Development in the application of laser-induced breakdown spectroscopy in recent years: A review

Lian-Bo Guo (郭连波), Deng Zhang (张登), Lan-Xiang Sun (孙兰香), Shun-Chun Yao (姚顺春), Lei Zhang (张雷), Zhen-Zhen Wang (王珍珍), Qian-Qian Wang (王茜蒨), Hong-Bin Ding (丁洪斌), Yuan Lu (卢渊), Zong-Yu Hou (侯宗余), Zhe Wang (王哲)

PDF(2415 KB)
PDF(2415 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 22500. DOI: 10.1007/s11467-020-1007-z
TOPICAL REVIEW
TOPICAL REVIEW

Development in the application of laser-induced breakdown spectroscopy in recent years: A review

Author information +
History +

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been widely studied due to its unique advantages such as remote sensing, real-time multi-elemental detection and none-to-little damage. With the efforts of researchers around the world, LIBS has been developed by leaps and bounds. Moreover, in recent years, more and more Chinese LIBS researchers have put tremendous energy in promoting LIBS applications. It is worth mentioning that the application of LIBS in a specific field has its special application background and technical difficulties, therefore it may develop in different stages. A review summarizing the current development status of LIBS in various fields would be helpful for the development of LIBS technology as well as its applications especially for Chinese LIBS community since most of the researchers in this field work in application. In the present work, we summarized the research status and latest progress of main research groups in coal, metallurgy, and water, etc. Based on the current research status, the challenges and opportunities of LIBS were evaluated, and suggestions were made to further promote LIBS applications.

Keywords

laser-induced breakdown spectroscopy / application

Cite this article

Download citation ▾
Lian-Bo Guo (郭连波), Deng Zhang (张登), Lan-Xiang Sun (孙兰香), Shun-Chun Yao (姚顺春), Lei Zhang (张雷), Zhen-Zhen Wang (王珍珍), Qian-Qian Wang (王茜蒨), Hong-Bin Ding (丁洪斌), Yuan Lu (卢渊), Zong-Yu Hou (侯宗余), Zhe Wang (王哲). Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Front. Phys., 2021, 16(2): 22500 https://doi.org/10.1007/s11467-020-1007-z

References

[1]
Y. M. Guo, L. B. Guo, J. M. Li, H. D. Liu, Z. H. Zhu, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data, Front. Phys. 11(5), 114212 (2016)
CrossRef ADS Google scholar
[2]
J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. At. Spectrom. 19(9), 1061 (2004)
CrossRef ADS Google scholar
[3]
B. Busser, S. Moncayo, J. L. Coll, L. Sancey, and V. Motto-Ros, Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications, Coord. Chem. Rev. 358, 70 (2018)
CrossRef ADS Google scholar
[4]
M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review, Trends Food Sci. Technol. 65, 80 (2017)
CrossRef ADS Google scholar
[5]
J. Laserna, J. M. Vadillo and P. Purohit, Laser-induced breakdown spectroscopy (LIBS): Fast, effective, and agile leading edge analytical technology, Appl. Spectrosc. 72(Suppl. 1), 35 (2018)
CrossRef ADS Google scholar
[6]
G. G. Arantes de Carvalho, M. B. Bueno Guerra, A. Adame, C. S. Nomura, P. V. Oliveira, H. W. Pereira de Carvalho, D. Santos, L. C. Nunes, and F. J. Krug, Recent advances in LIBS and XRF for the analysis of plants, J. Anal. At. Spectrom. 33(6), 919 (2018)
CrossRef ADS Google scholar
[7]
M. Scimeca, S. Bischetti, H. K. Lamsira, R. Bonfiglio, and E. Bonanno, Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis, Eur. J. Histochem. 62(1), 2841 (2018)
CrossRef ADS Google scholar
[8]
C. Fabre, S. Maurice, A. Cousin, R. C. Wiens, O. Forni, V. Sautter, and D. Guillaume, Onboard calibration igneous targets for the Mars Science Laboratory Curiosity Rover and the Chemistry Camera laser induced breakdown spectroscopy instrument, Spectrochim. Acta B At. Spectrosc. 66(3–4), 280 (2011)
CrossRef ADS Google scholar
[9]
L. Peret, O. Gasnault, R. Dingler, Y. Langevin, S. Bender, D. Blaney, S. Clegg, C. Clewans, D. Delapp, C. M. Donny, S. Johnstone, C. Little, E. Lorigny, R. McInroy, S. Maurice, N. Mittal, B. Pavri, R. Perez, R. C. Wiens and C. Yana, Restoration of the Autofocus capability of the ChemCam instrument onboard the Curiosity rover (2016)
CrossRef ADS Google scholar
[10]
S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, Classification of red wine based on its protected designation of origin (PDO) using Laserinduced Breakdown Spectroscopy (LIBS), Talanta 158, 185 (2016)
CrossRef ADS Google scholar
[11]
Y. G. Mbesse Kongbonga, H. Ghalila, M. B. Onana, and Z. Ben Lakhdar, Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS), Food Chem. 147, 327 (2014)
CrossRef ADS Google scholar
[12]
E. C. Ferreira, E. J. Ferreira, P. R. Villas-Boas, G. S. Senesi, C. M. Carvalho, R. A. Romano, L. Martin-Neto, and D. M. B. P. Milori, Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 99, 76 (2014)
CrossRef ADS Google scholar
[13]
C. K. Kim, J. H. In, S. H. Lee, and S. Jeong, Influence of plasma conditions on the intensity ratio calibration curve during laser induced breakdown spectroscopy analysis, Opt. Lett. 39(13), 3818 (2014)
CrossRef ADS Google scholar
[14]
Y. W. Chu, S. S. Tang, S. X. Ma, Y. Y. Ma, Z. Q. Hao, Y. M. Guo, L. B. Guo, Y. F. Lu, and X. Y. Zeng, Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laserinduced breakdown spectroscopy, Opt. Express 26(8), 10119 (2018)
CrossRef ADS Google scholar
[15]
Y. Chu, T. Chen, F. Chen, Y. Tang, S. Tang, H. Jin, L. Guo, Y. Lu, and X. Zeng, Discrimination of nasopharyngeal carcinoma serum using laser-induced breakdown spectroscopy combined with an extreme learning machine and random forest method, J. Anal. At. Spectrom. 33(12), 2083 (2018)
CrossRef ADS Google scholar
[16]
R. Gaudiuso, M. Dell’Aglio, O. De Pascale, G. S. Senesi, and A. De Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)
CrossRef ADS Google scholar
[17]
J. Peng, F. Liu, F. Zhou, K. Song, C. Zhang, L. Ye, and Y. He, Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review, TrAC Trends in Analytical Chemistry 85, 260 (2016)
CrossRef ADS Google scholar
[18]
Y. T. Fu, W. L. Gu, Z. Y. Hou, S. A. Muhammed, T. Q. Li, Y. Wang, and Z. Wang, Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
CrossRef ADS Google scholar
[19]
S. Sheta, M. S. Afgan, Z. Hou, S. C. Yao, L. Zhang, Z. Li, and Z. Wang, Coal analysis by laser-induced breakdown spectroscopy: A tutorial review, J. Anal. At. Spectrom. 34(6), 1047 (2019)
CrossRef ADS Google scholar
[20]
T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant, Spectrochim. Acta B At. Spectrosc. 65(8), 734 (2010)
CrossRef ADS Google scholar
[21]
T. Ctvrtnickova, M. P. Mateo, A. Yañnez, and G. Nicolas, Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends, Appl. Surf. Sci. 257(12), 5447 (2011)
CrossRef ADS Google scholar
[22]
M. P. Mateo, G. Nicolas, and A. Yanez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations, Appl. Surf. Sci. 254(4), 868 (2007)
CrossRef ADS Google scholar
[23]
D. Redoglio, E. Golinelli, S. Musazzi, U. Perini, and F. Barberis, A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal, Spectrochim. Acta B At. Spectrosc. 116, 46 (2016)
CrossRef ADS Google scholar
[24]
L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)
CrossRef ADS Google scholar
[25]
T. Yuan, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, Coal property analysis using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
CrossRef ADS Google scholar
[26]
T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
CrossRef ADS Google scholar
[27]
Z. Hou, Z. Wang, T. Yuan, J. Liu, Z. Li, and W. Ni, A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(3), 722 (2016)
CrossRef ADS Google scholar
[28]
J. Feng, Z. Wang, L. Li, Z. Li, and W. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laserinduced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
CrossRef ADS Google scholar
[29]
X. Li, H. Yin, Z. Wang, Y. Fu, Z. Li, and W. Ni, Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 111, 102 (2015)
CrossRef ADS Google scholar
[30]
X. Li, Z. Wang, Y. Fu, Z. Li, J. Liu, and W. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)
CrossRef ADS Google scholar
[31]
X. Li, X. Mao, Z. Wang, and R. E. Russo, Quantitative analysis of carbon content in bituminous coal by laserinduced breakdown spectroscopy using UV laser radiation, Plasma Sci. Technol. 17(11), 928 (2015)
CrossRef ADS Google scholar
[32]
Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(23), A1011 (2012)
CrossRef ADS Google scholar
[33]
Z. Hou, M. S. Afgan, S. Sheta, J. Liu, and Z. Wang, Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)
CrossRef ADS Google scholar
[34]
Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc. 68, 58 (2012)
CrossRef ADS Google scholar
[35]
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
CrossRef ADS Google scholar
[36]
H. Qin, Z. Lu, S. Yao, Z. Li, and J. Lu, Combining laserinduced breakdown spectroscopy and Fourier-transform infrared spectroscopy for the analysis of coal properties, J. Anal. At. Spectrom. 34(2), 347 (2019)
CrossRef ADS Google scholar
[37]
S. Yao, J. Zhao, J. Xu, Z. Lu, and J. Lu, Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal, J. Anal. At. Spectrom. 32(4), 766 (2017)
CrossRef ADS Google scholar
[38]
Z. Lu, J. Mo, S. Yao, J. Zhao, and J. Lu, Rapid determination of the gross calorific value of coal using laser-induced breakdown spectroscopy coupled with artificial neural networks and genetic algorithm, Energy Fuels 31(4), 3849 (2017)
CrossRef ADS Google scholar
[39]
S. Yao, J. Mo, J. Zhao, Y. Li, X. Zhang, W. Lu, and Z. Lu, Development of a rapid coal analyzer using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 72(8), 1225 (2018)
CrossRef ADS Google scholar
[40]
M. Dong, L. Wei, J. Lu, W. Li, S. Lu, S. Li, C. Liu, and J. H. Yoo, A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS, J. Anal. At. Spectrom. 34(3), 480 (2019)
CrossRef ADS Google scholar
[41]
S. Li, M. Dong, F. Luo, W. Li, L. Wei, and J. Lu, Experimental investigation of combustion characteristics and NOx formation of coal particles using laser induced breakdown spectroscopy, Journal of the Energy Institute 93(1), 52 (2020)
CrossRef ADS Google scholar
[42]
W. Li, M. Dong, S. Lu, S. Li, L. Wei, J. Huang, and J. Lu, Improved measurement of the calorific value of pulverized coal particle flow by laser-induced breakdown spectroscopy (LIBS), Anal. Methods 11(35), 4471 (2019)
CrossRef ADS Google scholar
[43]
W. Li, J. Lu, M. Dong, S. Lu, J. Yu, S. Li, J. Huang, and J. Liu, Quantitative analysis of calorific value of coal based on spectral preprocessing by laser-induced breakdown spectroscopy (LIBS), Energy Fuels 32(1), 24 (2017)
CrossRef ADS Google scholar
[44]
L. Zhang, L. Dong, H. Dou, W. Yin, and S. Jia, Laserinduced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)
CrossRef ADS Google scholar
[45]
W. Yin, L. Zhang, L. Dong, W. Ma, and S. Jia, Design of a laser-induced breakdown spectroscopy system for online quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)
CrossRef ADS Google scholar
[46]
L. Zhang, W. Ma, L. Dong, X. Yan, Z. Hu, Z. Li, Y. Zhang, L. Wang, W. Yin, and S. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)
CrossRef ADS Google scholar
[47]
L. Zhang, Y. Gong, Y. Li, X. Wang, J. Fan, L. Dong, W. Ma, W. Yin, and S. Jia, Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 167 (2015)
CrossRef ADS Google scholar
[48]
Y. Z. Liu, Z. H. Wang, Y. Lv, K. D. Wan, Y. He, J. Xia, and K. F. Cen, Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements, Fuel 212, 498 (2018)
CrossRef ADS Google scholar
[49]
Y. Liu, Z. Wang, K. Wan, Y. Lv, J. Xia, Y. He, and K. Cen, In situ measurements of the release characteristics and catalytic effects of different chemical forms of sodium during combustion of Zhundong coal, Energy Fuels 32(6), 6595 (2018)
CrossRef ADS Google scholar
[50]
T. Zhang, C. Yan, J. Qi, H. Tang, and H. Li, Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods, J. Anal. At. Spectrom. 32(10), 1960 (2017)
CrossRef ADS Google scholar
[51]
C. Yan, J. Qi, J. Ma, H. Tang, T. Zhang, and H. Li, Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernelbased extreme learning machine, Chemom. Intell. Lab. Syst. 167, 226 (2017)
CrossRef ADS Google scholar
[52]
C. Yan, J. Qi, J. Liang, T. Zhang, and H. Li, Determination of coal properties using laser-induced breakdown spectroscopy combined with kernel extreme learning machine and variable selection, J. Anal. At. Spectrom. 33(12), 2089 (2018)
CrossRef ADS Google scholar
[53]
C. Yan, T. Zhang, Y. Sun, H. Tang, and H. Li, A hybrid variable selection method based on wavelet transform and mean impact value for calorific value determination of coal using laser-induced breakdown spectroscopy and kernel extreme learning machine, Spectrochim. Acta B At. Spectrosc. 154, 75 (2019)
CrossRef ADS Google scholar
[54]
Z. Z. Wang, Y. Deguchi, M. Kuwahara, T. Taira, X. B. Zhang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 87, 130 (2013)
CrossRef ADS Google scholar
[55]
Z. Z. Wang, Y. Deguchi, S. Katsumori, A. Ikutomo, J. J. Yan, J. P. Liu, K. Tainaka, K. Tanno, H. Watanabe, and R. Kurose, Improved measurement characteristics of elemental compositions using laser-induced breakdown spectroscopy, Spectroscopy (Santa Monica) 31(1), 22 (2016)
[56]
Z. Wang, R. Liu, Y. Deguchi, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. Yan, and J. Liu, Detection improvement of unburned carbon content in fly ash flow using libs with a two-stage cyclone measurement system, Energy Fuels 33(8), 7805 (2019)
CrossRef ADS Google scholar
[57]
R. W. Liu, Y. Deguchi, W. G. Nan, R. M. Hu, Z. Z. Wang, Y. Fujita, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. P. Liu, and J. J. Yan, Unburned carbon measurement in fly ash using laser-induced breakdown spectroscopy with short nanosecond pulse width laser, Adv. Powder Technol. 30(6), 1210 (2019)
CrossRef ADS Google scholar
[58]
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef ADS Google scholar
[59]
J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier, 2007
[60]
W. W. Wu, The concentration of silver from oxidative silver-manganese ore with united technologies of beneficiation and metallurgy,Nonferrous Metals (Mineral Processing)5 (2003)
[61]
F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
CrossRef ADS Google scholar
[62]
V. Lakshmanan, A. Ojaghi, and B. Gorain, Beneficiation of Gold and Silver Ores, in: Innovations and Breakthroughs in the Gold and Silver Industries, Springer, 2019
CrossRef ADS Google scholar
[63]
M. Gaft, Laser-Induced Breakdown Spectroscopy (LIBS) for On-line Control in Mining Industry, in: Applied Industrial Optics: Spectroscopy, Imaging and Metrology, Optical Society of America, 2011
CrossRef ADS Google scholar
[64]
D. H. Diaz Ordonez, Laser-induced breakdown spectroscopy (LIBS) for analysis of precious metals in minerals, 2017
[65]
S. W. Hudson, J. Craparo, R. De Saro, and D. Apelian, Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing,Metall. Mater. Trans. B 48(5), 2731 (2017)
CrossRef ADS Google scholar
[66]
L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B At. Spectrosc. 112, 40 (2015)
CrossRef ADS Google scholar
[67]
Q. Zeng, C. Pan, C. Li, T. Fei, X. Ding, X. Du, and Q. Wang, Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 142, 68 (2018)
CrossRef ADS Google scholar
[68]
Z. Qiang, P. Congyuan, F. Teng, D. Xiaokang, W. Shengbo, and W. Qiuping, Composition and temperature monitoring of molten metal by a combined LIBS-IR thermometry system, J. Appl. Spectrosc. 85(5), 817 (2018)
CrossRef ADS Google scholar
[69]
L. X. Sun, H. B. Yu, Z. B. Cong, H. Lu, B. Cao, P. Zeng, W. Dong, and Y. Li, Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochim. Acta B At. Spectrosc. 142, 29 (2018)
CrossRef ADS Google scholar
[70]
L. M. Cabalin, T. Delgado, J. Ruiz, D. Mier, and J. J. Laserna, Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations, At-line monitoring of temporal evolution versus predicted mathematical model, Spectrochim. Acta B At. Spectrosc. 146, 93 (2018)
CrossRef ADS Google scholar
[71]
J. Ruiz, T. Delgado, L. M. Cabal'in, and J. J. Laserna, At-line monitoring of continuous casting sequences of steel using discriminant function analysis and dual-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 32(6), 1119 (2017)
CrossRef ADS Google scholar
[72]
V. Sturm, C. Meinhardt, R. Fleige, C. Fricke-Begemann, and J. Eisbach, Fast identification of steel bloom composition at a rolling mill by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 136, 66 (2017)
CrossRef ADS Google scholar
[73]
S. H. Gudmundsson, J. Matthiasson, B. M. Bjornsson, H. Gudmundsson, and K. Leosson, Quantitative in-situ analysis of impurity elements in primary aluminum processing using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 158, 105646 (2019)
CrossRef ADS Google scholar
[74]
J. Herbert, J. Fernandez, R. D. Saro, and J. Craparo, The Industrial Application of Molten Metal Analysis (LIBS), 2019
CrossRef ADS Google scholar
[75]
O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, Atomic spectrometry update –a review of advances in environmental analysis, J. Anal. At. Spectrom. 32(1), 11 (2017)
[76]
X. Yu, Y. Li, X. Gu, J. Bao, H. Yang, and L. Sun, Laserinduced breakdown spectroscopy application in environmental monitoring of water quality: A review, Environ. Monit. Assess. 186(12), 8969 (2014)
CrossRef ADS Google scholar
[77]
H. Tian, L. Jiao, and D. Dong, Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment, Sci. Rep. 9(1), 10443 (2019)
CrossRef ADS Google scholar
[78]
J. Kang, R. Li, Y. Wang, Y. Chen, and Y. Yang, Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber, J. Anal. At. Spectrom. 32(11), 2292 (2017)
CrossRef ADS Google scholar
[79]
N. K. Rai, A. K. Rai, A. Kumar, and S. N. Thakur, Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples, Appl. Opt. 47(31), G105 (2008)
CrossRef ADS Google scholar
[80]
J. S. Huang, C. B. Ke, L. S. Huang, and K. C. Lin, The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets, Spectrochim. Acta B At. Spectrosc. 57(1), 35 (2002)
CrossRef ADS Google scholar
[81]
F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 403(9), 2601 (2012)
CrossRef ADS Google scholar
[82]
Z. Shilei, Z. Ronger, L. Yuan, C. Kai, and X. Junshan, Ultrasonic nebulizer assisted LIBS: A promising metal elements detection method for aqueous sample analysis, Plasma Sci. Technol. 17(11), 979 (2015)
CrossRef ADS Google scholar
[83]
D. Zhang, Z. Hu, Y. Su, B. Hai, X. Zhu, J. Zhu, and X. Ma, Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS), Opt. Express 26(14), 18794 (2018)
CrossRef ADS Google scholar
[84]
X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, Simultaneous and sensitive analysis of Ag (I), Mn (II), and Cr (III) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent, J. Anal. At. Spectrom. 29(6), 1098 (2014)
CrossRef ADS Google scholar
[85]
X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy, Anal. Chem. 87(11), 5577 (2015)
CrossRef ADS Google scholar
[86]
X. Yang, Z. Hao, M. shen, R. Yi, J. Li, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Talanta 163, 127 (2017)
CrossRef ADS Google scholar
[87]
X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laserinduced breakdown spectroscopy, Opt. Express 24(12), 13410 (2016)
CrossRef ADS Google scholar
[88]
X. Yang, R. Yi, X. Li, Z. Cui, Y. Lu, Z. Hao, J. Huang, Z. Zhou, G. Yao, and W. Huang, Spreading a water droplet through filter paper on the metal substrate for surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 26(23), 30456 (2018)
CrossRef ADS Google scholar
[89]
S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 27(10), 15091 (2019)
CrossRef ADS Google scholar
[90]
S. Ma, Y. Tang, Y. Ma, D. Dong, L. Guo, H. Zhu, J. Liu, and Y. Lu, The pH effect on the detection of heavy metals in wastewater by laser-induced breakdown spectroscopy coupled with a phase transformation method, J. Anal. At. Spectrom. 35(1), 198 (2020)
CrossRef ADS Google scholar
[91]
S. Ma, Y. Tang, S. Zhang, Y. Ma, Z. Sheng, Z. Wang, L. Guo, J. Yao, and Y. Lu, Chlorine and sulfur determination in water using indirect laser-induced breakdown spectroscopy, Talanta 214, 120849 (2020)
CrossRef ADS Google scholar
[92]
F. Ruiz, L. Ripoll, M. Hidalgo, and A. Canals, Dispersive micro solid-phase extraction (DμSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS), Talanta 191, 162 (2019)
CrossRef ADS Google scholar
[93]
A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential, Anal. Chem. 87(3), 1655 (2015)
CrossRef ADS Google scholar
[94]
L. Ripoll and M. Hidalgo, Electrospray deposition followed by laser-induced breakdown spectroscopy (ESDLIBS): A new method for trace elemental analysis of aqueous samples, J. Anal. At. Spectrom. 34(10), 2016 (2019)
CrossRef ADS Google scholar
[95]
J. Cortez and C. Pasquini, Ring-oven based preconcentration technique for microanalysis: Simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy, Anal. Chem. 85(3), 1547 (2013)
CrossRef ADS Google scholar
[96]
D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 70 (2015)
CrossRef ADS Google scholar
[97]
N. Aras, and Ş. Yalçn, Investigating silicon wafer based substrates for dried-droplet analysis by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 152, 84 (2019)
CrossRef ADS Google scholar
[98]
A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level, Anal. Chem. 88(10), 5251 (2016)
CrossRef ADS Google scholar
[99]
V. N. Rai, F. Y. Yueh, and J. P. Singh, Study of laserinduced breakdown emission from liquid under doublepulse excitation, Appl. Opt. 42(12), 2094 (2003)
CrossRef ADS Google scholar
[100]
K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 27(2), 276 (2012)
CrossRef ADS Google scholar
[101]
Y. Wang, J. Kang, Y. Chen, and R. Li, Sensitive analysis of copper in water by LIBS–LIF assisted by simple sample pretreatment, J. Appl. Spectrosc. 86(2), 353 (2019)
CrossRef ADS Google scholar
[102]
M. Wall, Z. Sun, and Z. T. Alwahabi, Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy, Opt. Express 24(2), 1507 (2016)
CrossRef ADS Google scholar
[103]
R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)
CrossRef ADS Google scholar
[104]
R. Kumar, A. Devanathan, N. Mishra and A. Rai, Quantification of heavy metal contamination in soil and plants near a leather tanning industrial area using Libs and TXRF, J. Appl. Spectrosc., 86(5), 840 (2019)
CrossRef ADS Google scholar
[105]
R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, Determination of trace available heavy metals in soil using laser-induced breakdown spectroscopy assisted with phase transformation method, Anal. Chem. 90(11), 7080 (2018)
CrossRef ADS Google scholar
[106]
T. Wang, M. He, T. Shen, F. Liu, Y. He, X. Liu, and Z. Qiu, Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China, Spectrochim. Acta B At. Spectrosc. 149, 300 (2018)
CrossRef ADS Google scholar
[107]
S. Zhao, C. Song, X. Gao, and J. Lin, Quantitative analysis of Pb in soil by femtosecond-nanosecond double-pulse laser-induced breakdown spectroscopy, Results in Physics 15, 102736 (2019)
CrossRef ADS Google scholar
[108]
Y. Ding, G. Xia, H. Ji, and X. Xiong, Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS), Anal. Methods 11(29), 3657 (2019)
CrossRef ADS Google scholar
[109]
D. Meng, N. Zhao, M. Ma, L. Fang, Y. Gu, Y. Jia, J. Liu, and W. Liu, Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil, Appl. Opt. 56(18), 5204 (2017)
CrossRef ADS Google scholar
[110]
M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, and M. Baig, Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 148, 143 (2018)
CrossRef ADS Google scholar
[111]
M. Akhtar, A. Jabbar, S. Mahmood, Z. A. Umar, R. Ahmed, and M. Aslam Baig, Analysis of soil by magnetic field assisted calibration-free laser induced breakdown spectroscopy (CF-LIBS) and laser ablation–timeof- flight mass spectrometry (LA-TOF-MS), Anal. Lett. 52(14), 2312 (2019)
CrossRef ADS Google scholar
[112]
M. Akhtar, A. Jabbar, N. Ahmed, S. Mahmood, Z. Umar, R. Ahmed, and M. Baig, Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field, Appl. Phys. B 125(6), 110 (2019)
CrossRef ADS Google scholar
[113]
G. Kim, J. Kwak, J. Choi, and K. Park, Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 60(3), 718 (2012)
CrossRef ADS Google scholar
[114]
R. A. Multari, D. A. Cremers, T. Scott, and P. Kendrick, Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 61(10), 2348 (2013)
CrossRef ADS Google scholar
[115]
D. Yang and Y. Ying, Applications of Raman spectroscopy in agricultural products and food analysis: A review, Appl. Spectrosc. Rev. 46(7), 539 (2011)
CrossRef ADS Google scholar
[116]
L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review, Appl. Spectrosc. Rev. 48(2), 142 (2013)
CrossRef ADS Google scholar
[117]
G. Nicolodelli, G. S. Senesi, A. C. Ranulfi, B. S. Marangoni, A. Watanabe, V. de Melo Benites, P. P. A. de Oliveira, P. Villas-Boas, and D. M. B. P. Milori, Doublepulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples, Microchem. J. 133, 272 (2017)
CrossRef ADS Google scholar
[118]
S. Pandhija and A. K. Rai, Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS, Environ. Monit. Assess. 148(1–4), 437 (2009)
CrossRef ADS Google scholar
[119]
C. Wang, L. Huang, M. Liu, P. Yang, T. Chen, H. Hu, W. Li, and M. Yao, Influence of water content on the detection of sensitivity of Pb in potatoes by LIBS, Acta Agriculturae Universitatis Jiangxiensis 38(2), 393 (2016)
[120]
C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Enhancement of Pb intensity in potatoes by microwave assisted LIBS, Chinese Journal of Analysis Laboratory 35(5), 506 (2016)
[121]
C. Wang, L. Huang, S. Hu, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Feasibility of predicting the distribution of Cu in Navel orange pulp by LIBS spectra of peel,Chinese Journal of Analysis Laboratory 35(3), 253 (2016)
[122]
W. B. Li, L. T. Yao, M. H. Liu, L. Huang, M. Y. Yao, T. B. Chen, X. W. He, P. Yang, H. Q. Hu, and J. H. Nie, Influence of spectral pre-processing on PLS quantitative model of detecting cu in navel orange by LIBS, Spectroscopy and Spectral Analysis 35(5), 1392 (2015)
[123]
W. B. Li, M. Y. Yao, L. Huang, T. B. Chen, J. H. Zheng, S. Q. Fan, M. H. Liu, X. W. He, J. L. Lin, and J. Y. Ouyang, Effect of characteristic variable extraction on accuracy of Cu in Navel orange peel by LIBS, Spectroscopy and Spectral Analysis 35(7), 2021 (2015)
[124]
C. H. Wang, L. Huang, T. B. Chen, M. H. Liu, H. Yang, H. Q. Hu, and M. Y. Yao, Feasibility of analyzing Cr in rice husk and coarse rice with LIBS, Spectroscopy and Spectral Analysis 37(11), 3590 (2017)
[125]
H. Yang, L. Huang, M. Liu, T. Chen, C. Wang, and M. Yao, Comparison of precision and accuracy in analyzing Cd in rice by LIBS combined with multivariate regression, Chinese Journal of Analysis Laboratory 36(4), 399 (2017)
[126]
C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Determination of heavy metal chromium in rice husk by LIBS coupled with SiPLS, Laser & Optoelectronics Progress 53(11), 113001 (2016)
[127]
C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Comparison of accuracy in detecting Cr in pork by LIBS coupled with different characteristic lines, Chinese Journal of Analysis Laboratory 36(1), 32 (2017)
[128]
H. Yang, C. H. Wang, M. H. Liu, T. B. Chen, L. Huang, and M. Y. Yao, Improvement of LIBS accuracy in detecting Pb in pork by physical pretreatment of samples, Spectroscopy and Spectral Analysis 37(8), 2580 (2017)
[129]
G. F. Rao, L. Huang, M. H. Liu, T. B. Chen, J. Y. Chen, Z. Y. Luo, F. H. Xu, X. H. Xu, and M. Y. Yao, Identification of Huanglongbing-infected nave oranges based on laser-induced breakdown spectroscopy combined with different chemometric methods, Appl. Opt. 57(29), 8738 (2018)
CrossRef ADS Google scholar
[130]
J. Peng, Y. He, Z. Zhao, J. Jiang, F. Zhou, F. Liu and T. Shen, Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods, Environ. Pollut. 252(Pt B), 1125 (2019)
CrossRef ADS Google scholar
[131]
J. Peng, Y. He, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, High-accuracy and fast determination of chromium content in rice leaves based on collinear dual-pulse laserinduced breakdown spectroscopy and chemometric methods, Food Chem. 295, 327 (2019)
CrossRef ADS Google scholar
[132]
X. Liu, X. Feng, F. Liu, J. Peng, and Y. He, Rapid identification of genetically modified maize using laser-induced breakdown spectroscopy, Food Bioprocess Technol. 12(2), 347 (2018)
CrossRef ADS Google scholar
[133]
T. Shen, W. Kong, F. Liu, Z. Chen, J. Yao, W. Wang, J. Peng, H. Chen, and Y. He, Rapid determination of cadmium contamination in lettuce using laser-induced breakdown spectroscopy, Molecules 23(11), 2930 (2018)
CrossRef ADS Google scholar
[134]
F. Liu, T. Shen, W. Kong, J. Peng, C. Zhang, K. Song, W. Wang, C. Zhang, and Y. He, Quantitative analysis of cadmium in tobacco roots using laser-induced breakdown spectroscopy with variable index and chemometrics, Front. Plant Sci. 9, 1316 (2018)
CrossRef ADS Google scholar
[135]
J. Peng, W. Xie, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, Fast quantification of honey adulteration with laserinduced breakdown spectroscopy and chemometric methods, Foods 9(3), 341 (2020)
CrossRef ADS Google scholar
[136]
Z. Zhao, L. Chen, F. Liu, F. Zhou, J. Peng, and M. Sun, Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis, Sensors (Basel) 20(7), 1878 (2020)
CrossRef ADS Google scholar
[137]
F. Liu, F. Liu, T. Shen, J. Wang, Y. He, C. Zhang, W. Zhou, T. Shen, J. Wang, Y. He, C. Zhang, and W. Zhou, Detection of sclerotinia stem rot on oilseed rape (Brassica napus L.) based on laser-induced breakdown spectroscopy, Trans. ASABE 62(1), 123 (2019)
CrossRef ADS Google scholar
[138]
J. Peng, Y. He, L. Ye, T. Shen, F. Liu, W. Kong, X. Liu, and Y. Zhao, Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: A case study for chromium content detection in rice leaves, Anal. Chem. 89(14), 7593 (2017)
CrossRef ADS Google scholar
[139]
P. Yang, Y. Zhu, X. Yang, J. Li, S. Tang, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, Evaluation of sample preparation methods for rice geographic origin classification using laser-induced breakdown spectroscopy, J. Cereal Sci. 80, 111 (2018)
CrossRef ADS Google scholar
[140]
P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy, Food Chem. 272, 323 (2019)
CrossRef ADS Google scholar
[141]
Y. Zhao, Q. Wang, X. Cui, G. Teng, K. Wei, and H. Liu, Discrimination of hazardous bacteria with combination laser-induced breakdown spectroscopy and statistical methods, Appl. Opt. 59(5), 1329 (2020)
CrossRef ADS Google scholar
[142]
Y. Du, Q. Wang, Y. Zhao, X. Cui, and Z. Peng, Rapid qualitative evaluation of velvet antler using laserinduced breakdown spectroscopy (LIBS), Laser Phys. 29(9), 095602 (2019)
CrossRef ADS Google scholar
[143]
J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds, Food Chem. 221, 1778 (2017)
CrossRef ADS Google scholar
[144]
B. Sezer, S. Durna, G. Bilge, A. Berkkan, A. Yetisemiyen, and I. H. Boyaci, Identification of milk fraud using laserinduced breakdown spectroscopy (LIBS), Int. Dairy J. 81, 1 (2018)
CrossRef ADS Google scholar
[145]
T. V. Silva, S. Z. Hubinger, J. A. Gomes Neto, D. M. B. P. Milori, E. J. Ferreira, and E. C. Ferreira, Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee, Spectrochim. Acta B At. Spectrosc. 135, 29 (2017)
CrossRef ADS Google scholar
[146]
B. B. S. Jaswal and V. K. Singh, Analytical assessments of gallstones and urinary stones: A comprehensive review of the development from laser to LIBS, Appl. Spectrosc. Rev. 50(6), 473 (2015)
CrossRef ADS Google scholar
[147]
G. L. Coté, V. K. Unnikrishnan, R. Nayak, S. Bhat, S. Mathew, V. B. Kartha and C. Santhosh, Biomedical applications of laser-induced breakdown spectroscopy (LIBS), Proc. SPIE 9332, Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, 933211 (2015)
CrossRef ADS Google scholar
[148]
R. Grassi, E. Grifoni, S. Gufoni, S. Legnaioli, G. Lorenzetti, N. Macro, L. Menichetti, S. Pagnotta, F. Poggialini, C. Schiavo, and V. Palleschi, Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique, Spectrochim. Acta B At. Spectrosc. 127, 1 (2017)
CrossRef ADS Google scholar
[149]
T. R. Loree, The detection of elements in biomedical fluids by laser-induced breakdown spectroscopy, doi: 10.2351/1.5057553 (1983)
CrossRef ADS Google scholar
[150]
V. Singh, V. Kumar, J. Sharma, Y. Khajuria, and K. Kumar, Importance of laser induced breakdown spectroscopy for biomedical applications: A comprehensive review, Materials Focus 3(3), 169 (2014)
CrossRef ADS Google scholar
[151]
S. J. Rehse, H. Salimnia, and A. W. Miziolek, Laserinduced breakdown spectroscopy (LIBS): An overview of recent progress and future potential for biomedical applications, J. Med. Eng. Technol. 36(2), 77 (2012)
CrossRef ADS Google scholar
[152]
Y. Markushin, N. Melikechi, A. MarcanoO., S. Rock, E. Henderson, and D. Connolly, LIBS-based multi-element coded assay for ovarian cancer application, in: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications, International Society for Optics and Photonics, 2009, p. 719015
CrossRef ADS Google scholar
[153]
Q. Wang, W. Xiangli, G. Teng, X. Cui, and K. Wei, A brief review of laser-induced breakdown spectroscopy for human and animal soft tissues: Pathological diagnosis and physiological detection, Appl. Spectrosc. Rev. 1 (2020)
CrossRef ADS Google scholar
[154]
Y. Chu, Z. Zhang, Q. He, F. Chen, Z. Sheng, D. Zhang, H. Jin, F. Jiang, and L. Guo, Half-life determination of inorganic-organic hybrid nanomaterials in mice using laser-induced breakdown spectroscopy, J. Adv. Res. 24, 353 (2020)
CrossRef ADS Google scholar
[155]
X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods, Spectrochim. Acta B At. Spectrosc. 139, 63 (2018)
CrossRef ADS Google scholar
[156]
X. Chen, X. Li, S. Yang, X. Yu, and A. Liu, Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples, Biomed. Opt. Express 9(3), 1057 (2018)
CrossRef ADS Google scholar
[157]
X. Li, X. An, R. Fan, X. Yu, and D. Chen, Classification of soft tissues using laser-induced breakdown spectroscopy, SPIE Proceedings Novel Biophotonics Techniques and Applications IV, 2017, p. 1041303
[158]
X. Li, S. Yang, R. Fan, X. Yu, and D. Chen, Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers, Opt. Laser Technol. 102, 233 (2018)
CrossRef ADS Google scholar
[159]
X. Li, S. Yang, X. Chen, G. Yao, A. Liu, and X. Yu, Multi-elemental imaging of breast cancer tissues using laser-induced breakdown spectroscopy. In: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe- EQEC), IEEE, 2019
[160]
G. Teng, Q. Wang, H. Zhang, W. Xiangli, H. Yang, X. Qi, X. Cui, B. S. Idrees, K. Wei, and M. N. Khan, Discrimination of infiltrative glioma boundary based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 165, 105787 (2020)
CrossRef ADS Google scholar
[161]
Q. Wang, G. Teng, X. Qiao, Y. Zhao, J. Kong, L. Dong, and X. Cui, Importance evaluation of spectral lines in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria, Biomed. Opt. Express 9(11), 5837 (2018)
CrossRef ADS Google scholar
[162]
Y. Moon, J. H. Han, J. H. Choi, S. Shin, Y. C. Kim, and S. Jeong, Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy, J. Biomed. Opt. 24(3), 1 (2018)
CrossRef ADS Google scholar
[163]
J. J. Lee, Y. Moon, J. H. Han, and S. Jeong, Analysis of major elements in pigmented melanocytic chicken skin using laser-induced breakdown spectroscopy, J. Biophoton. 10(4), 523 (2017)
CrossRef ADS Google scholar
[164]
S. Moncayo, F. Trichard, B. Busser, M. Sabatier-Vincent, F. Pelascini, N. Pinel, I. Templier, J. Charles, L. Sancey, and V. Motto-Ros, Multi-elemental imaging of paraffinembedded human samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 133, 40 (2017)
CrossRef ADS Google scholar
[165]
B. Busser, S. Moncayo, F. Trichard, V. Bonneterre, N. Pinel, F. Pelascini, P. Dugourd, J. L. Coll, M. D’Incan, J. Charles, V. Motto-Ros, and L. Sancey, Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy, Mod. Pathol. 31(3), 378 (2018)
CrossRef ADS Google scholar
[166]
F. J. Fortes, S. Guirado, A. Metzinger, and J. J. Laserna, A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean, J. Anal. At. Spectrom. 30(5), 1050 (2015)
CrossRef ADS Google scholar
[167]
M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, C. M. Gordon, and S. M. Angel, Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure, Spectrochim. Acta B At. Spectrosc. 99, 172 (2014)
CrossRef ADS Google scholar
[168]
N. Idris, M. Ramli, R. Hedwig, Z. S. Lie, and K. H. Kurniawan, Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS), AIP Conference Proceedings 1719, 030051 (2016)
CrossRef ADS Google scholar
[169]
P. Pease, and V. Tchakerian, Source provenance of carbonate grains in the Wahiba Sand Sea, Oman, using a new LIBS method, Aeolian Res. 15, 203 (2014)
CrossRef ADS Google scholar
[170]
J. Song, J. Guo, Y. Tian, Y. Lu, and R. Zheng, Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies, Proceedings Volume 10461, AOPC 2017: Optical Spectroscopy and Imaging78 (2017)
CrossRef ADS Google scholar
[171]
Y. Tian, B. Xue, J. Song, Y. Lu, Y. Li, and R. Zheng, Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532- and 1064-nm lasers, Appl. Phys. Express 10(7), 072401 (2017)
CrossRef ADS Google scholar
[172]
B. Xue, N. Li, Y. Lu, Y. Li, and R. Zheng, Emission enhancement of underwater collinear dual-pulse laserinduced breakdown spectroscopy with the second pulse defocused, Appl. Phys. Lett. 110(10), 101102 (2017)
CrossRef ADS Google scholar
[173]
J. Song, J. Guo, Y. Tian, B. Xue, Y. Lu, and R. Zheng, Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements, Appl. Opt. 57(7), 1640 (2018)
CrossRef ADS Google scholar
[174]
J. Guo, A. S. Mahmoud, N. Li, J. Song, and R. Zheng, Study of pressure effects on ocean in-situdetection using laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21(3), 034022 (2019)
CrossRef ADS Google scholar
[175]
N. Li, J. Guo, C. Zhang, Y. Zhang, Q. Li, Y. Tian, and R. Zheng, Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy, Appl. Opt. 58(14), 3886 (2019)
CrossRef ADS Google scholar
[176]
N. Li, J. Guo, L. Zhu, Y. Lu, Y. Tian, and R. Zheng, Effects of ambient temperature on laser-induced plasma in bulk water, Appl. Spectrosc. 73(11), 1277 (2019)
[177]
B. Xue, Y. Tian, Y. Lu, Y. Li, and R. Zheng, Characteristics of the secondary breakdown of DP-LIBS in bulk water with different axial focusing arrangements and laser energies, Spectrochim. Acta B At. Spectrosc. 151, 20 (2019)
CrossRef ADS Google scholar
[178]
Q. Li, Y. Tian, B. Xue, N. Li, W. Ye, Y. Lu, and R. Zheng, Improvement in the analytical performance of underwater LIBS signals by exploiting the plasma image information, J. Anal. At. Spectrom. 35(2), 366 (2020)
CrossRef ADS Google scholar
[179]
J. Guo, Y. Lu, K. Cheng, J. Song, W. Ye, N. Li, and R. Zheng, Development of a compact underwater laserinduced breakdown spectroscopy (LIBS) system and preliminary results in sea trials, Appl. Opt. 56(29), 8196 (2017)
CrossRef ADS Google scholar
[180]
W. Ye, J. Guo, N. Li, F. Qi, K. Cheng, and R. Zheng, Depth profiling investigation of seawater using combined multi-optical spectrometry, Appl. Spectrosc. 74(5), 563 (2020)
CrossRef ADS Google scholar
[181]
S. Guirado, F. J. Fortes, V. Lazic, and J. J. Laserna, Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea, Spectrochim. Acta B At. Spectrosc. 74–75, 137 (2012)
CrossRef ADS Google scholar
[182]
S. Guirado, F. J. Fortes, and J. Javier Laserna, Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system, Talanta 137, 182 (2015)
CrossRef ADS Google scholar
[183]
B. Thornton, T. Sakka, T. Takahashi, A. Tamura, A. Matsumoto, and T. Ura, Laser-induced breakdown spectroscopy for in situchemical analysis at sea, in: 2013 IEEE International Underwater Technology Symposium, 2013
CrossRef ADS Google scholar
[184]
B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)
CrossRef ADS Google scholar
[185]
T. Takahashi, S. Yoshino, Y. Takaya, T. Nozaki, K. Ohki, T. Ohki, T. Sakka, and B. Thornton, Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 158, 103232 (2020)
CrossRef ADS Google scholar
[186]
F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, Determination of isotope ratios using Laser-Induced Breakdown Spectroscopy in ambient air at atmospheric pressure for nuclear forensics, J. Anal. At. Spectrom. 26(3), 536 (2011)
CrossRef ADS Google scholar
[187]
A. Sarkar, V. M. Telmore, D. Alamelu, and S. K. Aggarwal, Laser induced breakdown spectroscopic quantification of platinum group metals in simulated high level nuclear waste, J. Anal. At. Spectrom. 24(11), 1545 (2009)
CrossRef ADS Google scholar
[188]
B. Bhatt, K. Hudson Angeyo, and A. Dehayem-Kamadjeu, LIBS development methodology for forensic nuclear materials analysis, Anal. Methods 10(7), 791 (2018)
CrossRef ADS Google scholar
[189]
D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer, Appl. Spectrosc. 66(3), 250 (2012)
CrossRef ADS Google scholar
[190]
S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Remote-LIBS characterization of ITER-like plasma facing materials, J. Nucl. Mater. 421(1–3), 73 (2012)
CrossRef ADS Google scholar
[191]
C. Li, C. L. Feng, H. Y. Oderji, G. N. Luo, and H. B. Ding, Review of LIBS application in nuclear fusion technology, Front. Phys. 11(6), 114214 (2016)
CrossRef ADS Google scholar
[192]
Y. Qiu, J. Wu, X. Li, T. Liu, F. Xue, Z. Yang, Z. Zhang, and H. Yu, Parametric study of fiber-optic laserinduced breakdown spectroscopy for elemental analysis of Z3CN20-09M steel from nuclear power plants, Spectrochim. Acta B At. Spectrosc. 149, 48 (2018)
CrossRef ADS Google scholar
[193]
J. Wu, H. Yu, Y. Qiu, Z. Zhang, T. Liu, F. Xue, W. Yu, X. Li, and A. Qiu, X. Li and A. Qiu: Plasma characteristics and element analysis of steels from a nuclear power plant based on fiber-optic laser-induced breakdown spectroscopy, J. Phys. D Appl. Phys. 52(1), 014006 (2019)
CrossRef ADS Google scholar
[194]
L. Cai, Z. Wang, C. Li, X. Huang, D. Zhao, and H. Ding, Development of an in situ diagnostic system for mapping the deposition distribution on plasma facing components of the HL-2M tokamak, Rev. Sci. Instrum. 90(5), 053503 (2019)
CrossRef ADS Google scholar
[195]
Z. Hu, C. Li, Q. Xiao, P. Liu, F. Ding, H. Mao, J. Wu, D. Zhao, H. Ding, and G. N. Luo, Preliminary results ofin situlaser-induced breakdown spectroscopy for the first wall diagnostics on EAST, Plasma Sci. Technol. 19(2), 025502 (2017)
CrossRef ADS Google scholar
[196]
D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak, Rev. Sci. Instrum. 89(7), 073501 (2018)
CrossRef ADS Google scholar
[197]
Z. Hu, N. Gierse, C. Li, J. Oelmann, D. Zhao, M. Tokar, X. Jiang, D. Nicolai, J. Wu, F. Ding, S. Brezinsek, H. Ding, G. N. Luo, and C. Linsmeier, Laser induced ablation spectroscopy for in situ characterization of the first wall on EAST tokamak, Fusion Eng. Des. 135, 95 (2018)
CrossRef ADS Google scholar
[198]
M. Imran, L. Y. Sun, P. Liu, H. Sattar, D. Zhao, Z. Mu, and H. Ding, Depth profiling of tungsten coating layer on CuCrZr alloy using LIBS approach, Surf. Interface Anal. 51(2), 210 (2019)
CrossRef ADS Google scholar
[199]
P. Liu, D. Wu, L. Y. Sun, D. Y. Zhao, R. Hai, C. Li, H. Ding, Z. H. Hu, L. Wang, J. S. Hu, J. L. Chen, and G. N. Luo, Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D codeposition in EAST tokamak, Fusion Eng. Des. 118, 98 (2017)
CrossRef ADS Google scholar
[200]
J. Liu, D. Wu, C. Fu, R. Hai, X. Yu, L. Sun, and H. Ding, Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laserinduced breakdown spectroscopy in various pressure environments, Plasma Sci. Technol. 21(3), 034017 (2019)
CrossRef ADS Google scholar
[201]
C. Li, N. Gierse, J. Oelmann, S. Brezinsek, M. Rasinski, C. P. Dhard, T. S. Pedersen, R. Konig, Y. F. Liang, H. B. Ding, C. Linsmeier and the W7-X team, Laser-induced breakdown spectroscopy for Wendelstein 7-X stellarator limiter tile analysis, Phys. Scr. T 170, 5 (2017)
CrossRef ADS Google scholar
[202]
R. Hai, L. Sun, D. Wu, Z. He, H. Sattar, J. Liu, W. Tong, C. Li, C. Feng, and H. Ding, Enhanced laser-induced breakdown spectroscopy using the combination of circular and annular laser pulses, J. Anal. At. Spectrom. 34(10), 1982 (2019)
CrossRef ADS Google scholar
[203]
S. Harilal, C. Murzyn, M. Phillips, and J. B. Martin, Hyperfine structures and isotopic shifts of uranium transitions using tunable laser spectroscopy of laser ablation plumes, Spectrochim. Acta B At. Spectrosc. 169, 105828 (2020)
CrossRef ADS Google scholar
[204]
E. J. Kautz, P. J. Skrodzki, M. Burger, B. E. Bernacki, I. Jovanovic, M. C. Phillips, and S. S. Harilal, Timeresolved imaging of atoms and molecules in laserproduced uranium plasmas, J. Anal. At. Spectrom. 34(11), 2236 (2019)
CrossRef ADS Google scholar
[205]
S. Harilal, P. Diwakar, N. LaHaye, and M. Phillips, Spatio-temporal evolution of uranium emission in laserproduced plasmas, Spectrochim. Acta B At. Spectrosc. 111, 1 (2015)
CrossRef ADS Google scholar
[206]
M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes, Sci. Rep. 7(1), 1 (2017)
CrossRef ADS Google scholar
[207]
J. Song, G. C. Y. Chan, X. Mao, J. D. Woodward, R. W. III Smithwick, T. G. Schaaff, A. C. Stowe, C. D. Harris, R. Zheng, V. Zorba, and R. E. Russo, Multivariate nonlinear spectral fitting for uranium isotopic analysis with laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 150, 67 (2018)
CrossRef ADS Google scholar
[208]
X. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry, J. Radioanal. Nucl. Chem. 312(1), 121 (2017)
CrossRef ADS Google scholar
[209]
S. Maji, S. Kumar, K. Sundararajan, and K. Sankaran, Feasibility study for quantification of lanthanides in LiF– KCl salt by laser induced breakdown spectroscopy,J. Radioanal. Nucl. Chem. 314(2), 1279 (2017)
CrossRef ADS Google scholar
[210]
J. Oelmann, N. Gierse, C. Li, S. Brezinsek, M. Zlobinski, B. Turan, S. Haas, and C. Linsmeier, Depth-resolved sample composition analysis using laser-induced ablationquadrupole mass spectrometry and laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 144, 38 (2018)
CrossRef ADS Google scholar
[211]
D. Zhao, R. Yi, J. Oelmann, S. Brezinsek, M. Rasinski, Y. Gao, M. Mayer, C. Dhard, and M. Krause, Ex situ analysis of W7-X divertor plasma-facing components by picosecond laser diagnostics, Phys. Scr. 2020(T171), 014018 (2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2415 KB)

Accesses

Citations

Detail

Sections
Recommended

/