B, 2020, 102(8): 085151
CrossRef ADS Google scholar
[49]
Y. Fu , S. Wan . Degeneracy and defectiveness in non-Hermitian systems with open boundary. Phys. Rev. B, 2022, 105(7): 075420
CrossRef ADS Google scholar
[50]
C. H. Lee , R. Thomale . Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
CrossRef ADS Google scholar
[51]
F. K. Kunst , E. Edvardsson , J. C. Budich , E. J. Bergholtz . Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
CrossRef ADS Google scholar
[52]
Y.Y. ZouY.ZhouL.M. ChenP.Ye, Measuring non-unitarity in non-Hermitian quantum systems, arXiv: 2208.14944 (2022)
[53]
F. Song , S. Yao , Z. Wang . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
CrossRef ADS Google scholar
[54]
C. C. Wanjura , M. Brunelli , A. Nunnenkamp . Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun., 2020, 11(1): 3149
CrossRef ADS Google scholar
[55]
C. C. Wanjura , M. Brunelli , A. Nunnenkamp . Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett., 2021, 127(21): 213601
CrossRef ADS Google scholar
[56]
W. T. Xue , M. R. Li , Y. M. Hu , F. Song , Z. Wang . Simple formulas of directional amplification from non-Bloch band theory. Phys. Rev. B, 2021, 103(24): L241408
CrossRef ADS Google scholar
[57]
S. Longhi . Self-healing of non-Hermitian topological skin modes. Phys. Rev. Lett., 2022, 128(15): 157601
CrossRef ADS Google scholar
[58]
W. T. Xue , Y. M. Hu , F. Song , Z. Wang . Non-Hermitian edge burst. Phys. Rev. Lett., 2022, 128(12): 120401
CrossRef ADS Google scholar
[59]
J. C. Budich , E. J. Bergholtz . Non-Hermitian topological sensors. Phys. Rev. Lett., 2020, 125(18): 180403
CrossRef ADS Google scholar
[60]
C. X. Guo , C. H. Liu , X. M. Zhao , Y. Liu , S. Chen . Exact solution of non-Hermitian systems with generalized boundary conditions: Size-dependent boundary effect and fragility of the skin effect. Phys. Rev. Lett., 2021, 127(11): 116801
CrossRef ADS Google scholar
[61]
L. Li , C. H. Lee , J. Gong . Impurity induced scale-free localization. Commun. Phys., 2021, 4(1): 42
CrossRef ADS Google scholar
[62]
L. Li , C. H. Lee , S. Mu , J. Gong . Critical non-Hermitian skin effect. Nat. Commun., 2020, 11: 5491
CrossRef ADS Google scholar
[63]
K. Yokomizo , S. Murakami . Scaling rule for the critical non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): 165117
CrossRef ADS Google scholar
[64]
C. H. Liu , K. Zhang , Z. Yang , S. Chen . Helical damping and dynamical critical skin effect in open quantum systems. Phys. Rev. Res., 2020, 2(4): 043167
CrossRef ADS Google scholar
[65]
X. Q. Sun , P. Zhu , T. L. Hughes . Geometric response and disclination-induced skin effects in non-Hermitian systems. Phys. Rev. Lett., 2021, 127(6): 066401
CrossRef ADS Google scholar
[66]
B. A. Bhargava , I. C. Fulga , J. van den Brink , A. G. Moghaddam . Non-Hermitian skin effect of dislocations and its topological origin. Phys. Rev. B, 2021, 104(24): L241402
CrossRef ADS Google scholar
[67]
F. Schindler , A. Prem . Dislocation non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): L161106
CrossRef ADS Google scholar
[68]
A. Panigrahi , R. Moessner , B. Roy . Non-Hermitian dislocation modes: Stability and melting across exceptional points. Phys. Rev. B, 2022, 106(4): L041302
CrossRef ADS Google scholar
[69]
S.MannaB.Roy, Inner skin effects on non-Hermitian topological fractals, arXiv: 2202.07658 (2022)
[70]
K. Zhang , Z. Yang , C. Fang . Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
CrossRef ADS Google scholar
[71]
T. Helbig , T. Hofmann , S. Imhof , M. Abdelghany , T. Kiessling , L. W. Molenkamp , C. H. Lee , A. Szameit , M. Greiter , R. Thomale . Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
CrossRef ADS Google scholar
[72]
T. Hofmann , T. Helbig , F. Schindler , N. Salgo , M. Brzezińska , M. Greiter , T. Kiessling , D. Wolf , A. Vollhardt , A. Kabaši , C. H. Lee , A. Bilušić , R. Thomale , T. Neupert . Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2020, 2(2): 023265
CrossRef ADS Google scholar
[73]
S. Liu , R. Shao , S. Ma , L. Zhang , O. You , H. Wu , Y. J. Xiang , T. J. Cui , S. Zhang . Non-Hermitian skin effect in a non-Hermitian electrical circuit. Research, 2021, 2021: 5608038
CrossRef ADS Google scholar
[74]
D. Zou , T. Chen , W. He , J. Bao , C. H. Lee , H. Sun , X. Zhang . Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
CrossRef ADS Google scholar
[75]
X. Zhang , Y. Tian , J. H. Jiang , M. H. Lu , Y. F. Chen . Observation of higher-order non-Hermitian skin effect. Nat. Commun., 2021, 12(1): 5377
CrossRef ADS Google scholar
[76]
C. Shang , S. Liu , R. Shao , P. Han , X. Zang , X. Zhang , K. N. Salama , W. Gao , C. H. Lee , R. Thomale , A. Manchon , S. Zhang , T. J. Cui , U. Schwingenschlögl . Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning. Adv. Sci. (Weinh.), 2022, 9(36): 2202922
CrossRef ADS Google scholar
[77]
L. Zhang , Y. Yang , Y. Ge , Y. J. Guan , Q. Chen , Q. Yan , F. Chen , R. Xi , Y. Li , D. Jia , S. Q. Yuan , H. X. Sun , H. Chen , B. Zhang . Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun., 2021, 12(1): 6297
CrossRef ADS Google scholar
[78]
H.GaoH.XueZ.GuL.LiW.ZhuZ.SuJ.ZhuB.ZhangY.D. Chong, Non-Hermitian skin effect in a ring resonator lattice, arXiv: 2205.14824 (2022)
[79]
S. Weidemann , M. Kremer , T. Helbig , T. Hofmann , A. Stegmaier , M. Greiter , R. Thomale , A. Szameit . Topological funneling of light. Science, 2020, 368(6488): 311
CrossRef ADS Google scholar
[80]
Y. Song , W. Liu , L. Zheng , Y. Zhang , B. Wang , P. Lu . Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys. Rev. Appl., 2020, 14(6): 064076
CrossRef ADS Google scholar
[81]
L. Xiao , T. Deng , K. Wang , Z. Wang , W. Yi , P. Xue . Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402
CrossRef ADS Google scholar
[82]
K. Wang , T. Li , L. Xiao , Y. Han , W. Yi , P. Xue . Detecting non-Bloch topological invariants in quantum dynamics. Phys. Rev. Lett., 2021, 127(27): 270602
CrossRef ADS Google scholar
[83]
M. Brandenbourger , X. Locsin , E. Lerner , C. Coulais . Non-reciprocal robotic metamaterials. Nat. Commun., 2019, 10(1): 4608
CrossRef ADS Google scholar
[84]
A. Ghatak , M. Brandenbourger , J. van Wezel , C. Coulais . Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. USA, 2020, 117(47): 29561
CrossRef ADS Google scholar
[85]
W. Gou , T. Chen , D. Xie , T. Xiao , T. S. Deng , B. Gadway , W. Yi , B. Yan . Tunable non-reciprocal quantum transport through a dissipative Aharonov−Bohm ring in ultracold atoms. Phys. Rev. Lett., 2020, 124(7): 070402
CrossRef ADS Google scholar
[86]
Q. Liang , D. Xie , Z. Dong , H. Li , H. Li , B. Gadway , W. Yi , B. Yan . Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett., 2022, 129(7): 070401
CrossRef ADS Google scholar
[87]
M. S. Scheurer , R. J. Slager . Unsupervised machine learning and band topology. Phys. Rev. Lett., 2020, 124(22): 226401
CrossRef ADS Google scholar
[88]
L. W. Yu , D. L. Deng . Unsupervised learning of non-Hermitian topological phases. Phys. Rev. Lett., 2021, 126(24): 240402
CrossRef ADS Google scholar
[89]
R. Yang , J. W. Tan , T. Tai , J. M. Koh , L. Li , S. Longhi , C. H. Lee . Designing non-Hermitian real spectra through electrostatics. Sci. Bull. (Beijing), 2022, 67(18): 1865
CrossRef ADS Google scholar
[90]
Z. Oztas , N. Candemir . Su−Schrieffer−Heeger model with imaginary gauge field. Phys. Lett. A, 2019, 383(15): 1821
CrossRef ADS Google scholar
[91]
W. Zhu , W. X. Teo , L. Li , J. Gong . Delocalization of topological edge states. Phys. Rev. B, 2021, 103(19): 195414
CrossRef ADS Google scholar
[92]
J. Cheng , X. Zhang , M. H. Lu , Y. F. Chen . Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103
CrossRef ADS Google scholar
[93]
N. Okuma , M. Sato . Non-Hermitian topological phenomena: A review. Annu. Rev. Condens. Matter Phys., 2022, 14: 83
CrossRef ADS Google scholar
[94]
X. R. Wang , C. X. Guo , S. P. Kou . Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116
CrossRef ADS Google scholar
[95]
C. H. Lee , L. Li , J. Gong . Hybrid higher-order skin-topological modes in nonreciprocal systems. Phys. Rev. Lett., 2019, 123(1): 016805
CrossRef ADS Google scholar
[96]
L. Li , C. H. Lee , J. Gong . Topological switch for non-Hermitian skin effect in cold-atom systems with loss. Phys. Rev. Lett., 2020, 124(25): 250402
CrossRef ADS Google scholar
[97]
Y. Li , C. Liang , C. Wang , C. Lu , Y. C. Liu . Gain-loss-induced hybrid skin-topological effect. Phys. Rev. Lett., 2022, 128(22): 223903
CrossRef ADS Google scholar
[98]
W. Zhu , J. Gong . Hybrid skin-topological modes without asymmetric couplings. Phys. Rev. B, 2022, 106(3): 035425
CrossRef ADS Google scholar
[99]
K. Kawabata , M. Sato , K. Shiozaki . Higher-order non-Hermitian skin effect. Phys. Rev. B, 2020, 102(20): 205118
CrossRef ADS Google scholar
[100]
R. Okugawa , R. Takahashi , K. Yokomizo . Second- order topological non-Hermitian skin effects. Phys. Rev. B, 2020, 102(24): 241202
CrossRef ADS Google scholar
[101]
Y. Fu , J. Hu , S. Wan . Non-Hermitian second-order skin and topological modes. Phys. Rev. B, 2021, 103(4): 045420
CrossRef ADS Google scholar
[102]
K. Zhang , Z. Yang , C. Fang . Correspondence be- tween winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
CrossRef ADS Google scholar
[103]
D. S. Borgnia , A. J. Kruchkov , R. J. Slager . Non-Hermitian boundary modes and topology. Phys. Rev. Lett., 2020, 124(5): 056802
CrossRef ADS Google scholar
[104]
N. Okuma , K. Kawabata , K. Shiozaki , M. Sato . Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
CrossRef ADS Google scholar
[105]
L. Li , S. Mu , C. H. Lee , J. Gong . Quantized classical response from spectral winding topology. Nat. Commun., 2021, 12(1): 5294
CrossRef ADS Google scholar
[106]
H. Q. Liang , S. Mu , J. Gong , L. Li . Anomalous hybridization of spectral winding topology in quantized steady-state responses. Phys. Rev. B, 2022, 105(24): L241402
CrossRef ADS Google scholar
[107]
S. Longhi . Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
CrossRef ADS Google scholar
[108]
H. Jiang , L. J. Lang , C. Yang , S. L. Zhu , S. Chen . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
CrossRef ADS Google scholar
[109]
S. Longhi . Metal−insulator phase transition in a non-Hermitian Aubry−André−Harper model. Phys. Rev. B, 2019, 100(12): 125157
CrossRef ADS Google scholar
[110]
Q. B. Zeng , Y. Xu . Winding numbers and generalized mobility edges in non-Hermitian systems. Phys. Rev. Res., 2020, 2(3): 033052
CrossRef ADS Google scholar
[111]
Q. B. Zeng , Y. B. Yang , Y. Xu . Topological phases in non-Hermitian Aubry−André−Harper models. Phys. Rev. B, 2020, 101(2): 020201
CrossRef ADS Google scholar
[112]
Y. Liu , X. P. Jiang , J. Cao , S. Chen . Non-Hermitian mobility edges in one-dimensional quasicrystals with parity−time symmetry. Phys. Rev. B, 2020, 101(17): 174205
CrossRef ADS Google scholar
[113]
L. J. Zhai , S. Yin , G. Y. Huang . Many-body localization in a non-Hermitian quasiperiodic system. Phys. Rev. B, 2020, 102(6): 064206
CrossRef ADS Google scholar
[114]
X. Cai . Boundary-dependent self-dualities, winding numbers, and asymmetrical localization in non-Hermitian aperiodic one-dimensional models. Phys. Rev. B, 2021, 103(1): 014201
CrossRef ADS Google scholar
[115]
Y. Liu , Y. Wang , X. J. Liu , Q. Zhou , S. Chen . Exact mobility edges, PT-symmetry breaking, and skin effect in one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 103(1): 014203
CrossRef ADS Google scholar
[116]
Y. Liu , Q. Zhou , S. Chen . Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201
CrossRef ADS Google scholar
[117]
J. Claes , T. L. Hughes . Skin effect and winding number in disordered non-Hermitian systems. Phys. Rev. B, 2021, 103(14): L140201
CrossRef ADS Google scholar
[118]
S. Longhi . Non-Hermitian topological mobility edges and transport in photonic quantum walks. Opt. Lett., 2022, 47(12): 2951
CrossRef ADS Google scholar
[119]
X. Zhang , G. Li , Y. Liu , T. Tai , R. Thomale , C. H. Lee . Tidal surface states as fingerprints of non-Hermitian nodal knot metals. Commun. Phys., 2021, 4(1): 47
CrossRef ADS Google scholar
[120]
L. Herviou , J. H. Bardarson , N. Regnault . Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition. Phys. Rev. A, 2019, 99(5): 052118
CrossRef ADS Google scholar
[121]
H. G. Zirnstein , G. Refael , B. Rosenow . Bulk-boundary correspondence for non-Hermitian Hamiltonians via Green functions. Phys. Rev. Lett., 2021, 126(21): 216407
CrossRef ADS Google scholar
[122]
W. P. Su , J. R. Schrieffer , A. J. Heeger . Solitons in polyacetylene. Phys. Rev. Lett., 1979, 42(25): 1698
CrossRef ADS Google scholar
[123]
M. Creutz . End states, ladder compounds, and domain-wall Fermions. Phys. Rev. Lett., 1999, 83(13): 2636
CrossRef ADS Google scholar
[124]
H. Q. Liang , L. Li . Topological properties of non-Hermitian Creutz ladders. Chin. Phys. B, 2022, 31(1): 010310
CrossRef ADS Google scholar
[125]
E. Edvardsson , F. K. Kunst , T. Yoshida , E. J. Bergholtz . Phase transitions and generalized biorthogonal polarization in non-Hermitian systems. Phys. Rev. Res., 2020, 2(4): 043046
CrossRef ADS Google scholar
[126]
S. Masuda , M. Nakamura . Relationship between the electronic polarization and the winding number in non-Hermitian systems. J. Phys. Soc. Jpn., 2022, 91(4): 043701
CrossRef ADS Google scholar
[127]
S. Masuda , M. Nakamura . Electronic polarization in non-Bloch band theory. J. Phys. Soc. Jpn., 2022, 91(11): 114705
CrossRef ADS Google scholar
[128]
T. S. Deng , W. Yi . Non-Bloch topological invariants in a non-Hermitian domain wall system. Phys. Rev. B, 2019, 100(3): 035102
CrossRef ADS Google scholar
[129]
H.LiuM.LuZ.Q. ZhangH.Jiang, Modified generalized-Brillouin-zone theory with on-site disorders, arXiv: 2208.03013 (2022)
[130]
Z. Yang , K. Zhang , C. Fang , J. Hu . Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402
CrossRef ADS Google scholar
[131]
T.TaiC.H. Lee, Zoology of non-Hermitian spectra and their graph topology, arXiv: 2202.03462 (2022)
[132]
Z. Q. Zhang , H. Liu , H. Liu , H. Jiang , X. C. Xie . Bulk-boundary correspondence in disordered non-Hermitian systems. Sci. Bull. (Beijing), 2023, 68(2): 157
CrossRef ADS Google scholar
[133]
R. Chen , C. Z. Chen , B. Zhou , D. H. Xu . Finite-size effects in non-Hermitian topological systems. Phys. Rev. B, 2019, 99(15): 155431
CrossRef ADS Google scholar
[134]
S. M. Rafi-Ul-Islam , Z. B. Siu , H. Sahin , C. H. Lee , M. B. A. Jalil . Unconventional skin modes in generalized topolectrical circuits with multiple asymmetric couplings. Phys. Rev. Res., 2022, 4(4): 043108
CrossRef ADS Google scholar
[135]
W. Wang , X. Wang , G. Ma . Non-Hermitian morphing of topological modes. Nature, 2022, 608(7921): 50
CrossRef ADS Google scholar
[136]
W. Wang , X. Wang , G. Ma . Extended state in a localized continuum. Phys. Rev. Lett., 2022, 129(26): 264301
CrossRef ADS Google scholar
[137]
S. Longhi . Non-Hermitian gauged topological laser arrays. Ann. Phys., 2018, 530(7): 1800023
CrossRef ADS Google scholar
[138]
M.TangJ.WangS.ValligatlaC.N. SaggauH.Dong, ., Symmetry induced selective excitation of topological states in SSH waveguide arrays, arXiv: 2211.06228 (2022)
[139]
F. D. M. Haldane . Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
CrossRef ADS Google scholar
[140]
X. L. Qi , T. L. Hughes , S. C. Zhang . Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 2008, 78(19): 195424
CrossRef ADS Google scholar
[141]
C. Z. Chang , J. Zhang , X. Feng , J. Shen , Z. Zhang , M. Guo , K. Li , Y. Ou , P. Wei , L. L. Wang , Z. Q. Ji , Y. Feng , S. Ji , X. Chen , J. Jia , X. Dai , Z. Fang , S. C. Zhang , K. He , Y. Wang , L. Lu , X. C. Ma , Q. K. Xue . Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
CrossRef ADS Google scholar
[142]
C. H. Lee , X. L. Qi . Lattice construction of pseu-dopotential Hamiltonians for fractional Chern insulators. Phys. Rev. B, 2014, 90(8): 085103
CrossRef ADS Google scholar
[143]
T. Neupert , C. Chamon , T. Iadecola , L. H. Santos , C. Mudry . Fractional (Chern and topological) insulators. Phys. Scr., 2015, T164: 014005
CrossRef ADS Google scholar
[144]
S. Yao , F. Song , Z. Wang . Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
CrossRef ADS Google scholar
[145]
K. Kawabata , K. Shiozaki , M. Ueda . Anomalous helical edge states in a non-Hermitian Chern insulator. Phys. Rev. B, 2018, 98(16): 165148
CrossRef ADS Google scholar
[146]
Y. X. Xiao , C. T. Chan . Topology in non-Hermitian Chern insulators with skin effect. Phys. Rev. B, 2022, 105(7): 075128
CrossRef ADS Google scholar
[147]
H. Liu , J. S. You , S. Ryu , I. C. Fulga . Supermetal−insulator transition in a non-Hermitian network model. Phys. Rev. B, 2021, 104(15): 155412
CrossRef ADS Google scholar
[148]
T. M. Philip , M. R. Hirsbrunner , M. J. Gilbert . Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator. Phys. Rev. B, 2018, 98(15): 155430
CrossRef ADS Google scholar
[149]
S. Sayyad , J. D. Hannukainen , A. G. Grushin . Non-Hermitian chiral anomalies. Phys. Rev. Res., 2022, 4(4): L042004
CrossRef ADS Google scholar
[150]
T. Bessho , M. Sato . Nielsen−Ninomiya theorem with bulk topology: Duality in Floquet and non-Hermitian systems. Phys. Rev. Lett., 2021, 127(19): 196404
CrossRef ADS Google scholar
[151]
C. Wang , X. R. Wang . Hermitian chiral boundary states in non-Hermitian topological insulators. Phys. Rev. B, 2022, 105(12): 125103
CrossRef ADS Google scholar
[152]
C. H. Lee , Y. Wang , Y. Chen , X. Zhang . Electromagnetic response of quantum Hall systems in dimensions five and six and beyond. Phys. Rev. B, 2018, 98(9): 094434
CrossRef ADS Google scholar
[153]
I. Petrides , H. M. Price , O. Zilberberg . Six-dimensional quantum Hall effect and three-dimensional topological pumps. Phys. Rev. B, 2018, 98(12): 125431
CrossRef ADS Google scholar
[154]
K. Shao , Z. T. Cai , H. Geng , W. Chen , D. Y. Xing . Cyclotron quantization and mirror-time transition on nonreciprocal lattices. Phys. Rev. B, 2022, 106(8): L081402
CrossRef ADS Google scholar
[155]
K. Deng , B. Flebus . Non-Hermitian skin effect in magnetic systems. Phys. Rev. B, 2022, 105(18): L180406
CrossRef ADS Google scholar
[156]
M.M. DennerF.Schindler, Magnetic flux response of non-Hermitian topological phases, arXiv: 2208.11712 (2022)
[157]
M. Lu , X. X. Zhang , M. Franz . Magnetic suppression of non-Hermitian skin effects. Phys. Rev. Lett., 2021, 127(25): 256402
CrossRef ADS Google scholar
[158]
B. Zhen , C. W. Hsu , Y. Igarashi , L. Lu , I. Kaminer , A. Pick , S. L. Chua , J. D. Joannopoulos , M. Soljačić . Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354
CrossRef ADS Google scholar
[159]
Y. Xu , S. T. Wang , L. M. Duan . Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 2017, 118(4): 045701
CrossRef ADS Google scholar
[160]
J. Liu , Z. Li , Z. G. Chen , W. Tang , A. Chen , B. Liang , G. Ma , J. C. Cheng . Experimental realization of Weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal. Phys. Rev. Lett., 2022, 129(8): 084301
CrossRef ADS Google scholar
[161]
A. Cerjan , S. Huang , M. Wang , K. P. Chen , Y. Chong , M. C. Rechtsman . Experimental realization of a Weyl exceptional ring. Nat. Photonics, 2019, 13(9): 623
CrossRef ADS Google scholar
[162]
W.TangK.DingG.Ma, Realization and topological properties of third-order exceptional lines embedded in exceptional surfaces, arXiv: 2211.15921 (2022)
[163]
T. Bzdušek , Q. S. Wu , A. Rüegg , M. Sigrist , A. A. Soluyanov . Nodal-chain metals. Nature, 2016, 538: 75
CrossRef ADS Google scholar
[164]
Y. Huh , E. G. Moon , Y. B. Kim . Long-range Coulomb interaction in nodal-ring semimetals. Phys. Rev. B, 2016, 93(3): 035138
CrossRef ADS Google scholar
[165]
L. Li , M. A. N. Araujo . Topological insulating phases from two-dimensional nodal loop semimetals. Phys. Rev. B, 2016, 94(16): 165117
CrossRef ADS Google scholar
[166]
L. Li , C. Yin , S. Chen , M. A. N. Araujo . Chiral topological insulating phases from three-dimensional nodal loop semimetals. Phys. Rev. B, 2017, 95(12): 121107
CrossRef ADS Google scholar
[167]
L. Li , S. Chesi , C. Yin , S. Chen . 2π-flux loop semimetals. Phys. Rev. B, 2017, 96(8): 081116
CrossRef ADS Google scholar
[168]
Z. Yan , R. Bi , H. Shen , L. Lu , S. C. Zhang , Z. Wang . Nodal-link semimetals. Phys. Rev. B, 2017, 96(4): 041103
CrossRef ADS Google scholar
[169]
S. Li , Z. M. Yu , Y. Liu , S. Guan , S. S. Wang , X. Zhang , Y. Yao , S. A. Yang . Type-II nodal loops: Theory and material realization. Phys. Rev. B, 2017, 96(8): 081106
CrossRef ADS Google scholar
[170]
L. Li , H. H. Yap , M. A. N. Araújo , J. Gong . Engineering topological phases with a three-dimensional nodal-loop semimetal. Phys. Rev. B, 2017, 96(23): 235424
CrossRef ADS Google scholar
[171]
Y. Zhou , F. Xiong , X. Wan , J. An . Hopf-link topological nodal-loop semimetals. Phys. Rev. B, 2018, 97(15): 155140
CrossRef ADS Google scholar
[172]
S. Pezzini , M. R. van Delft , L. M. Schoop , B. V. Lotsch , A. Carrington , M. I. Katsnelson , N. E. Hussey , S. Wiedmann . Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys., 2018, 14(2): 178
CrossRef ADS Google scholar
[173]
X. Zhang , Z. M. Yu , Z. Zhu , W. Wu , S. S. Wang , X. L. Sheng , S. A. Yang . Nodal loop and nodal surface states in the Ti3Al family of materials. Phys. Rev. B, 2018, 97(23): 235150
CrossRef ADS Google scholar
[174]
C. H. Lee , W. W. Ho , B. Yang , J. Gong , Z. Papić . Floquet mechanism for non-Abelian fractional quantum Hall states. Phys. Rev. Lett., 2018, 121(23): 237401
CrossRef ADS Google scholar
[175]
F. N. Ünal , A. Bouhon , R. J. Slager . Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett., 2020, 125(5): 053601
CrossRef ADS Google scholar
[176]
A. Bouhon , Q. S. Wu , R. J. Slager , H. Weng , O. V. Yazyev , T. Bzdušek . Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe. Nat. Phys., 2020, 16(11): 1137
CrossRef ADS Google scholar
[177]
C. H. Lee , H. H. Yap , T. Tai , G. Xu , X. Zhang , J. Gong . Enhanced higher harmonic generation from nodal topology. Phys. Rev. B, 2020, 102(3): 035138
CrossRef ADS Google scholar
[178]
Y.S. AngC.H. LeeL.K. Ang, Universal scaling and signatures of nodal structures in electron tunneling from two-dimensional semimetals, arXiv: 2003.14004 (2020)
[179]
E. Yang , B. Yang , O. You , H. C. Chan , P. Mao , Q. Guo , S. Ma , L. Xia , D. Fan , Y. Xiang , S. Zhang . Observation of non-Abelian nodal links in photonics. Phys. Rev. Lett., 2020, 125(3): 033901
CrossRef ADS Google scholar
[180]
C. H. Lee , A. Sutrisno , T. Hofmann , T. Helbig , Y. Liu , Y. S. Ang , L. K. Ang , X. Zhang , M. Greiter , R. Thomale . Imaging nodal knots in momentum space through topolectrical circuits. Nat. Commun., 2020, 11: 4385
CrossRef ADS Google scholar
[181]
T. Tai , C. H. Lee . Anisotropic nonlinear optical response of nodal-loop materials. Phys. Rev. B, 2021, 103(19): 195125
CrossRef ADS Google scholar
[182]
P. M. Lenggenhager , X. Liu , S. S. Tsirkin , T. Neupert , T. Bzdušek . From triple-point materials to multiband nodal links. Phys. Rev. B, 2021, 103(12): L121101
CrossRef ADS Google scholar
[183]
M. Wang , S. Liu , Q. Ma , R. Y. Zhang , D. Wang , Q. Guo , B. Yang , M. Ke , Z. Liu , C. T. Chan . Experimental observation of non-Abelian earring nodal links in phononic crystals. Phys. Rev. Lett., 2022, 128(24): 246601
CrossRef ADS Google scholar
[184]
R.J. SlagerA.BouhonF.N. Ünal, Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac string phase, arXiv: 2208.12824 (2022)
[185]
B. Peng , A. Bouhon , B. Monserrat , R. J. Slager . Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat. Commun., 2022, 13(1): 423
CrossRef ADS Google scholar
[186]
A.BouhonR.J. Slager, Multi-gap topological conversion of Euler class via band-node braiding: Minimal models, PT-linked nodal rings, and chiral heirs, arXiv: 2203.16741 (2022)
[187]
H. Park , S. Wong , A. Bouhon , R. J. Slager , S. S. Oh . Topological phase transitions of non-Abelian charged nodal lines in spring-mass systems. Phys. Rev. B, 2022, 105(21): 214108
CrossRef ADS Google scholar
[188]
X. Yang , Y. Cao , Y. Zhai . Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Chin. Phys. B, 2022, 31(1): 010308
CrossRef ADS Google scholar
[189]
L. Li , C. H. Lee , J. Gong . Realistic Floquet semimetal with exotic topological linkages between arbitrarily many nodal loops. Phys. Rev. Lett., 2018, 121(3): 036401
CrossRef ADS Google scholar
[190]
Z. Yan , Z. Wang . Floquet multi-Weyl points in crossing-nodal-line semimetals. Phys. Rev. B, 2017, 96(4): 041206
CrossRef ADS Google scholar
[191]
J. Carlström , E. J. Bergholtz . Exceptional links and twisted Fermi ribbons in non-Hermitian systems. Phys. Rev. A, 2018, 98(4): 042114
CrossRef ADS Google scholar
[192]
R. Chen , B. Zhou , D. H. Xu . Floquet Weyl semimetals in light-irradiated type-II and hybrid line-node semimetals. Phys. Rev. B, 2018, 97(15): 155152
CrossRef ADS Google scholar
[193]
J. Carlström , M. Stålhammar , J. C. Budich , E. J. Bergholtz . Knotted non-Hermitian metals. Phys. Rev. B, 2019, 99(16): 161115
CrossRef ADS Google scholar
[194]
K. W. Kim , H. Kwon , K. Park . Floquet topological semimetal with a helical nodal line in 2+1 dimensions. Phys. Rev. B, 2019, 99(11): 115136
CrossRef ADS Google scholar
[195]
M. Stålhammar , L. Rødland , G. Arone , J. C. Budich , E. Bergholtz . Hyperbolic nodal band structures and knot invariants. SciPost Phys., 2019, 7: 019
CrossRef ADS Google scholar
[196]
G. Salerno , N. Goldman , G. Palumbo . Floquet-engineering of nodal rings and nodal spheres and their characterization using the quantum metric. Phys. Rev. Res., 2020, 2(1): 013224
CrossRef ADS Google scholar
[197]
H. Meng , L. Wang , C. H. Lee , Y. S. Ang . Terahertz polarization conversion from optical dichroism in a topological Dirac semimetal. Appl. Phys. Lett., 2022, 121(19): 193102
CrossRef ADS Google scholar
[198]
F. Qin , C. H. Lee , R. Chen . Light-induced phase crossovers in a quantum spin Hall system. Phys. Rev. B, 2022, 106(23): 235405
CrossRef ADS Google scholar
[199]
H. Wu , J. H. An . Non-Hermitian Weyl semimetal and its Floquet engineering. Phys. Rev. B, 2022, 105(12): L121113
CrossRef ADS Google scholar
[200]
K. Wang , L. Xiao , J. C. Budich , W. Yi , P. Xue . Simulating exceptional non-Hermitian metals with single-photon interferometry. Phys. Rev. Lett., 2021, 127(2): 026404
CrossRef ADS Google scholar
[201]
W. A. Benalcazar , B. A. Bernevig , T. L. Hughes . Quantized electric multipole insulators. Science, 2017, 357(6346): 61
CrossRef ADS Google scholar
[202]
E. Edvardsson , F. K. Kunst , E. J. Bergholtz . Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence. Phys. Rev. B, 2019, 99(8): 081302
CrossRef ADS Google scholar
[203]
A. K. Ghosh , T. Nag . Non-Hermitian higher-order topological superconductors in two dimensions: Statics and dynamics. Phys. Rev. B, 2022, 106(14): L140303
CrossRef ADS Google scholar
[204]
K. M. Kim , M. J. Park . Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys. Rev. B, 2021, 104(12): L121101
CrossRef ADS Google scholar
[205]
Z.T. LeiC.H. LeeL.H. Li, PT-activated non-Hermitian skin modes, arXiv: 2304.13955v1 (2023)
[206]
Note that asymmetric couplings are not always need to break reciprocity [98].
[207]
J. Li , A. K. Harter , J. Liu , L. de Melo , Y. N. Joglekar , L. Luo . Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun., 2019, 10(1): 855
CrossRef ADS Google scholar
[208]
H. Wu , B. Q. Wang , J. H. An . Floquet second-order topological insulators in non-Hermitian systems. Phys. Rev. B, 2021, 103(4): L041115
CrossRef ADS Google scholar
[209]
L. W. Zhou , R. W. Bomantara , S. L. Wu . qth-root non-Hermitian Floquet topological insulators. SciPost Phys., 2022, 13: 015
CrossRef ADS Google scholar
[210]
Y. Cao , Y. Li , X. Yang . Non-Hermitian bulk-boundary correspondence in a periodically driven system. Phys. Rev. B, 2021, 103(7): 075126
CrossRef ADS Google scholar
[211]
M. Ezawa . Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization. Phys. Rev. B, 2019, 99(20): 201411
CrossRef ADS Google scholar
[212]
M. Ezawa . Non-Hermitian boundary and interface states in nonreciprocal higher-order topological metals and electrical circuits. Phys. Rev. B, 2019, 99(12): 121411
CrossRef ADS Google scholar
[213]
Z. Song , Z. Fang , C. Fang . (d-2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett., 2017, 119(24): 246402
CrossRef ADS Google scholar
[214]
E. Khalaf . Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B, 2018, 97(20): 205136
CrossRef ADS Google scholar
[215]
L. Trifunovic , P. W. Brouwer . Higher-order topological band structures. physica status solidi (b), 2021, 258: 2000090
CrossRef ADS Google scholar
[216]
C.A. LiB.TrauzettelT.NeupertS.B. Zhang, Enhancement of second-order non-Hermitian skin effect by magnetic fields, arXiv: 2212.14691v1 (2022)
[217]
H.JiangC.H. Lee, Dimensional transmutation from non-hermiticity, arXiv: 2207.08843 (2022)
[218]
P.ZhuX.Q. SunT.L. HughesG.Bahl, Higher rank chirality and non-Hermitian skin effect in a topolectrical circuit, arXiv: 2207.02228 (2022)
[219]
F.SongH.Y. WangZ.Wang, Non-Bloch PT symmetry breaking: Universal threshold and dimensional surprise, A Festschrift in Honor of the C. N. Yang Centenary, arXiv: 2102.02230 (2022)
[220]
H. Jiang , C. H. Lee . Filling up complex spectral regions through non-Hermitian disordered chains. Chin. Phys. B, 2022, 31(5): 050307
CrossRef ADS Google scholar
[221]
K. Kawabata , K. Shiozaki , M. Ueda , M. Sato . Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
CrossRef ADS Google scholar
[222]
J. Theiler . Estimating fractal dimension. J. Opt. Soc. Am. A, 1990, 7(6): 1055
CrossRef ADS Google scholar
[223]
X.L. Qi, Exact holographic mapping and emergent space−time geometry, arXiv: 1309.6282 (2013)
[224]
C. H. Lee , X. L. Qi . Exact holographic mapping in free Fermion systems. Phys. Rev. B, 2016, 93(3): 035112
CrossRef ADS Google scholar
[225]
Y. Gu , C. H. Lee , X. Wen , G. Y. Cho , S. Ryu , X. L. Qi . Holographic duality between (2+1)-dimensional quantum anomalous Hall state and (3+1)-dimensional topological insulators. Phys. Rev. B, 2016, 94(12): 125107
CrossRef ADS Google scholar
[226]
T. Yoshida , T. Mizoguchi , Y. Hatsugai . Mirror skin effect and its electric circuit simulation. Phys. Rev. Res., 2020, 2(2): 022062
CrossRef ADS Google scholar
[227]
C. H. Liu , S. Chen . Topological classification of defects in non-Hermitian systems. Phys. Rev. B, 2019, 100(14): 144106
CrossRef ADS Google scholar
[228]
C. H. Liu , H. Hu , S. Chen . Symmetry and topological classification of Floquet non-Hermitian systems. Phys. Rev. B, 2022, 105(21): 214305
CrossRef ADS Google scholar
[229]
R. Okugawa , R. Takahashi , K. Yokomizo . Non-Hermitian band topology with generalized inversion symmetry. Phys. Rev. B, 2021, 103(20): 205205
CrossRef ADS Google scholar
[230]
P. M. Vecsei , M. M. Denner , T. Neupert , F. Schindler . Symmetry indicators for inversion-symmetric non-Hermitian topological band structures. Phys. Rev. B, 2021, 103(20): L201114
CrossRef ADS Google scholar
[231]
Z. Gong , Y. Ashida , K. Kawabata , K. Takasan , S. Higashikawa , M. Ueda . Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
CrossRef ADS Google scholar
[232]
M. M. Denner , A. Skurativska , F. Schindler , M. H. Fischer , R. Thomale , T. Bzdušek , T. Neupert . Exceptional topological insulators. Nat. Commun., 2021, 12: 5681
CrossRef ADS Google scholar
[233]
D.NakamuraT.BesshoM.Sato, Bulk-boundary correspondence in point-gap topological phases, arXiv: 2205.15635 (2022)
[234]
F. Song , S. Yao , Z. Wang . Non-Hermitian topological invariants in real space. Phys. Rev. Lett., 2019, 123(24): 246801
CrossRef ADS Google scholar
[235]
L. Z. Tang , L. F. Zhang , G. Q. Zhang , D. W. Zhang . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
CrossRef ADS Google scholar
[236]
S. A. A. Ghorashi , T. Li , M. Sato , T. L. Hughes . Non-Hermitian higher-order Dirac semimetals. Phys. Rev. B, 2021, 104(16): L161116
CrossRef ADS Google scholar
[237]
S. A. A. Ghorashi , T. Li , M. Sato . Non-Hermitian higher-order Weyl semimetals. Phys. Rev. B, 2021, 104(16): L161117
CrossRef ADS Google scholar
[238]
E. Edvardsson , E. Ardonne . Sensitivity of non-Hermitian systems. Phys. Rev. B, 2022, 106(11): 115107
CrossRef ADS Google scholar
[239]
A.BöttcherS.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, 2005
[240]
J. Bartlett , H. Hu , E. Zhao . Illuminating the bulk-boundary correspondence of a non-Hermitian stub lattice with Majorana stars. Phys. Rev. B, 2021, 104(19): 195131
CrossRef ADS Google scholar
[241]
W. X. Teo , L. Li , X. Zhang , J. Gong . Topological characterization of non-Hermitian multiband systems using Majorana’s stellar representation. Phys. Rev. B, 2020, 101(20): 205309
CrossRef ADS Google scholar
[242]
J. S. Pan , L. Li , J. Gong . Point-gap topology with complete bulk-boundary correspondence and anomalous amplification in the Fock space of dissipative quantum systems. Phys. Rev. B, 2021, 103(20): 205425
CrossRef ADS Google scholar
[243]
K. Wang , A. Dutt , K. Y. Yang , C. C. Wojcik , J. Vučković , S. Fan . Generating arbitrary topological windings of a non-Hermitian band. Science, 2021, 371(6535): 1240
CrossRef ADS Google scholar
[244]
C. H. Lee , S. Imhof , C. Berger , F. Bayer , J. Brehm , L. W. Molenkamp , T. Kiessling , R. Thomale . Topolectrical circuits. Commun. Phys., 2018, 1: 39
CrossRef ADS Google scholar
[245]
Y. Liu , Y. Zeng , L. Li , S. Chen . Exact solution of the single impurity problem in nonreciprocal lattices: Impurity-induced size-dependent non-Hermitian skin effect. Phys. Rev. B, 2021, 104(8): 085401
CrossRef ADS Google scholar
[246]
Z. Ou , Y. Wang , L. Li . Non-Hermitian boundary spectral winding. Phys. Rev. B, 2023, 107: L161404
CrossRef ADS Google scholar
[247]
N. Okuma . Boundary-dependent dynamical instability of bosonic Green’s function: Dissipative Bogoliubov–de Gennes Hamiltonian and its application to non-Hermitian skin effect. Phys. Rev. B, 2022, 105(22): 224301
CrossRef ADS Google scholar
[248]
L. Mao , T. Deng , P. Zhang . Boundary condition independence of non-Hermitian Hamiltonian dynamics. Phys. Rev. B, 2021, 104(12): 125435
CrossRef ADS Google scholar
[249]
H. Hu , E. Zhao . Knots and non-Hermitian Bloch bands. Phys. Rev. Lett., 2021, 126(1): 010401
CrossRef ADS Google scholar
[250]
Y. Li , X. Ji , Y. Chen , X. Yan , X. Yang . Topological energy braiding of non-Bloch bands. Phys. Rev. B, 2022, 106(19): 195425
CrossRef ADS Google scholar
[251]
H.Louis, Kauffman, Knots and Physics, Vol. 1, World Scientific, 1991
[252]
H. Hu , S. Sun , S. Chen . Knot topology of exceptional point and non-Hermitian no−go theorem. Phys. Rev. Res., 2022, 4(2): L022064
CrossRef ADS Google scholar
[253]
L. Li , C. H. Lee . Non-Hermitian pseudo-gaps. Sci. Bull. (Beijing), 2022, 67(7): 685
CrossRef ADS Google scholar
[254]
K. Wang , A. Dutt , C. C. Wojcik , S. Fan . Topological complex-energy braiding of non-Hermitian bands. Nature, 2021, 598(7879): 59
CrossRef ADS Google scholar
[255]
W. Tang , K. Ding , G. Ma . Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Natl. Sci. Rev., 2022, 9(11): nwac010
CrossRef ADS Google scholar
[256]
W. Tang , X. Jiang , K. Ding , Y. X. Xiao , Z. Q. Zhang , C. T. Chan , G. Ma . Exceptional nexus with a hybrid topological invariant. Science, 2020, 370(6520): 1077
CrossRef ADS Google scholar
[257]
Y.FuY.Zhang, Anatomy of open-boundary bulk in multiband non-Hermitian systems, arXiv: 2212.13753 (2022)
[258]
W. Kohn . Analytic properties of Bloch waves and Wannier functions. Phys. Rev., 1959, 115(4): 809
CrossRef ADS Google scholar
[259]
L. He , D. Vanderbilt . Exponential decay properties of Wannier functions and related quantities. Phys. Rev. Lett., 2001, 86(23): 5341
CrossRef ADS Google scholar
[260]
C. Brouder , G. Panati , M. Calandra , C. Mourougane , N. Marzari . Exponential localization of Wannier functions in insulators. Phys. Rev. Lett., 2007, 98(4): 046402
CrossRef ADS Google scholar
[261]
C. H. Lee , D. P. Arovas , R. Thomale . Band flatness optimization through complex analysis. Phys. Rev. B, 2016, 93(15): 155155
CrossRef ADS Google scholar
[262]
D. Monaco , G. Panati , A. Pisante , S. Teufel . Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys., 2018, 359(1): 61
CrossRef ADS Google scholar
[263]
S. Longhi . Non-Bloch-band collapse and chiral Zener tunneling. Phys. Rev. Lett., 2020, 124(6): 066602
CrossRef ADS Google scholar
[264]
F.QinY.MaR.ShenC.H. Lee, Universal competitive spectral scaling from the critical non-Hermitian skin effect, arXiv: 2212.13536 (2022)
[265]
S. M. Rafi-Ul-Islam , Z. B. Siu , H. Sahin , C. H. Lee , M. B. A. Jalil . Critical hybridization of skin modes in coupled non-Hermitian chains. Phys. Rev. Res., 2022, 4(1): 013243
CrossRef ADS Google scholar
[266]
S. M. Rafi-Ul-Islam , Z. B. Siu , H. Sahin , C. H. Lee , M. B. A. Jalil . System size dependent topological zero modes in coupled topolectrical chains. Phys. Rev. B, 2022, 106(7): 075158
CrossRef ADS Google scholar
[267]
G. Sun , J. C. Tang , S. P. Kou . Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2022, 17(3): 33502
CrossRef ADS Google scholar
[268]
X. X. Bao , G. F. Guo , X. P. Du , H. Q. Gu , L. Tan . The topological criticality in disordered non-Hermitian system. J. Phys.: Condens. Matter, 2021, 33(18): 185401
CrossRef ADS Google scholar
[269]
R. Arouca , C. H. Lee , C. M. Smith . Unconventional scaling at non-Hermitian critical points. Phys. Rev. B, 2020, 102(24): 245145
CrossRef ADS Google scholar
[270]
R.AquinoN.LopesD.G. Barci, Critical and non-critical non-Hermitian topological phase transitions in one dimensional chains, arXiv: 2208.14400 (2022)
[271]
S. Rahul , S. Sarkar . Topological quantum criticality in non-Hermitian extended Kitaev chain. Sci. Rep., 2022, 12(1): 1
CrossRef ADS Google scholar
[272]
S. K. Jian , Z. C. Yang , Z. Bi , X. Chen . Yang−Lee edge singularity triggered entanglement transition. Phys. Rev. B, 2021, 104(16): L161107
CrossRef ADS Google scholar
[273]
R.ShenT.ChenF.QinY.ZhongC.H. Lee, Proposal for observing Yang−Lee criticality in Rydberg atomic arrays, arXiv: 2302.06662 (2023)
[274]
B. Zhou , R. Wang , B. Wang . Renormalization group approach to non-Hermitian topological quantum criticality. Phys. Rev. B, 2020, 102(20): 205116
CrossRef ADS Google scholar
[275]
S. Yin , G. Y. Huang , C. Y. Lo , P. Chen . Kibble−Zurek scaling in the Yang−Lee edge singularity. Phys. Rev. Lett., 2017, 118(6): 065701
CrossRef ADS Google scholar
[276]
N. Okuma , M. Sato . Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems. Phys. Rev. B, 2021, 103(8): 085428
CrossRef ADS Google scholar
[277]
K.KawabataT.NumasawaS.Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, arXiv: 2206.05384 (2022)
[278]
C. H. Lee . Exceptional bound states and negative entanglement entropy. Phys. Rev. Lett., 2022, 128(1): 010402
CrossRef ADS Google scholar
[279]
I. Peschel , V. Eisler . Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A Math. Theor., 2009, 42(50): 504003
CrossRef ADS Google scholar
[280]
X. L. Qi . Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett., 2011, 107(12): 126803
CrossRef ADS Google scholar
[281]
T. L. Hughes , E. Prodan , B. A. Bernevig . Inversion-symmetric topological insulators. Phys. Rev. B, 2011, 83(24): 245132
CrossRef ADS Google scholar
[282]
A. Alexandradinata , T. L. Hughes , B. A. Bernevig . Trace index and spectral flow in the entanglement spectrum of topological insulators. Phys. Rev. B, 2011, 84(19): 195103
CrossRef ADS Google scholar
[283]
C. H. Lee , P. Ye . Free-Fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B, 2015, 91(8): 085119
CrossRef ADS Google scholar
[284]
L. Herviou , N. Regnault , J. H. Bardarson . Entanglement spectrum and symmetries in non-Hermitian Fermionic non-interacting models. SciPost Phys., 2019, 7: 069
CrossRef ADS Google scholar
[285]
L. M. Chen , S. A. Chen , P. Ye . Entanglement, non-hermiticity, and duality. SciPost Phys., 2021, 11: 003
CrossRef ADS Google scholar
[286]
P. Y. Chang , J. S. You , X. Wen , S. Ryu . Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069
CrossRef ADS Google scholar
[287]
H. Li , S. Wan . Dynamic skin effects in non-Hermitian systems. Phys. Rev. B, 2022, 106(24): L241112
CrossRef ADS Google scholar
[288]
S. Longhi . Non-Hermitian skin effect and self-acceleration. Phys. Rev. B, 2022, 105(24): 245143
CrossRef ADS Google scholar
[289]
T. Li , J. Z. Sun , Y. S. Zhang , W. Yi . Non-Bloch quench dynamics. Phys. Rev. Res., 2021, 3(2): 023022
CrossRef ADS Google scholar
[290]
C. H. Lee , S. Longhi . Ultrafast and anharmonic Rabi oscillations between non-Bloch bands. Commun. Phys., 2020, 3: 1
[291]
L. Li , W. X. Teo , S. Mu , J. Gong . Direction reversal of non-Hermitian skin effect via coherent coupling. Phys. Rev. B, 2022, 106(8): 085427
CrossRef ADS Google scholar
[292]
Y. Peng , J. Jie , D. Yu , Y. Wang . Manipulating the non-Hermitian skin effect via electric fields. Phys. Rev. B, 2022, 106(16): L161402
CrossRef ADS Google scholar
[293]
X. Zhang , J. Gong . Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect. Phys. Rev. B, 2020, 101(4): 045415
CrossRef ADS Google scholar
[294]
S. Longhi . Probing non-Hermitian skin effect and non-Bloch phase transitions. Phys. Rev. Res., 2019, 1(2): 023013
CrossRef ADS Google scholar
[295]
F. Yang , Q. D. Jiang , E. J. Bergholtz . Liouvillian skin effect in an exactly solvable model. Phys. Rev. Res., 2022, 4(2): 023160
CrossRef ADS Google scholar
[296]
S. Longhi . Unraveling the non-Hermitian skin effect in dissipative systems. Phys. Rev. B, 2020, 102(20): 201103
CrossRef ADS Google scholar
[297]
S. Longhi . Stochastic non-Hermitian skin effect. Opt. Lett., 2020, 45(18): 5250
CrossRef ADS Google scholar
[298]
S. Longhi . Bulk-edge correspondence and trapping at a non-Hermitian topological interface. Opt. Lett., 2021, 46(24): 6107
CrossRef ADS Google scholar
[299]
S. Longhi . Non-Hermitian Hartman effect. Ann. Phys., 2022, 534(10): 2200250
CrossRef ADS Google scholar
[300]
A. Stegmaier , S. Imhof , T. Helbig , T. Hofmann , C. H. Lee , M. Kremer , A. Fritzsche , T. Feichtner , S. Klembt , S. Höfling , I. Boettcher , I. C. Fulga , L. Ma , O. G. Schmidt , M. Greiter , T. Kiessling , A. Szameit , R. Thomale . Topological defect engineering and PT symmetry in non-Hermitian electrical circuits. Phys. Rev. Lett., 2021, 126(21): 215302
CrossRef ADS Google scholar
[301]
S. Longhi . Phase transitions in a non-Hermitian Aubry−André−Harper model. Phys. Rev. B, 2021, 103(5): 054203
CrossRef ADS Google scholar
[302]
K. Suthar , Y. C. Wang , Y. P. Huang , H. H. Jen , J. S. You . Non-Hermitian many-body localization with open boundaries. Phys. Rev. B, 2022, 106(6): 064208
CrossRef ADS Google scholar
[303]
B. Zhang , Q. Li , X. Zhang , C. H. Lee . Real non-Hermitian energy spectra without any symmetry. Chin. Phys. B, 2022, 31(7): 070308
CrossRef ADS Google scholar
[304]
M. C. Rechtsman , J. M. Zeuner , Y. Plotnik , Y. Lumer , D. Podolsky , F. Dreisow , S. Nolte , M. Segev , A. Szameit . Photonic Floquet topological insulators. Nature, 2013, 496: 196
CrossRef ADS Google scholar
[305]
N. Fläschner , B. S. Rem , M. Tarnowski , D. Vogel , D. S. Lühmann , K. Sengstock , C. Weitenberg . Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science, 2016, 352(6289): 1091
CrossRef ADS Google scholar
[306]
L. Zhou , J. Gong . Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states. Phys. Rev. B, 2018, 98(20): 205417
CrossRef ADS Google scholar
[307]
N. Ma , J. Gong . Unsupervised identification of Floquet topological phase boundaries. Phys. Rev. Res., 2022, 4(1): 013234
CrossRef ADS Google scholar
[308]
H. Wu , J. H. An . Floquet topological phases of non-Hermitian systems. Phys. Rev. B, 2020, 102(4): 041119
CrossRef ADS Google scholar
[309]
Y. N. Zhang , S. Xu , H. D. Liu , X. X. Yi . Floquet spectrum and dynamics for non-Hermitian Floquet one-dimension lattice model. Int. J. Theor. Phys., 2021, 60(1): 355
CrossRef ADS Google scholar
[310]
L. Zhou , J. Pan . Non-Hermitian Floquet topological phases in the double-kicked rotor. Phys. Rev. A, 2019, 100(5): 053608
CrossRef ADS Google scholar
[311]
L. Zhou . Dynamical characterization of non-Hermitian Floquet topological phases in one dimension. Phys. Rev. B, 2019, 100(18): 184314
CrossRef ADS Google scholar
[312]
M. S. Rudner , N. H. Lindner , E. Berg , M. Levin . Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 2013, 3(3): 031005
CrossRef ADS Google scholar
[313]
H. Y. Wang , X. M. Zhao , L. Zhuang , W. M. Liu . Non-Floquet engineering in periodically driven dissipative open quantum systems. J. Phys.: Condens. Matter, 2022, 34(36): 365402
CrossRef ADS Google scholar
[314]
L. Zhou , Y. Gu , J. Gong . Dual topological characterization of non-Hermitian Floquet phases. Phys. Rev. B, 2021, 103(4): L041404
CrossRef ADS Google scholar
[315]
Z. Zhang , P. Delplace , R. Fleury . Superior robustness of anomalous non-reciprocal topological edge states. Nature, 2021, 598(7880): 293
CrossRef ADS Google scholar
[316]
L. Zhou . Non-Hermitian Floquet topological superconductors with multiple Majorana edge modes. Phys. Rev. B, 2020, 101(1): 014306
CrossRef ADS Google scholar
[317]
J. Pan , L. Zhou . Non-Hermitian Floquet second order topological insulators in periodically quenched lattices. Phys. Rev. B, 2020, 102(9): 094305
CrossRef ADS Google scholar
[318]
H.LiuI.C. Fulga, Mixed higher-order topology: Boundary non-Hermitian skin effect induced by a Floquet bulk, arXiv: 2210.03097 (2022)
[319]
S. Longhi . Non-Hermitian skin effect beyond the tight- binding models. Phys. Rev. B, 2021, 104(12): 125109
CrossRef ADS Google scholar
[320]
L. J. Lang , S. L. Zhu , Y. D. Chong . Non-Hermitian topological end breathers. Phys. Rev. B, 2021, 104(2): L020303
CrossRef ADS Google scholar
[321]
C. H. Lee . Many-body topological and skin states without open boundaries. Phys. Rev. B, 2021, 104(19): 195102
CrossRef ADS Google scholar
[322]
R. Shen , C. H. Lee . Non-Hermitian skin clusters from strong interactions. Commun. Phys., 2022, 5(1): 1
CrossRef ADS Google scholar
[323]
R. Sarkar , S. S. Hegde , A. Narayan . Interplay of disorder and point-gap topology: Chiral modes, localization, and non-Hermitian Anderson skin effect in one dimension. Phys. Rev. B, 2022, 106(1): 014207
CrossRef ADS Google scholar
[324]
C. Yuce , H. Ramezani . Coexistence of extended and localized states in the one-dimensional non-Hermitian Anderson model. Phys. Rev. B, 2022, 106(2): 024202
CrossRef ADS Google scholar
[325]
F. Roccati . Non-Hermitian skin effect as an impurity problem. Phys. Rev. A, 2021, 104(2): 022215
CrossRef ADS Google scholar
[326]
C. Wang , X. R. Wang . Chiral hinge transport in disordered non-Hermitian second-order topological insulators. Phys. Rev. B, 2022, 106(4): 045142
CrossRef ADS Google scholar
[327]
S. Longhi . Spectral deformations in non-Hermitian lattices with disorder and skin effect: A solvable model. Phys. Rev. B, 2021, 103(14): 144202
CrossRef ADS Google scholar
[328]
L. M. Chen , Y. Zhou , S. A. Chen , P. Ye . Quantum entanglement of non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(12): L121115
CrossRef ADS Google scholar
[329]
A.ChakrabartyS.Datta, Skin effect and dynamical delocalization in non-Hermitian quasicrystals with spin-orbit interaction, arXiv: 2208.10359 (2022)
[330]
W.WangM.HuX.WangG.MaK.Ding, Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice, arXiv: 2302.06314 (2023)
[331]
C. Lv , R. Zhang , Z. Zhai , Q. Zhou . Curving the space by non-hermiticity. Nat. Commun., 2022, 13(1): 2184
CrossRef ADS Google scholar
[332]
S. X. Wang , S. Wan . Duality between the generalized non-Hermitian Hatano−Nelson model in flat space and a Hermitian system in curved space. Phys. Rev. B, 2022, 106(7): 075112
CrossRef ADS Google scholar
[333]
C.W. LvQ.Zhou, Emergent spacetimes from Hermitian and non-Hermitian quantum dynamics, arXiv: 2205.07429 (2022)
[334]
W. Gao , M. Lawrence , B. Yang , F. Liu , F. Fang , B. Béri , J. Li , S. Zhang . Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 2015, 114(3): 037402
CrossRef ADS Google scholar
[335]
A. J. Kollár , M. Fitzpatrick , A. A. Houck . Hyperbolic lattices in circuit quantum electrodynamics. Nature, 2019, 571(7763): 45
CrossRef ADS Google scholar
[336]
P. M. Lenggenhager , A. Stegmaier , L. K. Upreti , T. Hofmann , T. Helbig , A. Vollhardt , M. Greiter , C. H. Lee , S. Imhof , H. Brand , T. Kießling , I. Boettcher , T. Neupert , R. Thomale , T. Bzdušek . Simulating hyperbolic space on a circuit board. Nat. Commun., 2022, 13(1): 4373
CrossRef ADS Google scholar
[337]
M. Ezawa . Dynamical nonlinear higher-order non-Hermitian skin effects and topological trap-skin phase. Phys. Rev. B, 2022, 105(12): 125421
CrossRef ADS Google scholar
[338]
C. Yuce . Nonlinear non-Hermitian skin effect. Phys. Lett. A, 2021, 408: 127484
CrossRef ADS Google scholar
[339]
T. Tuloup , R. W. Bomantara , C. H. Lee , J. Gong . Nonlinearity induced topological physics in momentum space and real space. Phys. Rev. B, 2020, 102(11): 115411
CrossRef ADS Google scholar
[340]
Y. Hadad , J. C. Soric , A. B. Khanikaev , A. Alù . Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 2018, 1(3): 178
CrossRef ADS Google scholar
[341]
Y. Wang , L. J. Lang , C. H. Lee , B. Zhang , Y. D. Chong . Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 2019, 10(1): 1102
CrossRef ADS Google scholar
[342]
T. Kotwal , F. Moseley , A. Stegmaier , S. Imhof , H. Brand , T. Kießling , R. Thomale , H. Ronellenfitsch , J. Dunkel . Active topolectrical circuits. Proc. Natl. Acad. Sci. USA, 2021, 118(32): e2106411118
CrossRef ADS Google scholar
[343]
H. Hohmann , T. Hofmann , T. Helbig , S. Imhof , H. Brand , L. K. Upreti , A. Stegmaier , A. Fritzsche , T. Müller , U. Schwingenschlögl , C. H. Lee , M. Greiter , L. W. Molenkamp , T. Kießling , R. Thomale . Observation of Cnoidal wave localization in nonlinear topolectric circuits. Phys. Rev. Res., 2023, 5(1): L012041
CrossRef ADS Google scholar
[344]
D. A. Dobrykh , A. V. Yulin , A. P. Slobozhanyuk , A. N. Poddubny , Y. S. Kivshar . Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett., 2018, 121(16): 163901
CrossRef ADS Google scholar
[345]
P.H. FuY.XuC.H. LeeY.S. AngJ.F. Liu, Gate-tunable topological Josephson diode, arXiv: 2212.01980 (2022)
[346]
M. Ezawa . Nonlinear topological Toda quasicrystal. J. Phys. Soc. Jpn., 2022, 91(8): 084703
CrossRef ADS Google scholar
[347]
T. Hofmann , T. Helbig , C. H. Lee , M. Greiter , R. Thomale . Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
CrossRef ADS Google scholar
[348]
S. Mu , C. H. Lee , L. Li , J. Gong . Emergent Fermi surface in a many-body non-Hermitian fermionic chain. Phys. Rev. B, 2020, 102(8): 081115
CrossRef ADS Google scholar
[349]
S. B. Zhang , M. M. Denner , T. Bzdušek , M. A. Sentef , T. Neupert . Symmetry breaking and spectral structure of the interacting Hatano−Nelson model. Phys. Rev. B, 2022, 106(12): L121102
CrossRef ADS Google scholar
[350]
F. Alsallom , L. Herviou , O. V. Yazyev , M. Brzezińska . Fate of the non-Hermitian skin effect in many-body fermionic systems. Phys. Rev. Res., 2022, 4(3): 033122
CrossRef ADS Google scholar
[351]
B. Dóra , C. P. Moca . Full counting statistics in the many-body Hatano−Nelson model. Phys. Rev. B, 2022, 106(23): 235125
CrossRef ADS Google scholar
[352]
T. Yoshida , K. Kudo , Y. Hatsugai . Non-Hermitian fractional quantum Hall states. Sci. Rep., 2019, 9(1): 16895
CrossRef ADS Google scholar
[353]
Y. N. Wang , W. L. You , G. Sun . Quantum criticality in interacting bosonic Kitaev−Hubbard models. Phys. Rev. A, 2022, 106(5): 053315
CrossRef ADS Google scholar
[354]
L.MaoY.HaoL.Pan, Non-Hermitian skin effect in one-dimensional interacting Bose gas, arXiv: 2207.12637 (2022)
[355]
G.ChenF.SongJ.L. Lado, Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm, arXiv: 2208.06425 (2022)
[356]
T. Yoshida , Y. Hatsugai . Reduction of one-dimensional non-Hermitian point-gap topology by interactions. Phys. Rev. B, 2022, 106(20): 205147
CrossRef ADS Google scholar
[357]
W. Zhang , F. Di , H. Yuan , H. Wang , X. Zheng , L. He , H. Sun , X. Zhang . Observation of non-Hermitian aggregation effects induced by strong interactions. Phys. Rev. B, 2022, 105(19): 195131
CrossRef ADS Google scholar
[358]
K. Kawabata , K. Shiozaki , S. Ryu . Many-body topology of non-Hermitian systems. Phys. Rev. B, 2022, 105(16): 165137
CrossRef ADS Google scholar
[359]
T. Yoshida . Real-space dynamical mean field theory study of non-Hermitian skin effect for correlated systems: Analysis based on pseudospectrum. Phys. Rev. B, 2021, 103(12): 125145
CrossRef ADS Google scholar
[360]
I. I. Arkhipov , F. Minganti . Emergent non-Hermitian localization phenomena in the synthetic space of zero-dimensional bosonic systems. Phys. Rev. A, 2023, 107(1): 012202
CrossRef ADS Google scholar
[361]
F. Qin , R. Shen , C. H. Lee . Non-Hermitian squeezed polarons. Phys. Rev. A, 2023, 107(1): L010202
CrossRef ADS Google scholar
[362]
T.MicalloC.LehmannJ.C. Budich, Correlation-induced sensitivity and non-Hermitian skin effect of quasiparticles, arXiv: 2302.00019 (2023)
[363]
K. Yang , S. C. Morampudi , E. J. Bergholtz . Exceptional spin liquids from couplings to the environment. Phys. Rev. Lett., 2021, 126(7): 077201
CrossRef ADS Google scholar
[364]
M. Žnidarič . Solvable non-Hermitian skin effect in many body unitary dynamics. Phys. Rev. Res., 2022, 4(3): 033041
CrossRef ADS Google scholar
[365]
Z. Gong , M. Bello , D. Malz , F. K. Kunst . Anomalous behaviors of quantum emitters in non-Hermitian baths. Phys. Rev. Lett., 2022, 129(22): 223601
CrossRef ADS Google scholar
[366]
F. Roccati , S. Lorenzo , G. Calajò , G. M. Palma , A. Carollo , F. Ciccarello . Exotic interactions mediated by a non-Hermitian photonic bath. Optica, 2022, 9(5): 565
CrossRef ADS Google scholar
[367]
K. Cao, Q. Du, X. R. Wang, and S. P. Kou, Physics of many-body nonreciprocal model: From non-Hermitian skin effect to quantum Maxwell’s pressure − Demon effect, arXiv: 2109.03690 (2021)
[368]
T. G. Zhou , Y. N. Zhou , P. Zhang , H. Zhai . Space-time duality between quantum chaos and non-Hermitian boundary effect. Phys. Rev. Res., 2022, 4(2): L022039
CrossRef ADS Google scholar
[369]
K. Xu , X. Zhang , K. Luo , R. Yu , D. Li , H. Zhang . Coexistence of topological edge states and skin effects in the non-Hermitian Su−Schrieffer−Heeger model with long-range nonreciprocal hopping in topoelectric realizations. Phys. Rev. B, 2021, 103(12): 125411
CrossRef ADS Google scholar
[370]
W. Deng , T. Chen , X. Zhang . nth power root topological phases in Hermitian and non-Hermitian systems. Phys. Rev. Res., 2022, 4(3): 033109
CrossRef ADS Google scholar
[371]
H. Zhang , T. Chen , L. Li , C. H. Lee , X. Zhang . Electrical circuit realization of topological switching for the non-Hermitian skin effect. Phys. Rev. B, 2023, 107(8): 085426
CrossRef ADS Google scholar
[372]
L. Li , C. H. Lee , J. Gong . Emergence and full 3d-imaging of nodal boundary Seifert surfaces in 4D topological matter. Commun. Phys., 2019, 2(1): 135
CrossRef ADS Google scholar
[373]
Q. Lin , T. Li , L. Xiao , K. Wang , W. Yi , P. Xue . Topological phase transitions and mobility edges in non-Hermitian quasicrystals. Phys. Rev. Lett., 2022, 129(11): 113601
CrossRef ADS Google scholar
[374]
Q. Lin , T. Li , L. Xiao , K. Wang , W. Yi , P. Xue . Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
CrossRef ADS Google scholar
[375]
L. S. Palacios , S. Tchoumakov , M. Guix , I. Pagonabarraga , S. Sánchez , A. G. Grushin . Guided accumulation of active particles by topological design of a second-order skin effect. Nat. Commun., 2021, 12(1): 4691
CrossRef ADS Google scholar
[376]
Y. F. Yu , L. W. Yu , W. G. Zhang , H. L. Zhang , X. L. Ouyang , Y. Q. Liu , D. L. Deng , L.-M. Duan . Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. npj Quantum Inform., 2022, 8: 116
CrossRef ADS Google scholar
[377]
E. J. Bergholtz , J. C. Budich , F. K. Kunst . Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
CrossRef ADS Google scholar
[378]
X. Zhang , T. Zhang , M. H. Lu , Y. F. Chen . A review on non-Hermitian skin effect. Adv. Phys. X, 2022, 7(1): 2109431
CrossRef ADS Google scholar
[379]
B. Zhu , Q. Wang , D. Leykam , H. Xue , J. W. Qi , Y. D. Chong . Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect. Phys. Rev. Lett., 2022, 129(1): 013903
CrossRef ADS Google scholar
[380]
S. Mandal , R. Banerjee , T. C. H. Liew . From the topological spin-Hall effect to the non-Hermitian skin effect in an elliptical micropillar chain. ACS Photonics, 2022, 9(2): 527
CrossRef ADS Google scholar
[381]
X. Xu , R. Bao , T. C. H. Liew . Non-Hermitian topological exciton−polariton corner modes. Phys. Rev. B, 2022, 106(20): L201302
CrossRef ADS Google scholar
[382]
Z. F. Yu , J. K. Xue , L. Zhuang , J. Zhao , W. M. Liu . Non-Hermitian spectrum and multistability in exciton−polariton condensates. Phys. Rev. B, 2021, 104(23): 235408
CrossRef ADS Google scholar
[383]
M. Yang , L. Wang , X. Wu , H. Xiao , D. Yu , L. Yuan , X. Chen . Concentrated subradiant modes in a one-dimensional atomic array coupled with chiral waveguides. Phys. Rev. A, 2022, 106(4): 043717
CrossRef ADS Google scholar
[384]
Z. Lin , L. Ding , S. Ke , X. Li . Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt. Lett., 2021, 46(15): 3512
CrossRef ADS Google scholar
[385]
J. Zhong , K. Wang , Y. Park , V. Asadchy , C. C. Wojcik , A. Dutt , S. Fan . Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. Phys. Rev. B, 2021, 104(12): 125416
CrossRef ADS Google scholar
[386]
H. Price , Y. Chong , A. Khanikaev , H. Schomerus , L. J. Maczewsky . . Roadmap on topological photonics. J. Phys.: Photonics, 2022, 4: 032501
CrossRef ADS Google scholar
[387]
Q.YanH.ChenY.Yang, Non-Hermitian skin effect and delocalized edge states in photonic crystals with anomalous parity−time symmetry, arXiv: 2111.08213 (2021)
[388]
L.C. XieL.JinZ.Song, Antihelical edge states in two-dimensional photonic topological metals, arXiv: 2302.05842 (2023)
[389]
Q.LinW.YiP.Xue, Manipulating non-reciprocity in a two-dimensional magnetic quantum walk, arXiv: 2212.00387 (2022)
[390]
T. Li , Y. S. Zhang , W. Yi . Two-dimensional quantum walk with non-Hermitian skin effects. Chin. Phys. Lett., 2021, 38(3): 030301
CrossRef ADS Google scholar
[391]
G. G. Pyrialakos , H. Ren , P. S. Jung , M. Khajavikhan , D. N. Christodoulides . Thermalization dynamics of nonlinear non-Hermitian optical lattices. Phys. Rev. Lett., 2022, 128(21): 213901
CrossRef ADS Google scholar
[392]
C. Fleckenstein , A. Zorzato , D. Varjas , E. J. Bergholtz , J. H. Bardarson , A. Tiwari . Non-Hermitian topology in monitored quantum circuits. Phys. Rev. Res., 2022, 4(3): L032026
CrossRef ADS Google scholar
[393]
S. H. Lin , R. Dilip , A. G. Green , A. Smith , F. Pollmann . Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum, 2021, 2(1): 010342
CrossRef ADS Google scholar
[394]
T. Liu , J. G. Liu , H. Fan . Probabilistic non-unitary gate in imaginary time evolution. Quantum Inform. Process., 2021, 20(6): 1
CrossRef ADS Google scholar
[395]
H. Kamakari , S. N. Sun , M. Motta , A. J. Minnich . Digital quantum simulation of open quantum systems using quantum imaginary–time evolution. PRX Quantum, 2022, 3(1): 010320
CrossRef ADS Google scholar
[396]
A. Smith , M. S. Kim , F. Pollmann , J. Knolle . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inform., 2019, 5: 106
CrossRef ADS Google scholar
[397]
J. M. Koh , T. Tai , Y. H. Phee , W. E. Ng , C. H. Lee . Stabilizing multiple topological Fermions on a quantum computer. npj Quantum Inform., 2022, 8: 16
CrossRef ADS Google scholar
[398]
J. M. Koh , T. Tai , C. H. Lee . Simulation of interaction-induced chiral topological dynamics on a digital quantum computer. Phys. Rev. Lett., 2022, 129(14): 140502
CrossRef ADS Google scholar
[399]
J.M. KohT.TaiC.H. Lee, Observation of higher-order topological states on a quantum computer, arXiv: 2303.02179 (2023)
[400]
T.ChenR.ShenC.H. LeeB.Yang, High-fidelity realization of the Aklt state on a NISQ-era quantum processor, arXiv: 2210.13840 (2022)
[401]
H. Schomerus . Nonreciprocal response theory of non-Hermitian mechanical metamaterials: Response phase transition from the skin effect of zero modes. Phys. Rev. Res., 2020, 2(1): 013058
CrossRef ADS Google scholar
[402]
D. Braghini , L. G. G. Villani , M. I. N. Rosa , J. R. de F Arruda . Non-Hermitian elastic waveguides with piezoelectric feedback actuation: Non-reciprocal bands and skin modes. J. Phys. D Appl. Phys., 2021, 54(28): 285302
CrossRef ADS Google scholar
[403]
Y. Jin , W. Zhong , R. Cai , X. Zhuang , Y. Pennec , B. Djafari-Rouhani . Non-Hermitian skin effect in a phononic beam based on piezoelectric feedback control. Appl. Phys. Lett., 2022, 121(2): 022202
CrossRef ADS Google scholar
[404]
P. Wen , M. Wang , G. L. Long . Optomechanically induced transparency and directional amplification in a non-Hermitian optomechanical lattice. Opt. Express, 2022, 30(22): 41012
CrossRef ADS Google scholar
[405]
Z. Ren , D. Liu , E. Zhao , C. He , K. K. Pak , J. Li , G. B. Jo . Chiral control of quantum states in non-Hermitian spin–orbit-coupled Fermions. Nat. Phys., 2022, 18(4): 385
CrossRef ADS Google scholar
[406]
S. Guo , C. Dong , F. Zhang , J. Hu , Z. Yang . Theoretical prediction of a non-Hermitian skin effect in ultracold-atom systems. Phys. Rev. A, 2022, 106(6): L061302
CrossRef ADS Google scholar
[407]
L. Zhou , H. Li , W. Yi , X. Cui . Engineering non-Hermitian skin effect with band topology in ultracold gases. Commun. Phys., 2022, 5(1): 252
CrossRef ADS Google scholar
[408]
Y.QinK.ZhangL.H. Li, Geometry-dependent skin effect and anisotropic Bloch oscillations in a non-Hermitian optical lattice, arXiv: 2304.03792v1 (2023)
[409]
H. Li , X. Cui , W. Yi . Non-Hermitian skin effect in a spin−orbit-coupled Bose−Einstein condensate. JUSTC, 2022, 52(8): 2
CrossRef ADS Google scholar
[410]
T. Yoshida , T. Mizoguchi , Y. Hatsugai . Non-Hermitian topology in Rock–Paper–Scissors games. Sci. Rep., 2022, 12(1): 560
CrossRef ADS Google scholar
[411]
A. Dobrinevski , E. Frey . Extinction in neutrally stable stochastic Lotka−Volterra models. Phys. Rev. E, 2012, 85(5): 051903
CrossRef ADS Google scholar
[412]
J. Knebel , T. Krüger , M. F. Weber , E. Frey . Coexistence and survival in conservative Lotka−Volterra networks. Phys. Rev. Lett., 2013, 110(16): 168106
CrossRef ADS Google scholar
[413]
J. Knebel , P. M. Geiger , E. Frey . Topological phase transition in coupled Rock−Paper−Scissors cycles. Phys. Rev. Lett., 2020, 125(25): 258301
CrossRef ADS Google scholar
[414]
T. Yoshida , T. Mizoguchi , Y. Hatsugai . Chiral edge modes in evolutionary game theory: A kagome network of Rock−Paper−Scissors cycles. Phys. Rev. E, 2021, 104(2): 025003
CrossRef ADS Google scholar
[415]
M. Umer , J. Gong . Topologically protected dynamics in three-dimensional nonlinear antisymmetric Lotka−Volterra systems. Phys. Rev. B, 2022, 106(24): L241403
CrossRef ADS Google scholar
[416]
C. Scheibner , W. T. M. Irvine , V. Vitelli . Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett., 2020, 125(11): 118001
CrossRef ADS Google scholar
[417]
M. Fruchart , R. Hanai , P. B. Littlewood , V. Vitelli . Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363
CrossRef ADS Google scholar
[418]
T. Yu , B. Zeng . Giant microwave sensitivity of a magnetic array by long-range chiral interaction driven skin effect. Phys. Rev. B, 2022, 105(18): L180401
CrossRef ADS Google scholar
[419]
B. Zeng , T. Yu . Radiation-free and non-Hermitian topology inertial defect states of on-chip magnons. Phys. Rev. Res., 2023, 5(1): 013003
CrossRef ADS Google scholar
[420]
S. Franca , V. Könye , F. Hassler , J. van den Brink , C. Fulga . Non-Hermitian physics without gain or loss: The skin effect of reflected waves. Phys. Rev. Lett., 2022, 129(8): 086601
CrossRef ADS Google scholar
[421]
X.ZhangB.ZhangW.ZhaoC.H. Lee, Observation of non-local impedance response in a passive electrical circuit, arXiv: 2211.09152 (2022)
[422]
H. Geng , J. Y. Wei , M. H. Zou , L. Sheng , W. Chen , D. Y. Xing . Nonreciprocal charge and spin transport induced by non-Hermitian skin effect in mesoscopic heterojunctions. Phys. Rev. B, 2023, 107(3): 035306
CrossRef ADS Google scholar
[423]
H. Ghaemi-Dizicheh , H. Schomerus . Compatibility of transport effects in non-Hermitian nonreciprocal systems. Phys. Rev. A, 2021, 104(2): 023515
CrossRef ADS Google scholar
[424]
H. Schomerus . Fundamental constraints on the observability of non-Hermitian effects in passive systems. Phys. Rev. A, 2022, 106(6): 063509
CrossRef ADS Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

C. H. Lee acknowledges support from Singapore NRF’s QEP2.0 grant (NRF2021-QEP2-02-P09) and MOE Tier-1 grant (WBS: A-8000022-00-00). L. Li acknowledges support from National Natural Science Foundation of China (Grant No. 12104519) and the Guangdong Project (Grant No. 2021QN02X073).

RIGHTS & PERMISSIONS

2023 The Authors
AI Summary AI Mindmap
PDF(12753 KB)

Accesses

Citations

Detail

Sections
Recommended

/