Recent advances in MXene: Preparation, properties, and applications

Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震)

PDF(677 KB)
PDF(677 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 107303. DOI: 10.1007/s11467-015-0493-x
REVIEW ARTICLE
REVIEW ARTICLE

Recent advances in MXene: Preparation, properties, and applications

Author information +
History +

Abstract

Owing to the exceptional properties of graphene, intensive studies have been carried out on novel two-dimensional (2D) materials. In the past several years, an elegant exfoliation approach has been used to successfully create a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered MAX phases. More recently, some unique properties of MXene have been discovered leading to proposals of potential applications. In this review, we summarize the latest progress in development of MXene from both a theoretical and experimental view, with emphasis on the possible applications.

Graphical abstract

Keywords

MXene / exfoliation / graphene / 2D materials / supercapacitors

Cite this article

Download citation ▾
Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震). Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3): 107303 https://doi.org/10.1007/s11467-015-0493-x

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater.6(3), 183 (2007)
CrossRef ADS Google scholar
[3]
S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev.40(5), 2644 (2011)
CrossRef ADS Google scholar
[4]
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci.56(8), 1178(2011)
CrossRef ADS Google scholar
[5]
T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci.57(7), 1061(2012)
CrossRef ADS Google scholar
[6]
Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale5(11), 4541(2013)
CrossRef ADS Google scholar
[7]
Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci.58(8), 1244(2013)
CrossRef ADS Google scholar
[8]
M. Naguib and Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res.48(1), 128(2015)
CrossRef ADS Google scholar
[9]
Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A2(31), 12104(2014)
CrossRef ADS Google scholar
[10]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater.23(37), 4248(2011)
CrossRef ADS Google scholar
[11]
I. R. Shein and A. L. Ivanovskii, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro & Nano Lett.8(2), 59(2013)
CrossRef ADS Google scholar
[12]
M. W. Barsoum and M. A. X. Phases, Properties of Machinable Ternary Carbides and Nitrides, Wiley & Sons, 2013
CrossRef ADS Google scholar
[13]
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides, ACS Nano6(2), 1322(2012)
CrossRef ADS Google scholar
[14]
M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries, J. Am. Chem. Soc.135(43), 15966(2013)
CrossRef ADS Google scholar
[15]
M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L. M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S. J. L.Billinge, and M. W. Barsoum, Synthesis and characterization of two-dimensional Nb4C3 (MXene), Chem. Commun.50(67), 9517(2014)
CrossRef ADS Google scholar
[16]
O. Mashtalir, K. M. Cook, V. N. Mochalin, M. Crowe, M. W. Barsoum, and Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A2(35), 14334(2014)
CrossRef ADS Google scholar
[17]
M. Kurtoglu, M. Naguib, Y. Gogotsi, and M. W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun.2(04), 133(2012)
CrossRef ADS Google scholar
[18]
M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater.23(17), 2185(2013)
CrossRef ADS Google scholar
[19]
J. Come, M. Naguib, P. Rozier, M. W. Barsoum, Y. Gogotsi, P. L. Taberna, M. Morcrette, and P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode, J. Electrochem. Soc.159(8), A1368(2012)
CrossRef ADS Google scholar
[20]
J. Hu, B. Xu, C. Ouyang, S. A. Yang, and Y. Yao, Investigations on V2C and V2CX2 (X= F, OH) monolayer as a promising anode material for li ion batteries from firstprinciples calculations, J. Phys. Chem. C118(42), 24274(2014)
CrossRef ADS Google scholar
[21]
X. Xie, S. Chen, W. Ding, Y. Nie, and Z. Wei, An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X= OH, F) nanosheets for oxygen reduction reaction, Chem. Commun.49(86), 10112(2013)
CrossRef ADS Google scholar
[22]
F. Wang, C. H. Yang, C. Y. Duan, D. Xiao, Y. Tang, and J. F. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc.162(1), B16(2015)
CrossRef ADS Google scholar
[23]
M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater.26(7), 992(2014)
CrossRef ADS Google scholar
[24]
O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun.4, 1716 (2013)
CrossRef ADS Google scholar
[25]
F. Chang, C. Li, J. Yang, H. Tang, and M. Xue, Synthesis of a new graphene-like transition metal carbide by deintercalating Ti3AlC2, Mater. Lett.109, 295 (2013)
CrossRef ADS Google scholar
[26]
J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, Transparent conductive twodimensional titanium carbide epitaxial thin films, Chem. Mater.26(7), 2374(2014)
CrossRef ADS Google scholar
[27]
M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Conductive two-dimensional titanium carbide ’clay’ with high volumetric capacitance, N ature516(7529), 78(2014)
[28]
O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, and M. W. Barsoum, Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid, Mater. Chem. Phys.139(1), 147(2013)
CrossRef ADS Google scholar
[29]
Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Q. Yu, K. W. Nam, X. Q. Yang, A. I. Kolesnikov, and P. R. C. Kent, Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc.136(17), 6385(2014)
CrossRef ADS Google scholar
[30]
Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. L. Zhuang, and P. R. C. Kent, Prediction and characterization of MXene nanosheet anodes for nonlithiumion batteries, ACS Nano8(9), 9606(2014)
CrossRef ADS Google scholar
[31]
T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, and X. Wang, Vibrational properties of Ti3C2 and Ti3C2T2 (T= O, F, OH) monosheets by first-principles calculations: A comparative study, Phys. Chem. Chem. Phys.17(15), 9997(2015)
CrossRef ADS Google scholar
[32]
Q. Tang, Z. Zhou, and P. W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer, J. Am. Chem. Soc.134(40), 16909(2012)
CrossRef ADS Google scholar
[33]
X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, and L. Chen, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X, J. Am. Chem. Soc.137(7), 2715(2015)
CrossRef ADS Google scholar
[34]
A. N. Enyashin and A. L. Ivanovskii, Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of Mxenes Ti3C2txNx(OH)2 from DFTB calculations, J. Solid State Chem.207, 42 (2013)
CrossRef ADS Google scholar
[35]
V. Mauchamp, M. Bugnet, E. P. Bellido, G. A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, and M. W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects, Phys. Rev. B89(23), 235428(2014)
CrossRef ADS Google scholar
[36]
I. R. Shein and A. L. Ivanovskii, Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn (n=1, and 2) from MAX phases: Structural, electronic properties and relative stability from first principles calculations, Superlattices Microstruct.52(2), 147(2012)
CrossRef ADS Google scholar
[37]
I. R. Shein and A. L. Ivanovskii, Graphene-like titanium carbides and nitrides Tin+1 Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability, Comput. Mater. Sci.65, 104 (2012)
CrossRef ADS Google scholar
[38]
Y. Xie and P. R. C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X= C, N) monolayers, Phys. Rev. B87(23), 235441(2013)
CrossRef ADS Google scholar
[39]
S. Zhao, W. Kang, and J. Xue, Manipulation of electronic and magnetic properties of M2C (M= Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains, Appl. Phys. Lett.104(13), 133106(2014)
CrossRef ADS Google scholar
[40]
S. Wang, J. X. Li, Y. L. Du, and C. Cui, First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer, Comput. Mater. Sci.83, 290 (2014)
CrossRef ADS Google scholar
[41]
M. Khazaei, M. Arai, T. Sasaki, M. Estili, and Y. Sakka, Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys.16(17), 7841(2014)
CrossRef ADS Google scholar
[42]
H. Lashgari, M. R. Abolhassani, A. Boochani, S. M. Elahi, and J. Khodadadi, Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations, Solid State Commun.195, 61 (2014)
CrossRef ADS Google scholar
[43]
A. N. Enyashin and A. L. Ivanovskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by Methoxy groups, J. Phys. Chem. C117(26), 13637(2013)
CrossRef ADS Google scholar
[44]
Y. Lee, S. B. Cho, and Y. C. Chung, Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect, ACS Appl. Mater. Interfaces6(16), 14724(2014)
CrossRef ADS Google scholar
[45]
Y. Lee, Y. Hwang, S. B. Cho, and Y. C. Chung, Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field, Phys. Chem. Chem. Phys.16(47), 26273(2014)
CrossRef ADS Google scholar
[46]
N. J. Lane, M. W. Barsoum, and J. M. Rondinelli, Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1,2,3), EPL101(5), 57004(2013)
CrossRef ADS Google scholar
[47]
M. Naguib, O. Mashtalir, M. R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, and M. W. Barsoum, Onestep synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes, Chem. Commun.50(56), 7420(2014)
CrossRef ADS Google scholar
[48]
H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M. R. Lukatskaya, Y. Gogotsi, and M. L. Taheri, In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbonsupported TiO2, J. Mater. Chem. A Mater. Energy Sustain.2(35), 14339(2014)
CrossRef ADS Google scholar
[49]
Z. Y. Li, L. B. Wang, D. D. Sun, Y. D. Zhang, B. Z. Liu, Q. K. Hu, and A. G. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B191, 33 (2015)
CrossRef ADS Google scholar
[50]
J. X. Li, Y. L. Du, C. X. Huo, S. Wang, and C. Cui, Thermal stability of two-dimensional Ti2C nanosheets, Ceram. Int.41(2), 2631(2015)
CrossRef ADS Google scholar
[51]
M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, MXene: A promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun.16(1), 61(2012)
CrossRef ADS Google scholar
[52]
C. Eames and M. S. Islam, Ion intercalation into twodimensional transition-metal carbides: Global screening for new high-capacity battery materials, J. Am. Chem. Soc.136(46), 16270(2014)
CrossRef ADS Google scholar
[53]
D. D. Sun, M. S. Wang, Z. Y. Li, G. X. Fan, L. Z. Fan, and A. G. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries, Electrochem. Commun.47, 80 (2014)
CrossRef ADS Google scholar
[54]
M. D. Levi, M. R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel, L. Daikhin, D. Aurbach, M. W. Barsoum, and Y. Gogotsi, Adv. Energy Mater.5, 1400815 (2014)
[55]
S. J. Zhao, W. Kang, and J. M. Xue, Role of strain and concentration on the li adsorption and diffusion properties on Ti2C layer, J. Phys. Chem. C118(27), 14983(2014)
CrossRef ADS Google scholar
[56]
J. B. Goodenough and K. S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc.135(4), 1167(2013)
CrossRef ADS Google scholar
[57]
D. Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, and V. B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interfaces6(14), 11173(2014)
CrossRef ADS Google scholar
[58]
M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science341(6153), 1502(2013)
CrossRef ADS Google scholar
[59]
E. Yang, H. Ji, J. Kim, H. Kim, and Y. Jung, Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries, Phys. Chem. Chem. Phys.17(7), 5000(2015)
CrossRef ADS Google scholar
[60]
Y. Dall’Agnese, M. R. Lukatskaya, K. M. Cook, P. L. Taberna, Y. Gogotsi, and P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun.48, 118 (2014)
CrossRef ADS Google scholar
[61]
Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. S. Qiu, M. W. Barsoum, and Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci. USA111(47), 16676(2014)
CrossRef ADS Google scholar
[62]
M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M. W. Barsoum, and Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater.27(2), 339(2015)
CrossRef ADS Google scholar
[63]
X. Liang, A. Garsuch, and L. F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for highperformance lithium-sulfur batteries, Angew. Chem. Int. Ed.54(13), 3907(2015)
CrossRef ADS Google scholar
[64]
X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, and A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat. Commun.6, 6544 (2015)
CrossRef ADS Google scholar
[65]
Q.M. Peng, J. X. Guo, Q. R. Zhang, J. Y. Xiang, B. Z. Liu, A. G. Zhou, R. P. Liu, and Y. J. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc.136(11), 4113(2014)
CrossRef ADS Google scholar
[66]
Q. K. Hu, D. D. Sun, Q. H. Wu, H. Y. Wang, L. B. Wang, B. Z. Liu, A. G. Zhou, and J. L. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A117(51), 14253(2013)
CrossRef ADS Google scholar
[67]
Q. K. Hu, H. Y. Wang, Q. H. Wu, X. T. Ye, A. G. Zhou, D. D. Sun, L. B. Wang, B. Z. Liu, and J. L. He, Twodimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations, Int. J. Hydrogen Energy39(20), 10606(2014)
CrossRef ADS Google scholar
[68]
X. Li, G. Fan, and C. Zeng, Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride, Int. J. Hydrogen Energy39(27), 14927(2014)
CrossRef ADS Google scholar
[69]
Y. P. Gao, L. B. Wang, Z. Y. Li, A. G. Zhou, Q. K. Hu, and X. X. Cao, Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate, Solid State Sci.35, 62 (2014)
CrossRef ADS Google scholar
[70]
J. Yang, B. Chen, H. Song, H. Tang, and C. Li, Synthesis, characterization, and tribological properties of twodimensional Ti3C2, Cryst. Res. Technol.49(11), 926(2014)
CrossRef ADS Google scholar
[71]
X. H. Zhang, M. Q. Xue, X. H. Yang, Z. P. Wang, G. S. Luo, Z. D. Huang, X. L. Sui, and C. S. Li, Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil, RSC Adv. 5(4), 2762(2015)
CrossRef ADS Google scholar
[72]
Z. N. Ma, Z. P. Hu, X. D. Zhao, Q. Tang, D. H. Wu, Z. Zhou, and L. X. Zhang, Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and Mxene monolayer, J. Phys. Chem. C118(10), 5593(2014)
CrossRef ADS Google scholar
[73]
J. Chen, K. Chen, D. Tong, Y. Huang, J. Zhang, J. Xue, Q. Huang, and T. Chen, CO2 and temperature dual responsive “Smart” MXene phases, Chem. Commun.51(2), 314(2015)
CrossRef ADS Google scholar
[74]
Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces7(13), 7163(2015)
CrossRef ADS Google scholar
[75]
X. Li, Y. Dai, Y. Ma, Q. Liu, and B. Huang, Intriguing electronic properties of two-dimensional MoS2 /TM2CO2 (TM= Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps, Nanotechnology26(13), 135703(2015)
CrossRef ADS Google scholar
[76]
X. Zhang, Z. Ma, X. Zhao, Q. Tang, and Z. Zhou, Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes, J. Mater. Chem. A3(9), 4960(2015)
CrossRef ADS Google scholar
[77]
S. J. Zhao, W. Kang, and J. M. Xue, MXene nanoribbons, J. Mater. Chem. C3(4), 879(2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(677 KB)

Accesses

Citations

Detail

Sections
Recommended

/