Development in the application of laser-induced breakdown spectroscopy in recent years: A review
Lian-Bo Guo (郭连波), Deng Zhang (张登), Lan-Xiang Sun (孙兰香), Shun-Chun Yao (姚顺春), Lei Zhang (张雷), Zhen-Zhen Wang (王珍珍), Qian-Qian Wang (王茜蒨), Hong-Bin Ding (丁洪斌), Yuan Lu (卢渊), Zong-Yu Hou (侯宗余), Zhe Wang (王哲)
Development in the application of laser-induced breakdown spectroscopy in recent years: A review
Laser-induced breakdown spectroscopy (LIBS) has been widely studied due to its unique advantages such as remote sensing, real-time multi-elemental detection and none-to-little damage. With the efforts of researchers around the world, LIBS has been developed by leaps and bounds. Moreover, in recent years, more and more Chinese LIBS researchers have put tremendous energy in promoting LIBS applications. It is worth mentioning that the application of LIBS in a specific field has its special application background and technical difficulties, therefore it may develop in different stages. A review summarizing the current development status of LIBS in various fields would be helpful for the development of LIBS technology as well as its applications especially for Chinese LIBS community since most of the researchers in this field work in application. In the present work, we summarized the research status and latest progress of main research groups in coal, metallurgy, and water, etc. Based on the current research status, the challenges and opportunities of LIBS were evaluated, and suggestions were made to further promote LIBS applications.
laser-induced breakdown spectroscopy / application
[1] |
Y. M. Guo, L. B. Guo, J. M. Li, H. D. Liu, Z. H. Zhu, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data, Front. Phys. 11(5), 114212 (2016)
CrossRef
ADS
Google scholar
|
[2] |
J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. At. Spectrom. 19(9), 1061 (2004)
CrossRef
ADS
Google scholar
|
[3] |
B. Busser, S. Moncayo, J. L. Coll, L. Sancey, and V. Motto-Ros, Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications, Coord. Chem. Rev. 358, 70 (2018)
CrossRef
ADS
Google scholar
|
[4] |
M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review, Trends Food Sci. Technol. 65, 80 (2017)
CrossRef
ADS
Google scholar
|
[5] |
J. Laserna, J. M. Vadillo and P. Purohit, Laser-induced breakdown spectroscopy (LIBS): Fast, effective, and agile leading edge analytical technology, Appl. Spectrosc. 72(Suppl. 1), 35 (2018)
CrossRef
ADS
Google scholar
|
[6] |
G. G. Arantes de Carvalho, M. B. Bueno Guerra, A. Adame, C. S. Nomura, P. V. Oliveira, H. W. Pereira de Carvalho, D. Santos, L. C. Nunes, and F. J. Krug, Recent advances in LIBS and XRF for the analysis of plants, J. Anal. At. Spectrom. 33(6), 919 (2018)
CrossRef
ADS
Google scholar
|
[7] |
M. Scimeca, S. Bischetti, H. K. Lamsira, R. Bonfiglio, and E. Bonanno, Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis, Eur. J. Histochem. 62(1), 2841 (2018)
CrossRef
ADS
Google scholar
|
[8] |
C. Fabre, S. Maurice, A. Cousin, R. C. Wiens, O. Forni, V. Sautter, and D. Guillaume, Onboard calibration igneous targets for the Mars Science Laboratory Curiosity Rover and the Chemistry Camera laser induced breakdown spectroscopy instrument, Spectrochim. Acta B At. Spectrosc. 66(3–4), 280 (2011)
CrossRef
ADS
Google scholar
|
[9] |
L. Peret, O. Gasnault, R. Dingler, Y. Langevin, S. Bender, D. Blaney, S. Clegg, C. Clewans, D. Delapp, C. M. Donny, S. Johnstone, C. Little, E. Lorigny, R. McInroy, S. Maurice, N. Mittal, B. Pavri, R. Perez, R. C. Wiens and C. Yana, Restoration of the Autofocus capability of the ChemCam instrument onboard the Curiosity rover (2016)
CrossRef
ADS
Google scholar
|
[10] |
S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, Classification of red wine based on its protected designation of origin (PDO) using Laserinduced Breakdown Spectroscopy (LIBS), Talanta 158, 185 (2016)
CrossRef
ADS
Google scholar
|
[11] |
Y. G. Mbesse Kongbonga, H. Ghalila, M. B. Onana, and Z. Ben Lakhdar, Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS), Food Chem. 147, 327 (2014)
CrossRef
ADS
Google scholar
|
[12] |
E. C. Ferreira, E. J. Ferreira, P. R. Villas-Boas, G. S. Senesi, C. M. Carvalho, R. A. Romano, L. Martin-Neto, and D. M. B. P. Milori, Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 99, 76 (2014)
CrossRef
ADS
Google scholar
|
[13] |
C. K. Kim, J. H. In, S. H. Lee, and S. Jeong, Influence of plasma conditions on the intensity ratio calibration curve during laser induced breakdown spectroscopy analysis, Opt. Lett. 39(13), 3818 (2014)
CrossRef
ADS
Google scholar
|
[14] |
Y. W. Chu, S. S. Tang, S. X. Ma, Y. Y. Ma, Z. Q. Hao, Y. M. Guo, L. B. Guo, Y. F. Lu, and X. Y. Zeng, Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laserinduced breakdown spectroscopy, Opt. Express 26(8), 10119 (2018)
CrossRef
ADS
Google scholar
|
[15] |
Y. Chu, T. Chen, F. Chen, Y. Tang, S. Tang, H. Jin, L. Guo, Y. Lu, and X. Zeng, Discrimination of nasopharyngeal carcinoma serum using laser-induced breakdown spectroscopy combined with an extreme learning machine and random forest method, J. Anal. At. Spectrom. 33(12), 2083 (2018)
CrossRef
ADS
Google scholar
|
[16] |
R. Gaudiuso, M. Dell’Aglio, O. De Pascale, G. S. Senesi, and A. De Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)
CrossRef
ADS
Google scholar
|
[17] |
J. Peng, F. Liu, F. Zhou, K. Song, C. Zhang, L. Ye, and Y. He, Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review, TrAC Trends in Analytical Chemistry 85, 260 (2016)
CrossRef
ADS
Google scholar
|
[18] |
Y. T. Fu, W. L. Gu, Z. Y. Hou, S. A. Muhammed, T. Q. Li, Y. Wang, and Z. Wang, Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
CrossRef
ADS
Google scholar
|
[19] |
S. Sheta, M. S. Afgan, Z. Hou, S. C. Yao, L. Zhang, Z. Li, and Z. Wang, Coal analysis by laser-induced breakdown spectroscopy: A tutorial review, J. Anal. At. Spectrom. 34(6), 1047 (2019)
CrossRef
ADS
Google scholar
|
[20] |
T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant, Spectrochim. Acta B At. Spectrosc. 65(8), 734 (2010)
CrossRef
ADS
Google scholar
|
[21] |
T. Ctvrtnickova, M. P. Mateo, A. Yañnez, and G. Nicolas, Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends, Appl. Surf. Sci. 257(12), 5447 (2011)
CrossRef
ADS
Google scholar
|
[22] |
M. P. Mateo, G. Nicolas, and A. Yanez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations, Appl. Surf. Sci. 254(4), 868 (2007)
CrossRef
ADS
Google scholar
|
[23] |
D. Redoglio, E. Golinelli, S. Musazzi, U. Perini, and F. Barberis, A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal, Spectrochim. Acta B At. Spectrosc. 116, 46 (2016)
CrossRef
ADS
Google scholar
|
[24] |
L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)
CrossRef
ADS
Google scholar
|
[25] |
T. Yuan, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, Coal property analysis using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
CrossRef
ADS
Google scholar
|
[26] |
T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
CrossRef
ADS
Google scholar
|
[27] |
Z. Hou, Z. Wang, T. Yuan, J. Liu, Z. Li, and W. Ni, A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(3), 722 (2016)
CrossRef
ADS
Google scholar
|
[28] |
J. Feng, Z. Wang, L. Li, Z. Li, and W. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laserinduced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
CrossRef
ADS
Google scholar
|
[29] |
X. Li, H. Yin, Z. Wang, Y. Fu, Z. Li, and W. Ni, Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 111, 102 (2015)
CrossRef
ADS
Google scholar
|
[30] |
X. Li, Z. Wang, Y. Fu, Z. Li, J. Liu, and W. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)
CrossRef
ADS
Google scholar
|
[31] |
X. Li, X. Mao, Z. Wang, and R. E. Russo, Quantitative analysis of carbon content in bituminous coal by laserinduced breakdown spectroscopy using UV laser radiation, Plasma Sci. Technol. 17(11), 928 (2015)
CrossRef
ADS
Google scholar
|
[32] |
Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(23), A1011 (2012)
CrossRef
ADS
Google scholar
|
[33] |
Z. Hou, M. S. Afgan, S. Sheta, J. Liu, and Z. Wang, Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)
CrossRef
ADS
Google scholar
|
[34] |
Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc. 68, 58 (2012)
CrossRef
ADS
Google scholar
|
[35] |
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
CrossRef
ADS
Google scholar
|
[36] |
H. Qin, Z. Lu, S. Yao, Z. Li, and J. Lu, Combining laserinduced breakdown spectroscopy and Fourier-transform infrared spectroscopy for the analysis of coal properties, J. Anal. At. Spectrom. 34(2), 347 (2019)
CrossRef
ADS
Google scholar
|
[37] |
S. Yao, J. Zhao, J. Xu, Z. Lu, and J. Lu, Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal, J. Anal. At. Spectrom. 32(4), 766 (2017)
CrossRef
ADS
Google scholar
|
[38] |
Z. Lu, J. Mo, S. Yao, J. Zhao, and J. Lu, Rapid determination of the gross calorific value of coal using laser-induced breakdown spectroscopy coupled with artificial neural networks and genetic algorithm, Energy Fuels 31(4), 3849 (2017)
CrossRef
ADS
Google scholar
|
[39] |
S. Yao, J. Mo, J. Zhao, Y. Li, X. Zhang, W. Lu, and Z. Lu, Development of a rapid coal analyzer using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 72(8), 1225 (2018)
CrossRef
ADS
Google scholar
|
[40] |
M. Dong, L. Wei, J. Lu, W. Li, S. Lu, S. Li, C. Liu, and J. H. Yoo, A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS, J. Anal. At. Spectrom. 34(3), 480 (2019)
CrossRef
ADS
Google scholar
|
[41] |
S. Li, M. Dong, F. Luo, W. Li, L. Wei, and J. Lu, Experimental investigation of combustion characteristics and NOx formation of coal particles using laser induced breakdown spectroscopy, Journal of the Energy Institute 93(1), 52 (2020)
CrossRef
ADS
Google scholar
|
[42] |
W. Li, M. Dong, S. Lu, S. Li, L. Wei, J. Huang, and J. Lu, Improved measurement of the calorific value of pulverized coal particle flow by laser-induced breakdown spectroscopy (LIBS), Anal. Methods 11(35), 4471 (2019)
CrossRef
ADS
Google scholar
|
[43] |
W. Li, J. Lu, M. Dong, S. Lu, J. Yu, S. Li, J. Huang, and J. Liu, Quantitative analysis of calorific value of coal based on spectral preprocessing by laser-induced breakdown spectroscopy (LIBS), Energy Fuels 32(1), 24 (2017)
CrossRef
ADS
Google scholar
|
[44] |
L. Zhang, L. Dong, H. Dou, W. Yin, and S. Jia, Laserinduced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)
CrossRef
ADS
Google scholar
|
[45] |
W. Yin, L. Zhang, L. Dong, W. Ma, and S. Jia, Design of a laser-induced breakdown spectroscopy system for online quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)
CrossRef
ADS
Google scholar
|
[46] |
L. Zhang, W. Ma, L. Dong, X. Yan, Z. Hu, Z. Li, Y. Zhang, L. Wang, W. Yin, and S. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)
CrossRef
ADS
Google scholar
|
[47] |
L. Zhang, Y. Gong, Y. Li, X. Wang, J. Fan, L. Dong, W. Ma, W. Yin, and S. Jia, Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 167 (2015)
CrossRef
ADS
Google scholar
|
[48] |
Y. Z. Liu, Z. H. Wang, Y. Lv, K. D. Wan, Y. He, J. Xia, and K. F. Cen, Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements, Fuel 212, 498 (2018)
CrossRef
ADS
Google scholar
|
[49] |
Y. Liu, Z. Wang, K. Wan, Y. Lv, J. Xia, Y. He, and K. Cen, In situ measurements of the release characteristics and catalytic effects of different chemical forms of sodium during combustion of Zhundong coal, Energy Fuels 32(6), 6595 (2018)
CrossRef
ADS
Google scholar
|
[50] |
T. Zhang, C. Yan, J. Qi, H. Tang, and H. Li, Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods, J. Anal. At. Spectrom. 32(10), 1960 (2017)
CrossRef
ADS
Google scholar
|
[51] |
C. Yan, J. Qi, J. Ma, H. Tang, T. Zhang, and H. Li, Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernelbased extreme learning machine, Chemom. Intell. Lab. Syst. 167, 226 (2017)
CrossRef
ADS
Google scholar
|
[52] |
C. Yan, J. Qi, J. Liang, T. Zhang, and H. Li, Determination of coal properties using laser-induced breakdown spectroscopy combined with kernel extreme learning machine and variable selection, J. Anal. At. Spectrom. 33(12), 2089 (2018)
CrossRef
ADS
Google scholar
|
[53] |
C. Yan, T. Zhang, Y. Sun, H. Tang, and H. Li, A hybrid variable selection method based on wavelet transform and mean impact value for calorific value determination of coal using laser-induced breakdown spectroscopy and kernel extreme learning machine, Spectrochim. Acta B At. Spectrosc. 154, 75 (2019)
CrossRef
ADS
Google scholar
|
[54] |
Z. Z. Wang, Y. Deguchi, M. Kuwahara, T. Taira, X. B. Zhang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 87, 130 (2013)
CrossRef
ADS
Google scholar
|
[55] |
Z. Z. Wang, Y. Deguchi, S. Katsumori, A. Ikutomo, J. J. Yan, J. P. Liu, K. Tainaka, K. Tanno, H. Watanabe, and R. Kurose, Improved measurement characteristics of elemental compositions using laser-induced breakdown spectroscopy, Spectroscopy (Santa Monica) 31(1), 22 (2016)
|
[56] |
Z. Wang, R. Liu, Y. Deguchi, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. Yan, and J. Liu, Detection improvement of unburned carbon content in fly ash flow using libs with a two-stage cyclone measurement system, Energy Fuels 33(8), 7805 (2019)
CrossRef
ADS
Google scholar
|
[57] |
R. W. Liu, Y. Deguchi, W. G. Nan, R. M. Hu, Z. Z. Wang, Y. Fujita, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. P. Liu, and J. J. Yan, Unburned carbon measurement in fly ash using laser-induced breakdown spectroscopy with short nanosecond pulse width laser, Adv. Powder Technol. 30(6), 1210 (2019)
CrossRef
ADS
Google scholar
|
[58] |
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef
ADS
Google scholar
|
[59] |
J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier, 2007
|
[60] |
W. W. Wu, The concentration of silver from oxidative silver-manganese ore with united technologies of beneficiation and metallurgy,Nonferrous Metals (Mineral Processing)
|
[61] |
F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
CrossRef
ADS
Google scholar
|
[62] |
V. Lakshmanan, A. Ojaghi, and B. Gorain, Beneficiation of Gold and Silver Ores, in: Innovations and Breakthroughs in the Gold and Silver Industries, Springer, 2019
CrossRef
ADS
Google scholar
|
[63] |
M. Gaft, Laser-Induced Breakdown Spectroscopy (LIBS) for On-line Control in Mining Industry, in: Applied Industrial Optics: Spectroscopy, Imaging and Metrology, Optical Society of America, 2011
CrossRef
ADS
Google scholar
|
[64] |
D. H. Diaz Ordonez, Laser-induced breakdown spectroscopy (LIBS) for analysis of precious metals in minerals, 2017
|
[65] |
S. W. Hudson, J. Craparo, R. De Saro, and D. Apelian, Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing,Metall. Mater. Trans. B 48(5), 2731 (2017)
CrossRef
ADS
Google scholar
|
[66] |
L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B At. Spectrosc. 112, 40 (2015)
CrossRef
ADS
Google scholar
|
[67] |
Q. Zeng, C. Pan, C. Li, T. Fei, X. Ding, X. Du, and Q. Wang, Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 142, 68 (2018)
CrossRef
ADS
Google scholar
|
[68] |
Z. Qiang, P. Congyuan, F. Teng, D. Xiaokang, W. Shengbo, and W. Qiuping, Composition and temperature monitoring of molten metal by a combined LIBS-IR thermometry system, J. Appl. Spectrosc. 85(5), 817 (2018)
CrossRef
ADS
Google scholar
|
[69] |
L. X. Sun, H. B. Yu, Z. B. Cong, H. Lu, B. Cao, P. Zeng, W. Dong, and Y. Li, Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochim. Acta B At. Spectrosc. 142, 29 (2018)
CrossRef
ADS
Google scholar
|
[70] |
L. M. Cabalin, T. Delgado, J. Ruiz, D. Mier, and J. J. Laserna, Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations, At-line monitoring of temporal evolution versus predicted mathematical model, Spectrochim. Acta B At. Spectrosc. 146, 93 (2018)
CrossRef
ADS
Google scholar
|
[71] |
J. Ruiz, T. Delgado, L. M. Cabal'in, and J. J. Laserna, At-line monitoring of continuous casting sequences of steel using discriminant function analysis and dual-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 32(6), 1119 (2017)
CrossRef
ADS
Google scholar
|
[72] |
V. Sturm, C. Meinhardt, R. Fleige, C. Fricke-Begemann, and J. Eisbach, Fast identification of steel bloom composition at a rolling mill by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 136, 66 (2017)
CrossRef
ADS
Google scholar
|
[73] |
S. H. Gudmundsson, J. Matthiasson, B. M. Bjornsson, H. Gudmundsson, and K. Leosson, Quantitative in-situ analysis of impurity elements in primary aluminum processing using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 158, 105646 (2019)
CrossRef
ADS
Google scholar
|
[74] |
J. Herbert, J. Fernandez, R. D. Saro, and J. Craparo, The Industrial Application of Molten Metal Analysis (LIBS), 2019
CrossRef
ADS
Google scholar
|
[75] |
O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, Atomic spectrometry update –a review of advances in environmental analysis, J. Anal. At. Spectrom. 32(1), 11 (2017)
|
[76] |
X. Yu, Y. Li, X. Gu, J. Bao, H. Yang, and L. Sun, Laserinduced breakdown spectroscopy application in environmental monitoring of water quality: A review, Environ. Monit. Assess. 186(12), 8969 (2014)
CrossRef
ADS
Google scholar
|
[77] |
H. Tian, L. Jiao, and D. Dong, Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment, Sci. Rep. 9(1), 10443 (2019)
CrossRef
ADS
Google scholar
|
[78] |
J. Kang, R. Li, Y. Wang, Y. Chen, and Y. Yang, Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber, J. Anal. At. Spectrom. 32(11), 2292 (2017)
CrossRef
ADS
Google scholar
|
[79] |
N. K. Rai, A. K. Rai, A. Kumar, and S. N. Thakur, Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples, Appl. Opt. 47(31), G105 (2008)
CrossRef
ADS
Google scholar
|
[80] |
J. S. Huang, C. B. Ke, L. S. Huang, and K. C. Lin, The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets, Spectrochim. Acta B At. Spectrosc. 57(1), 35 (2002)
CrossRef
ADS
Google scholar
|
[81] |
F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 403(9), 2601 (2012)
CrossRef
ADS
Google scholar
|
[82] |
Z. Shilei, Z. Ronger, L. Yuan, C. Kai, and X. Junshan, Ultrasonic nebulizer assisted LIBS: A promising metal elements detection method for aqueous sample analysis, Plasma Sci. Technol. 17(11), 979 (2015)
CrossRef
ADS
Google scholar
|
[83] |
D. Zhang, Z. Hu, Y. Su, B. Hai, X. Zhu, J. Zhu, and X. Ma, Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS), Opt. Express 26(14), 18794 (2018)
CrossRef
ADS
Google scholar
|
[84] |
X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, Simultaneous and sensitive analysis of Ag (I), Mn (II), and Cr (III) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent, J. Anal. At. Spectrom. 29(6), 1098 (2014)
CrossRef
ADS
Google scholar
|
[85] |
X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy, Anal. Chem. 87(11), 5577 (2015)
CrossRef
ADS
Google scholar
|
[86] |
X. Yang, Z. Hao, M. shen, R. Yi, J. Li, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Talanta 163, 127 (2017)
CrossRef
ADS
Google scholar
|
[87] |
X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laserinduced breakdown spectroscopy, Opt. Express 24(12), 13410 (2016)
CrossRef
ADS
Google scholar
|
[88] |
X. Yang, R. Yi, X. Li, Z. Cui, Y. Lu, Z. Hao, J. Huang, Z. Zhou, G. Yao, and W. Huang, Spreading a water droplet through filter paper on the metal substrate for surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 26(23), 30456 (2018)
CrossRef
ADS
Google scholar
|
[89] |
S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 27(10), 15091 (2019)
CrossRef
ADS
Google scholar
|
[90] |
S. Ma, Y. Tang, Y. Ma, D. Dong, L. Guo, H. Zhu, J. Liu, and Y. Lu, The pH effect on the detection of heavy metals in wastewater by laser-induced breakdown spectroscopy coupled with a phase transformation method, J. Anal. At. Spectrom. 35(1), 198 (2020)
CrossRef
ADS
Google scholar
|
[91] |
S. Ma, Y. Tang, S. Zhang, Y. Ma, Z. Sheng, Z. Wang, L. Guo, J. Yao, and Y. Lu, Chlorine and sulfur determination in water using indirect laser-induced breakdown spectroscopy, Talanta 214, 120849 (2020)
CrossRef
ADS
Google scholar
|
[92] |
F. Ruiz, L. Ripoll, M. Hidalgo, and A. Canals, Dispersive micro solid-phase extraction (DμSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS), Talanta 191, 162 (2019)
CrossRef
ADS
Google scholar
|
[93] |
A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential, Anal. Chem. 87(3), 1655 (2015)
CrossRef
ADS
Google scholar
|
[94] |
L. Ripoll and M. Hidalgo, Electrospray deposition followed by laser-induced breakdown spectroscopy (ESDLIBS): A new method for trace elemental analysis of aqueous samples, J. Anal. At. Spectrom. 34(10), 2016 (2019)
CrossRef
ADS
Google scholar
|
[95] |
J. Cortez and C. Pasquini, Ring-oven based preconcentration technique for microanalysis: Simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy, Anal. Chem. 85(3), 1547 (2013)
CrossRef
ADS
Google scholar
|
[96] |
D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 70 (2015)
CrossRef
ADS
Google scholar
|
[97] |
N. Aras, and Ş. Yalçn, Investigating silicon wafer based substrates for dried-droplet analysis by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 152, 84 (2019)
CrossRef
ADS
Google scholar
|
[98] |
A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level, Anal. Chem. 88(10), 5251 (2016)
CrossRef
ADS
Google scholar
|
[99] |
V. N. Rai, F. Y. Yueh, and J. P. Singh, Study of laserinduced breakdown emission from liquid under doublepulse excitation, Appl. Opt. 42(12), 2094 (2003)
CrossRef
ADS
Google scholar
|
[100] |
K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 27(2), 276 (2012)
CrossRef
ADS
Google scholar
|
[101] |
Y. Wang, J. Kang, Y. Chen, and R. Li, Sensitive analysis of copper in water by LIBS–LIF assisted by simple sample pretreatment, J. Appl. Spectrosc. 86(2), 353 (2019)
CrossRef
ADS
Google scholar
|
[102] |
M. Wall, Z. Sun, and Z. T. Alwahabi, Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy, Opt. Express 24(2), 1507 (2016)
CrossRef
ADS
Google scholar
|
[103] |
R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)
CrossRef
ADS
Google scholar
|
[104] |
R. Kumar, A. Devanathan, N. Mishra and A. Rai, Quantification of heavy metal contamination in soil and plants near a leather tanning industrial area using Libs and TXRF, J. Appl. Spectrosc., 86(5), 840 (2019)
CrossRef
ADS
Google scholar
|
[105] |
R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, Determination of trace available heavy metals in soil using laser-induced breakdown spectroscopy assisted with phase transformation method, Anal. Chem. 90(11), 7080 (2018)
CrossRef
ADS
Google scholar
|
[106] |
T. Wang, M. He, T. Shen, F. Liu, Y. He, X. Liu, and Z. Qiu, Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China, Spectrochim. Acta B At. Spectrosc. 149, 300 (2018)
CrossRef
ADS
Google scholar
|
[107] |
S. Zhao, C. Song, X. Gao, and J. Lin, Quantitative analysis of Pb in soil by femtosecond-nanosecond double-pulse laser-induced breakdown spectroscopy, Results in Physics 15, 102736 (2019)
CrossRef
ADS
Google scholar
|
[108] |
Y. Ding, G. Xia, H. Ji, and X. Xiong, Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS), Anal. Methods 11(29), 3657 (2019)
CrossRef
ADS
Google scholar
|
[109] |
D. Meng, N. Zhao, M. Ma, L. Fang, Y. Gu, Y. Jia, J. Liu, and W. Liu, Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil, Appl. Opt. 56(18), 5204 (2017)
CrossRef
ADS
Google scholar
|
[110] |
M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, and M. Baig, Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 148, 143 (2018)
CrossRef
ADS
Google scholar
|
[111] |
M. Akhtar, A. Jabbar, S. Mahmood, Z. A. Umar, R. Ahmed, and M. Aslam Baig, Analysis of soil by magnetic field assisted calibration-free laser induced breakdown spectroscopy (CF-LIBS) and laser ablation–timeof- flight mass spectrometry (LA-TOF-MS), Anal. Lett. 52(14), 2312 (2019)
CrossRef
ADS
Google scholar
|
[112] |
M. Akhtar, A. Jabbar, N. Ahmed, S. Mahmood, Z. Umar, R. Ahmed, and M. Baig, Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field, Appl. Phys. B 125(6), 110 (2019)
CrossRef
ADS
Google scholar
|
[113] |
G. Kim, J. Kwak, J. Choi, and K. Park, Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 60(3), 718 (2012)
CrossRef
ADS
Google scholar
|
[114] |
R. A. Multari, D. A. Cremers, T. Scott, and P. Kendrick, Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 61(10), 2348 (2013)
CrossRef
ADS
Google scholar
|
[115] |
D. Yang and Y. Ying, Applications of Raman spectroscopy in agricultural products and food analysis: A review, Appl. Spectrosc. Rev. 46(7), 539 (2011)
CrossRef
ADS
Google scholar
|
[116] |
L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review, Appl. Spectrosc. Rev. 48(2), 142 (2013)
CrossRef
ADS
Google scholar
|
[117] |
G. Nicolodelli, G. S. Senesi, A. C. Ranulfi, B. S. Marangoni, A. Watanabe, V. de Melo Benites, P. P. A. de Oliveira, P. Villas-Boas, and D. M. B. P. Milori, Doublepulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples, Microchem. J. 133, 272 (2017)
CrossRef
ADS
Google scholar
|
[118] |
S. Pandhija and A. K. Rai, Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS, Environ. Monit. Assess. 148(1–4), 437 (2009)
CrossRef
ADS
Google scholar
|
[119] |
C. Wang, L. Huang, M. Liu, P. Yang, T. Chen, H. Hu, W. Li, and M. Yao, Influence of water content on the detection of sensitivity of Pb in potatoes by LIBS, Acta Agriculturae Universitatis Jiangxiensis 38(2), 393 (2016)
|
[120] |
C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Enhancement of Pb intensity in potatoes by microwave assisted LIBS, Chinese Journal of Analysis Laboratory 35(5), 506 (2016)
|
[121] |
C. Wang, L. Huang, S. Hu, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Feasibility of predicting the distribution of Cu in Navel orange pulp by LIBS spectra of peel,Chinese Journal of Analysis Laboratory 35(3), 253 (2016)
|
[122] |
W. B. Li, L. T. Yao, M. H. Liu, L. Huang, M. Y. Yao, T. B. Chen, X. W. He, P. Yang, H. Q. Hu, and J. H. Nie, Influence of spectral pre-processing on PLS quantitative model of detecting cu in navel orange by LIBS, Spectroscopy and Spectral Analysis 35(5), 1392 (2015)
|
[123] |
W. B. Li, M. Y. Yao, L. Huang, T. B. Chen, J. H. Zheng, S. Q. Fan, M. H. Liu, X. W. He, J. L. Lin, and J. Y. Ouyang, Effect of characteristic variable extraction on accuracy of Cu in Navel orange peel by LIBS, Spectroscopy and Spectral Analysis 35(7), 2021 (2015)
|
[124] |
C. H. Wang, L. Huang, T. B. Chen, M. H. Liu, H. Yang, H. Q. Hu, and M. Y. Yao, Feasibility of analyzing Cr in rice husk and coarse rice with LIBS, Spectroscopy and Spectral Analysis 37(11), 3590 (2017)
|
[125] |
H. Yang, L. Huang, M. Liu, T. Chen, C. Wang, and M. Yao, Comparison of precision and accuracy in analyzing Cd in rice by LIBS combined with multivariate regression, Chinese Journal of Analysis Laboratory 36(4), 399 (2017)
|
[126] |
C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Determination of heavy metal chromium in rice husk by LIBS coupled with SiPLS, Laser & Optoelectronics Progress 53(11), 113001 (2016)
|
[127] |
C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Comparison of accuracy in detecting Cr in pork by LIBS coupled with different characteristic lines, Chinese Journal of Analysis Laboratory 36(1), 32 (2017)
|
[128] |
H. Yang, C. H. Wang, M. H. Liu, T. B. Chen, L. Huang, and M. Y. Yao, Improvement of LIBS accuracy in detecting Pb in pork by physical pretreatment of samples, Spectroscopy and Spectral Analysis 37(8), 2580 (2017)
|
[129] |
G. F. Rao, L. Huang, M. H. Liu, T. B. Chen, J. Y. Chen, Z. Y. Luo, F. H. Xu, X. H. Xu, and M. Y. Yao, Identification of Huanglongbing-infected nave oranges based on laser-induced breakdown spectroscopy combined with different chemometric methods, Appl. Opt. 57(29), 8738 (2018)
CrossRef
ADS
Google scholar
|
[130] |
J. Peng, Y. He, Z. Zhao, J. Jiang, F. Zhou, F. Liu and T. Shen, Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods, Environ. Pollut. 252(Pt B), 1125 (2019)
CrossRef
ADS
Google scholar
|
[131] |
J. Peng, Y. He, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, High-accuracy and fast determination of chromium content in rice leaves based on collinear dual-pulse laserinduced breakdown spectroscopy and chemometric methods, Food Chem. 295, 327 (2019)
CrossRef
ADS
Google scholar
|
[132] |
X. Liu, X. Feng, F. Liu, J. Peng, and Y. He, Rapid identification of genetically modified maize using laser-induced breakdown spectroscopy, Food Bioprocess Technol. 12(2), 347 (2018)
CrossRef
ADS
Google scholar
|
[133] |
T. Shen, W. Kong, F. Liu, Z. Chen, J. Yao, W. Wang, J. Peng, H. Chen, and Y. He, Rapid determination of cadmium contamination in lettuce using laser-induced breakdown spectroscopy, Molecules 23(11), 2930 (2018)
CrossRef
ADS
Google scholar
|
[134] |
F. Liu, T. Shen, W. Kong, J. Peng, C. Zhang, K. Song, W. Wang, C. Zhang, and Y. He, Quantitative analysis of cadmium in tobacco roots using laser-induced breakdown spectroscopy with variable index and chemometrics, Front. Plant Sci. 9, 1316 (2018)
CrossRef
ADS
Google scholar
|
[135] |
J. Peng, W. Xie, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, Fast quantification of honey adulteration with laserinduced breakdown spectroscopy and chemometric methods, Foods 9(3), 341 (2020)
CrossRef
ADS
Google scholar
|
[136] |
Z. Zhao, L. Chen, F. Liu, F. Zhou, J. Peng, and M. Sun, Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis, Sensors (Basel) 20(7), 1878 (2020)
CrossRef
ADS
Google scholar
|
[137] |
F. Liu, F. Liu, T. Shen, J. Wang, Y. He, C. Zhang, W. Zhou, T. Shen, J. Wang, Y. He, C. Zhang, and W. Zhou, Detection of sclerotinia stem rot on oilseed rape (Brassica napus L.) based on laser-induced breakdown spectroscopy, Trans. ASABE 62(1), 123 (2019)
CrossRef
ADS
Google scholar
|
[138] |
J. Peng, Y. He, L. Ye, T. Shen, F. Liu, W. Kong, X. Liu, and Y. Zhao, Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: A case study for chromium content detection in rice leaves, Anal. Chem. 89(14), 7593 (2017)
CrossRef
ADS
Google scholar
|
[139] |
P. Yang, Y. Zhu, X. Yang, J. Li, S. Tang, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, Evaluation of sample preparation methods for rice geographic origin classification using laser-induced breakdown spectroscopy, J. Cereal Sci. 80, 111 (2018)
CrossRef
ADS
Google scholar
|
[140] |
P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy, Food Chem. 272, 323 (2019)
CrossRef
ADS
Google scholar
|
[141] |
Y. Zhao, Q. Wang, X. Cui, G. Teng, K. Wei, and H. Liu, Discrimination of hazardous bacteria with combination laser-induced breakdown spectroscopy and statistical methods, Appl. Opt. 59(5), 1329 (2020)
CrossRef
ADS
Google scholar
|
[142] |
Y. Du, Q. Wang, Y. Zhao, X. Cui, and Z. Peng, Rapid qualitative evaluation of velvet antler using laserinduced breakdown spectroscopy (LIBS), Laser Phys. 29(9), 095602 (2019)
CrossRef
ADS
Google scholar
|
[143] |
J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds, Food Chem. 221, 1778 (2017)
CrossRef
ADS
Google scholar
|
[144] |
B. Sezer, S. Durna, G. Bilge, A. Berkkan, A. Yetisemiyen, and I. H. Boyaci, Identification of milk fraud using laserinduced breakdown spectroscopy (LIBS), Int. Dairy J. 81, 1 (2018)
CrossRef
ADS
Google scholar
|
[145] |
T. V. Silva, S. Z. Hubinger, J. A. Gomes Neto, D. M. B. P. Milori, E. J. Ferreira, and E. C. Ferreira, Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee, Spectrochim. Acta B At. Spectrosc. 135, 29 (2017)
CrossRef
ADS
Google scholar
|
[146] |
B. B. S. Jaswal and V. K. Singh, Analytical assessments of gallstones and urinary stones: A comprehensive review of the development from laser to LIBS, Appl. Spectrosc. Rev. 50(6), 473 (2015)
CrossRef
ADS
Google scholar
|
[147] |
G. L. Coté, V. K. Unnikrishnan, R. Nayak, S. Bhat, S. Mathew, V. B. Kartha and C. Santhosh, Biomedical applications of laser-induced breakdown spectroscopy (LIBS), Proc. SPIE 9332, Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, 933211 (2015)
CrossRef
ADS
Google scholar
|
[148] |
R. Grassi, E. Grifoni, S. Gufoni, S. Legnaioli, G. Lorenzetti, N. Macro, L. Menichetti, S. Pagnotta, F. Poggialini, C. Schiavo, and V. Palleschi, Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique, Spectrochim. Acta B At. Spectrosc. 127, 1 (2017)
CrossRef
ADS
Google scholar
|
[149] |
T. R. Loree, The detection of elements in biomedical fluids by laser-induced breakdown spectroscopy, doi: 10.2351/1.5057553 (1983)
CrossRef
ADS
Google scholar
|
[150] |
V. Singh, V. Kumar, J. Sharma, Y. Khajuria, and K. Kumar, Importance of laser induced breakdown spectroscopy for biomedical applications: A comprehensive review, Materials Focus 3(3), 169 (2014)
CrossRef
ADS
Google scholar
|
[151] |
S. J. Rehse, H. Salimnia, and A. W. Miziolek, Laserinduced breakdown spectroscopy (LIBS): An overview of recent progress and future potential for biomedical applications, J. Med. Eng. Technol. 36(2), 77 (2012)
CrossRef
ADS
Google scholar
|
[152] |
Y. Markushin, N. Melikechi, A. MarcanoO., S. Rock, E. Henderson, and D. Connolly, LIBS-based multi-element coded assay for ovarian cancer application, in: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications, International Society for Optics and Photonics, 2009, p. 719015
CrossRef
ADS
Google scholar
|
[153] |
Q. Wang, W. Xiangli, G. Teng, X. Cui, and K. Wei, A brief review of laser-induced breakdown spectroscopy for human and animal soft tissues: Pathological diagnosis and physiological detection, Appl. Spectrosc. Rev. 1 (2020)
CrossRef
ADS
Google scholar
|
[154] |
Y. Chu, Z. Zhang, Q. He, F. Chen, Z. Sheng, D. Zhang, H. Jin, F. Jiang, and L. Guo, Half-life determination of inorganic-organic hybrid nanomaterials in mice using laser-induced breakdown spectroscopy, J. Adv. Res. 24, 353 (2020)
CrossRef
ADS
Google scholar
|
[155] |
X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods, Spectrochim. Acta B At. Spectrosc. 139, 63 (2018)
CrossRef
ADS
Google scholar
|
[156] |
X. Chen, X. Li, S. Yang, X. Yu, and A. Liu, Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples, Biomed. Opt. Express 9(3), 1057 (2018)
CrossRef
ADS
Google scholar
|
[157] |
X. Li, X. An, R. Fan, X. Yu, and D. Chen, Classification of soft tissues using laser-induced breakdown spectroscopy, SPIE Proceedings Novel Biophotonics Techniques and Applications IV, 2017, p. 1041303
|
[158] |
X. Li, S. Yang, R. Fan, X. Yu, and D. Chen, Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers, Opt. Laser Technol. 102, 233 (2018)
CrossRef
ADS
Google scholar
|
[159] |
X. Li, S. Yang, X. Chen, G. Yao, A. Liu, and X. Yu, Multi-elemental imaging of breast cancer tissues using laser-induced breakdown spectroscopy. In: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe- EQEC), IEEE, 2019
|
[160] |
G. Teng, Q. Wang, H. Zhang, W. Xiangli, H. Yang, X. Qi, X. Cui, B. S. Idrees, K. Wei, and M. N. Khan, Discrimination of infiltrative glioma boundary based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 165, 105787 (2020)
CrossRef
ADS
Google scholar
|
[161] |
Q. Wang, G. Teng, X. Qiao, Y. Zhao, J. Kong, L. Dong, and X. Cui, Importance evaluation of spectral lines in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria, Biomed. Opt. Express 9(11), 5837 (2018)
CrossRef
ADS
Google scholar
|
[162] |
Y. Moon, J. H. Han, J. H. Choi, S. Shin, Y. C. Kim, and S. Jeong, Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy, J. Biomed. Opt. 24(3), 1 (2018)
CrossRef
ADS
Google scholar
|
[163] |
J. J. Lee, Y. Moon, J. H. Han, and S. Jeong, Analysis of major elements in pigmented melanocytic chicken skin using laser-induced breakdown spectroscopy, J. Biophoton. 10(4), 523 (2017)
CrossRef
ADS
Google scholar
|
[164] |
S. Moncayo, F. Trichard, B. Busser, M. Sabatier-Vincent, F. Pelascini, N. Pinel, I. Templier, J. Charles, L. Sancey, and V. Motto-Ros, Multi-elemental imaging of paraffinembedded human samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 133, 40 (2017)
CrossRef
ADS
Google scholar
|
[165] |
B. Busser, S. Moncayo, F. Trichard, V. Bonneterre, N. Pinel, F. Pelascini, P. Dugourd, J. L. Coll, M. D’Incan, J. Charles, V. Motto-Ros, and L. Sancey, Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy, Mod. Pathol. 31(3), 378 (2018)
CrossRef
ADS
Google scholar
|
[166] |
F. J. Fortes, S. Guirado, A. Metzinger, and J. J. Laserna, A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean, J. Anal. At. Spectrom. 30(5), 1050 (2015)
CrossRef
ADS
Google scholar
|
[167] |
M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, C. M. Gordon, and S. M. Angel, Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure, Spectrochim. Acta B At. Spectrosc. 99, 172 (2014)
CrossRef
ADS
Google scholar
|
[168] |
N. Idris, M. Ramli, R. Hedwig, Z. S. Lie, and K. H. Kurniawan, Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS), AIP Conference Proceedings 1719, 030051 (2016)
CrossRef
ADS
Google scholar
|
[169] |
P. Pease, and V. Tchakerian, Source provenance of carbonate grains in the Wahiba Sand Sea, Oman, using a new LIBS method, Aeolian Res. 15, 203 (2014)
CrossRef
ADS
Google scholar
|
[170] |
J. Song, J. Guo, Y. Tian, Y. Lu, and R. Zheng, Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies, Proceedings Volume 10461, AOPC 2017: Optical Spectroscopy and Imaging78 (2017)
CrossRef
ADS
Google scholar
|
[171] |
Y. Tian, B. Xue, J. Song, Y. Lu, Y. Li, and R. Zheng, Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532- and 1064-nm lasers, Appl. Phys. Express 10(7), 072401 (2017)
CrossRef
ADS
Google scholar
|
[172] |
B. Xue, N. Li, Y. Lu, Y. Li, and R. Zheng, Emission enhancement of underwater collinear dual-pulse laserinduced breakdown spectroscopy with the second pulse defocused, Appl. Phys. Lett. 110(10), 101102 (2017)
CrossRef
ADS
Google scholar
|
[173] |
J. Song, J. Guo, Y. Tian, B. Xue, Y. Lu, and R. Zheng, Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements, Appl. Opt. 57(7), 1640 (2018)
CrossRef
ADS
Google scholar
|
[174] |
J. Guo, A. S. Mahmoud, N. Li, J. Song, and R. Zheng, Study of pressure effects on ocean in-situdetection using laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21(3), 034022 (2019)
CrossRef
ADS
Google scholar
|
[175] |
N. Li, J. Guo, C. Zhang, Y. Zhang, Q. Li, Y. Tian, and R. Zheng, Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy, Appl. Opt. 58(14), 3886 (2019)
CrossRef
ADS
Google scholar
|
[176] |
N. Li, J. Guo, L. Zhu, Y. Lu, Y. Tian, and R. Zheng, Effects of ambient temperature on laser-induced plasma in bulk water, Appl. Spectrosc. 73(11), 1277 (2019)
|
[177] |
B. Xue, Y. Tian, Y. Lu, Y. Li, and R. Zheng, Characteristics of the secondary breakdown of DP-LIBS in bulk water with different axial focusing arrangements and laser energies, Spectrochim. Acta B At. Spectrosc. 151, 20 (2019)
CrossRef
ADS
Google scholar
|
[178] |
Q. Li, Y. Tian, B. Xue, N. Li, W. Ye, Y. Lu, and R. Zheng, Improvement in the analytical performance of underwater LIBS signals by exploiting the plasma image information, J. Anal. At. Spectrom. 35(2), 366 (2020)
CrossRef
ADS
Google scholar
|
[179] |
J. Guo, Y. Lu, K. Cheng, J. Song, W. Ye, N. Li, and R. Zheng, Development of a compact underwater laserinduced breakdown spectroscopy (LIBS) system and preliminary results in sea trials, Appl. Opt. 56(29), 8196 (2017)
CrossRef
ADS
Google scholar
|
[180] |
W. Ye, J. Guo, N. Li, F. Qi, K. Cheng, and R. Zheng, Depth profiling investigation of seawater using combined multi-optical spectrometry, Appl. Spectrosc. 74(5), 563 (2020)
CrossRef
ADS
Google scholar
|
[181] |
S. Guirado, F. J. Fortes, V. Lazic, and J. J. Laserna, Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea, Spectrochim. Acta B At. Spectrosc. 74–75, 137 (2012)
CrossRef
ADS
Google scholar
|
[182] |
S. Guirado, F. J. Fortes, and J. Javier Laserna, Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system, Talanta 137, 182 (2015)
CrossRef
ADS
Google scholar
|
[183] |
B. Thornton, T. Sakka, T. Takahashi, A. Tamura, A. Matsumoto, and T. Ura, Laser-induced breakdown spectroscopy for in situchemical analysis at sea, in: 2013 IEEE International Underwater Technology Symposium, 2013
CrossRef
ADS
Google scholar
|
[184] |
B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)
CrossRef
ADS
Google scholar
|
[185] |
T. Takahashi, S. Yoshino, Y. Takaya, T. Nozaki, K. Ohki, T. Ohki, T. Sakka, and B. Thornton, Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 158, 103232 (2020)
CrossRef
ADS
Google scholar
|
[186] |
F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, Determination of isotope ratios using Laser-Induced Breakdown Spectroscopy in ambient air at atmospheric pressure for nuclear forensics, J. Anal. At. Spectrom. 26(3), 536 (2011)
CrossRef
ADS
Google scholar
|
[187] |
A. Sarkar, V. M. Telmore, D. Alamelu, and S. K. Aggarwal, Laser induced breakdown spectroscopic quantification of platinum group metals in simulated high level nuclear waste, J. Anal. At. Spectrom. 24(11), 1545 (2009)
CrossRef
ADS
Google scholar
|
[188] |
B. Bhatt, K. Hudson Angeyo, and A. Dehayem-Kamadjeu, LIBS development methodology for forensic nuclear materials analysis, Anal. Methods 10(7), 791 (2018)
CrossRef
ADS
Google scholar
|
[189] |
D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer, Appl. Spectrosc. 66(3), 250 (2012)
CrossRef
ADS
Google scholar
|
[190] |
S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Remote-LIBS characterization of ITER-like plasma facing materials, J. Nucl. Mater. 421(1–3), 73 (2012)
CrossRef
ADS
Google scholar
|
[191] |
C. Li, C. L. Feng, H. Y. Oderji, G. N. Luo, and H. B. Ding, Review of LIBS application in nuclear fusion technology, Front. Phys. 11(6), 114214 (2016)
CrossRef
ADS
Google scholar
|
[192] |
Y. Qiu, J. Wu, X. Li, T. Liu, F. Xue, Z. Yang, Z. Zhang, and H. Yu, Parametric study of fiber-optic laserinduced breakdown spectroscopy for elemental analysis of Z3CN20-09M steel from nuclear power plants, Spectrochim. Acta B At. Spectrosc. 149, 48 (2018)
CrossRef
ADS
Google scholar
|
[193] |
J. Wu, H. Yu, Y. Qiu, Z. Zhang, T. Liu, F. Xue, W. Yu, X. Li, and A. Qiu, X. Li and A. Qiu: Plasma characteristics and element analysis of steels from a nuclear power plant based on fiber-optic laser-induced breakdown spectroscopy, J. Phys. D Appl. Phys. 52(1), 014006 (2019)
CrossRef
ADS
Google scholar
|
[194] |
L. Cai, Z. Wang, C. Li, X. Huang, D. Zhao, and H. Ding, Development of an in situ diagnostic system for mapping the deposition distribution on plasma facing components of the HL-2M tokamak, Rev. Sci. Instrum. 90(5), 053503 (2019)
CrossRef
ADS
Google scholar
|
[195] |
Z. Hu, C. Li, Q. Xiao, P. Liu, F. Ding, H. Mao, J. Wu, D. Zhao, H. Ding, and G. N. Luo, Preliminary results ofin situlaser-induced breakdown spectroscopy for the first wall diagnostics on EAST, Plasma Sci. Technol. 19(2), 025502 (2017)
CrossRef
ADS
Google scholar
|
[196] |
D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak, Rev. Sci. Instrum. 89(7), 073501 (2018)
CrossRef
ADS
Google scholar
|
[197] |
Z. Hu, N. Gierse, C. Li, J. Oelmann, D. Zhao, M. Tokar, X. Jiang, D. Nicolai, J. Wu, F. Ding, S. Brezinsek, H. Ding, G. N. Luo, and C. Linsmeier, Laser induced ablation spectroscopy for in situ characterization of the first wall on EAST tokamak, Fusion Eng. Des. 135, 95 (2018)
CrossRef
ADS
Google scholar
|
[198] |
M. Imran, L. Y. Sun, P. Liu, H. Sattar, D. Zhao, Z. Mu, and H. Ding, Depth profiling of tungsten coating layer on CuCrZr alloy using LIBS approach, Surf. Interface Anal. 51(2), 210 (2019)
CrossRef
ADS
Google scholar
|
[199] |
P. Liu, D. Wu, L. Y. Sun, D. Y. Zhao, R. Hai, C. Li, H. Ding, Z. H. Hu, L. Wang, J. S. Hu, J. L. Chen, and G. N. Luo, Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D codeposition in EAST tokamak, Fusion Eng. Des. 118, 98 (2017)
CrossRef
ADS
Google scholar
|
[200] |
J. Liu, D. Wu, C. Fu, R. Hai, X. Yu, L. Sun, and H. Ding, Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laserinduced breakdown spectroscopy in various pressure environments, Plasma Sci. Technol. 21(3), 034017 (2019)
CrossRef
ADS
Google scholar
|
[201] |
C. Li, N. Gierse, J. Oelmann, S. Brezinsek, M. Rasinski, C. P. Dhard, T. S. Pedersen, R. Konig, Y. F. Liang, H. B. Ding, C. Linsmeier and the W7-X team, Laser-induced breakdown spectroscopy for Wendelstein 7-X stellarator limiter tile analysis, Phys. Scr. T 170, 5 (2017)
CrossRef
ADS
Google scholar
|
[202] |
R. Hai, L. Sun, D. Wu, Z. He, H. Sattar, J. Liu, W. Tong, C. Li, C. Feng, and H. Ding, Enhanced laser-induced breakdown spectroscopy using the combination of circular and annular laser pulses, J. Anal. At. Spectrom. 34(10), 1982 (2019)
CrossRef
ADS
Google scholar
|
[203] |
S. Harilal, C. Murzyn, M. Phillips, and J. B. Martin, Hyperfine structures and isotopic shifts of uranium transitions using tunable laser spectroscopy of laser ablation plumes, Spectrochim. Acta B At. Spectrosc. 169, 105828 (2020)
CrossRef
ADS
Google scholar
|
[204] |
E. J. Kautz, P. J. Skrodzki, M. Burger, B. E. Bernacki, I. Jovanovic, M. C. Phillips, and S. S. Harilal, Timeresolved imaging of atoms and molecules in laserproduced uranium plasmas, J. Anal. At. Spectrom. 34(11), 2236 (2019)
CrossRef
ADS
Google scholar
|
[205] |
S. Harilal, P. Diwakar, N. LaHaye, and M. Phillips, Spatio-temporal evolution of uranium emission in laserproduced plasmas, Spectrochim. Acta B At. Spectrosc. 111, 1 (2015)
CrossRef
ADS
Google scholar
|
[206] |
M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes, Sci. Rep. 7(1), 1 (2017)
CrossRef
ADS
Google scholar
|
[207] |
J. Song, G. C. Y. Chan, X. Mao, J. D. Woodward, R. W. III Smithwick, T. G. Schaaff, A. C. Stowe, C. D. Harris, R. Zheng, V. Zorba, and R. E. Russo, Multivariate nonlinear spectral fitting for uranium isotopic analysis with laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 150, 67 (2018)
CrossRef
ADS
Google scholar
|
[208] |
X. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry, J. Radioanal. Nucl. Chem. 312(1), 121 (2017)
CrossRef
ADS
Google scholar
|
[209] |
S. Maji, S. Kumar, K. Sundararajan, and K. Sankaran, Feasibility study for quantification of lanthanides in LiF– KCl salt by laser induced breakdown spectroscopy,J. Radioanal. Nucl. Chem. 314(2), 1279 (2017)
CrossRef
ADS
Google scholar
|
[210] |
J. Oelmann, N. Gierse, C. Li, S. Brezinsek, M. Zlobinski, B. Turan, S. Haas, and C. Linsmeier, Depth-resolved sample composition analysis using laser-induced ablationquadrupole mass spectrometry and laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 144, 38 (2018)
CrossRef
ADS
Google scholar
|
[211] |
D. Zhao, R. Yi, J. Oelmann, S. Brezinsek, M. Rasinski, Y. Gao, M. Mayer, C. Dhard, and M. Krause, Ex situ analysis of W7-X divertor plasma-facing components by picosecond laser diagnostics, Phys. Scr. 2020(T171), 014018 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |