Graphene versus MoS2: A short review

Jin-Wu Jiang

PDF(424 KB)
PDF(424 KB)
Front. Phys. ›› DOI: 10.1007/s11467-015-0459-z
REVIEW ARTICLE
REVIEW ARTICLE

Graphene versus MoS2: A short review

Author information +
History +

Abstract

Graphene and MoS2 are two well-known quasi two-dimensional materials. This review presents a comparative survey of the complementary lattice dynamical and mechanical properties of graphene and MoS2, which facilitates the study of graphene/MoS2 heterostructures. These hybrid heterostructures are expected to mitigate the negative properties of each individual constituent and have attracted intense academic and industrial research interest.

Graphical abstract

Keywords

graphene / molybdenum disulphide / lattice dynamics / mechanical properties

Cite this article

Download citation ▾
Jin-Wu Jiang. Graphene versus MoS2: A short review. Front. Phys., https://doi.org/10.1007/s11467-015-0459-z

References

[1]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater.6(3), 183 (2007)
CrossRef ADS Google scholar
[2]
A. H. C. Neto and K. Novoselov, New directions in science and technology: Two-dimensional crystals, Rep. Prog. Phys.74(8), 082501 (2011)
CrossRef ADS Google scholar
[3]
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of mono-layer graphene, Science321(5887), 385 (2008)
CrossRef ADS Google scholar
[4]
R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide, Phys. Rev. B87(3), 035423 (2013)
CrossRef ADS Google scholar
[5]
Z. C. Ouyang, Z. B. Su, and C. L. Wang, Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion, Phys. Rev. Lett.78(21), 4055 (1997)
CrossRef ADS Google scholar
[6]
Z. C. Tu and Z. C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Phys. Rev. B65(23), 233407 (2002)
CrossRef ADS Google scholar
[7]
M. Arroyo and T. Belytschko, An atomistic-based nite defor-mation membrane for single layer crystalline films, J. Mech. Phys. Solids50(9), 1941 (2002)
CrossRef ADS Google scholar
[8]
Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys.42(10), 102002 (2009)
CrossRef ADS Google scholar
[9]
J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, Elastic bending modulus of single-layer molybdenum disul-phide (MoS2): Finite thickness effect, Nanotechnology24(43), 435705 (2013)
CrossRef ADS Google scholar
[10]
J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun.5, 4727 (2014)
CrossRef ADS Google scholar
[11]
A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun.143(1-2), 47 (2007)
CrossRef ADS Google scholar
[12]
A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81(1), 109 (2009)
CrossRef ADS Google scholar
[13]
A. K. Geim, Graphene: Status and prospects, Science324(5934), 1530 (2009)
CrossRef ADS Google scholar
[14]
L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dressel-haus, Raman spectroscopy in graphene, Physics Reports473, 51 (2009)
CrossRef ADS Google scholar
[15]
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govin-daraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed.48(42), 7752 (2009)
CrossRef ADS Google scholar
[16]
M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev.110(1), 132 (2010)
CrossRef ADS Google scholar
[17]
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics4(9), 611 (2010)
CrossRef ADS Google scholar
[18]
F. Schwierz, Graphene transistors, Nat. Nanotechnol.5(7), 487 (2010)
CrossRef ADS Google scholar
[19]
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater.10(8), 569 (2011)
CrossRef ADS Google scholar
[20]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol.7(11), 699 (2012)
CrossRef ADS Google scholar
[21]
M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem.5(4), 263 (2013)
CrossRef ADS Google scholar
[22]
M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like twodimensional materials, Chem. Rev.113(5), 3766 (2013)
CrossRef ADS Google scholar
[23]
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano7(4), 2898 (2013)
CrossRef ADS Google scholar
[24]
X. Huang, Z. Zeng, and H. Zhang, Metal dichalcogenide nanosheets: Preparation, properties and applications, Chem. Soc. Rev.42(5), 1934 (2013)
CrossRef ADS Google scholar
[25]
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C.Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science340(6138), 1311 (2013)
CrossRef ADS Google scholar
[26]
R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, and K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation, ACS Nano7(11), 10167 (2013)
CrossRef ADS Google scholar
[27]
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College, 1998
[28]
J. W. Jiang, H. S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger–Weber parametrization, mechanical properties, and thermal conductivity, J. Appl. Phys.114(6), 064307 (2013)
CrossRef ADS Google scholar
[29]
A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B84(15), 155413 (2011)
CrossRef ADS Google scholar
[30]
N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B12(2), 659 (1975)
CrossRef ADS Google scholar
[31]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B54(16), 11169 (1996)
CrossRef ADS Google scholar
[32]
J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-quera, P. Ordejon, and D. Sánchez-Portal, The siesta method for ab initio ordern materials simulation, J. Phys.: Condens. Matter14(11), 2745 (2002) (Code available from http://www.icmab.es/dmmis/leem/siesta/.)
CrossRef ADS Google scholar
[33]
D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter14(4), 783 (2002)
CrossRef ADS Google scholar
[34]
J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett.61(25), 2879 (1988)
CrossRef ADS Google scholar
[35]
F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B31(8), 5262 (1985)
CrossRef ADS Google scholar
[36]
F. F. Abraham and I. P. Batra, Theoretical interpretation of atomic force microscope images of graphite, Surf. Sci.209(1-2), L125 (1989)
[37]
T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond softening in monolayer graphite formed on transitionmetal carbide surfaces, Phys. Rev. B42(18), 11469 (1990)
CrossRef ADS Google scholar
[38]
T. Liang, S. R. Phillpot, and S. B. Sinnott, Parametrization of a reactive many-body potential for Mo-S systems, Phys. Rev. B79(24), 245110 (2009)
CrossRef ADS Google scholar
[39]
J. A. Stewart and D. E. Spearot, Atomistic simulations of nanoindentation on the basal plane of crystalline molyb-denum disulfide (MoS2), Model. Simul. Mater. Sci. Eng.21(4), 045003 (2013)
CrossRef ADS Google scholar
[40]
J. D. Gale, Gulp: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc., Faraday Trans.93(4), 629 (1997) (Code available from https://projects.ivec.org/gulp/.)
CrossRef ADS Google scholar
[41]
Lammps, http://www.cs.sandia.gov/~sjplimp/lammps.html (2012)
[42]
S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2, Phys. Rev. B44(8), 3955 (1991)
CrossRef ADS Google scholar
[43]
E. Dobardžić, I. Milosevic, B. Dakic, and M. Damnjanovic, Raman and infrared-active modes inMS2 nanotubes (M=Mo,W), Phys. Rev. B74(3), 033403 (2006)
CrossRef ADS Google scholar
[44]
M. Damnjanovic, E. Dobardzic, I. Miloeevic, M. Virsek, and M. Remskar, Phonons in MoS2 and WS2 nanotubes, Mater. Manuf. Process.23(6), 579 (2008)
CrossRef ADS Google scholar
[45]
H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Vibrational properties of graphene and graphene layers, Journal of Raman Spectroscopy40(12), 1791 (2009)
CrossRef ADS Google scholar
[46]
X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, and P. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, Phys. Rev. B87, 115413 (2013)
CrossRef ADS Google scholar
[47]
J. W. Jiang, H. S. Park, and T. Rabczuk, MoS2 nanoresonators: Intrinsically better than graphene? Nanoscale6(7), 3618 (2014)
CrossRef ADS Google scholar
[48]
F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B76(6), 064120 (2007)
CrossRef ADS Google scholar
[49]
F. Hao, D. Fang, and Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett.99(4), 041901 (2011)
CrossRef ADS Google scholar
[50]
Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B405(5), 1301 (2010)
CrossRef ADS Google scholar
[51]
Y. Gao and P. Hao, Mechanical properties of mono-layer graphene under tensile and compressive loading, Physica E41(8), 1561 (2009)
CrossRef ADS Google scholar
[52]
Y. Guo, L. Jiang, and W. Guo, Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation, Phys. Rev. B82(11), 115440 (2010)
CrossRef ADS Google scholar
[53]
Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold: A demonstration of strengthened graphene, Nanotechnology22(40), 405701 (2011)
CrossRef ADS Google scholar
[54]
Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagonheptagon defects in graphene, Nat. Mater.11(9), 759 (2012)
CrossRef ADS Google scholar
[55]
Y. Zhang and C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diamond Related Materials24, 1 (2012)
CrossRef ADS Google scholar
[56]
Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain, Phys. Lett. A376(12-13), 1166 (2012)
CrossRef ADS Google scholar
[57]
Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B74(24), 245413 (2006)
CrossRef ADS Google scholar
[58]
L. Shen, H. S. Shen, and C. L. Zhang, Temperaturedependent elastic properties of single layer graphene sheets, Mater. Des.31(9), 4445 (2010)
CrossRef ADS Google scholar
[59]
T. Han, P. He, Y. Luo, and X. Zhang, Research progress in the mechanical properties of graphene, Advances in Mechanics41(3), 279 (2011)
[60]
L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3d networks: Intriguing thermal and mechanical properties, J. Mater. Chem.22(4), 1435 (2011)
CrossRef ADS Google scholar
[61]
J. W. Jiang, J. S. Wang, and B. Li, Elastic and nonlinear stiffness of graphene: A simple approach, Phys. Rev. B81(7), 073405 (2010)
CrossRef ADS Google scholar
[62]
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano5(12), 9703 (2011)
CrossRef ADS Google scholar
[63]
R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Erratum: Nonlinear elastic behavior of twodimensional molybdenum disulfide [Phys. Rev. B 87, 035423 (2013)], Phys. Rev. B87(7), 079901 (2013)
CrossRef ADS Google scholar
[64]
K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures, arXiv: 1407.2669 (2014)
[65]
A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nano sheets, Adv. Mater.24(6), 772 (2012)
CrossRef ADS Google scholar
[66]
E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett.102(23), 235502 (2009)
CrossRef ADS Google scholar
[67]
C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology17(3), 864 (2006)
CrossRef ADS Google scholar
[68]
H. Zhao, K. Min, and N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett.9(8), 3012 (2009)
CrossRef ADS Google scholar
[69]
P. Tao, H. Guo, T. Yang, and Z. Zhang, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys.115(5), 054305 (2014)
CrossRef ADS Google scholar
[70]
Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol.9(5), 391 (2014)
CrossRef ADS Google scholar
[71]
J. W. Jiang, Phonon bandgap engineering of strained monolayer MoS2, Nanoscale6(14), 8326 (2014)
CrossRef ADS Google scholar
[72]
M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C118(3), 1515 (2014)
CrossRef ADS Google scholar
[73]
K. Q. Dang, J. P. Simpson, and D. E. Spearot, Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations, Scr. Mater.76, 41 (2014)
CrossRef ADS Google scholar
[74]
Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending rigidity and gaussian bending stiffness of single-layered graphene, Nano Lett.13(1), 26 (2013)
CrossRef ADS Google scholar
[75]
X. Zhou, J. J. Zhou, and Z. C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B62(20), 13692 (2000)
CrossRef ADS Google scholar
[76]
T. Ma, B. Li, and T. Chang, Chirality- and curvaturedependent bending stiffness of single layer graphene, Appl. Phys. Lett.99(20), 201901 (2011)
CrossRef ADS Google scholar
[77]
Y. Shen and H. Wu, Interlayer shear effect on multilayer graphene subjected to bending, Appl. Phys. Lett.100(10), 101909 (2012)
CrossRef ADS Google scholar
[78]
X. Shi, B. Peng, N. M. Pugno, and H. Gao, Stretch-induced softening of bending rigidity in graphene, Appl. Phys. Lett.100(19), 191913 (2012)
CrossRef ADS Google scholar
[79]
M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule, Phys. Rev. B69(11), 115415 (2004)
CrossRef ADS Google scholar
[80]
Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano5(5), 3645 (2011)
CrossRef ADS Google scholar
[81]
J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett.104(16), 166805 (2010)
CrossRef ADS Google scholar
[82]
J. X. Shi, Q. Q. Ni, X. W. Lei, and T. Natsuki, Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model, Comput. Mater. Sci.50(11), 3085 (2011)
CrossRef ADS Google scholar
[83]
C. Wang, L. Lan, and H. Tan, The physics of wrinkling in graphene membranes under local tension, Phys. Chem. Chem. Phys.15(8), 2764 (2013)
CrossRef ADS Google scholar
[84]
S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Ed., New York: McGraw-Hill, 1987
[85]
J. W. Jiang, The buckling of single-layer MoS2 under uniaxial compression, Nanotechnology25(35), 355402 (2014)
CrossRef ADS Google scholar
[86]
M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem.81(14), 5603 (2009)
CrossRef ADS Google scholar
[87]
Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Radio frequency electrical transduction of graphene mechanical resonators, Appl. Phys. Lett.97(24), 243111 (2010)
CrossRef ADS Google scholar
[88]
X. Q. He, S. Kitipornchai, and K. M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology16(10), 2086 (2005)
CrossRef ADS Google scholar
[89]
Y. Liu, Z. Xu, and Q. Zheng, The interlayer shear effect on graphene multilayer resonators, J. Mech. Phys. Solids59(8), 1613 (2011)
CrossRef ADS Google scholar
[90]
J. Wang, X. He, S. Kitipornchai, and H. Zhang, Geometrical nonlinear free vibration of multi-layered graphene sheets, J. Phys. D: Appl. Phys.44(13), 135401 (2011)
CrossRef ADS Google scholar
[91]
Y. Xu, S. Yan, Z. Jin, and Y. Wang, Quantum-squeezing effects of strained multilayer graphene nems, Nanoscale Res. Lett.6(1), 355 (2011)
CrossRef ADS Google scholar
[92]
F. Gu, J. H. Zhang, L. J. Yang, and B. Gu, Molecular dynamics simulation of resonance properties of strain graphene nanoribbons, Acta Phys. Sin.60(5), 056103 (2011)
[93]
Z. B. Shen, H. L. Tang, D. K. Li, and G. J. Tang, Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci.61, 200 (2012)
CrossRef ADS Google scholar
[94]
S. M. Zhou, L. P. Sheng, and Z. B. Shen, Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci.86, 73 (2014)
CrossRef ADS Google scholar
[95]
K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum.76(6), 061101 (2005)
CrossRef ADS Google scholar
[96]
A. M. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Large-scale arrays of singlelayer graphene resonators, Nano Lett.10(12), 4869 (2010)
CrossRef ADS Google scholar
[97]
C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical read-out, Nat. Nanotechnol.4(12), 861 (2009)
CrossRef ADS Google scholar
[98]
J. W. Jiang, B. S. Wang, H. S. Park, and T. Rabczuk, Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators, Nanotechnology25(2), 025501 (2014)
CrossRef ADS Google scholar
[99]
C. Edblom and A. Isacsson, Diffusion-induced dissipation and mode coupling in nanomechanical resonators, arXiv: 1406.1365v1 (2014)
[100]
A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson- Rae, and A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene, Nat. Nanotechnol.6(6), 339 (2011)
CrossRef ADS Google scholar
[101]
A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Singlelayer MoS2 mechanical resonators, Adv. Mater.25(46), 6719 (2013)
CrossRef ADS Google scholar
[102]
J. Lee, Z. Wang, K. He, J. Shan, and P. X. L. Feng, High frequency MoS2 nanomechanical resonators, ACS Nano7(7), 6086 (2013)
CrossRef ADS Google scholar
[103]
A. A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol.8(8), 549 (2013)
CrossRef ADS Google scholar
[104]
Y. M. Lin and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett.8(8), 2119 (2008)
CrossRef ADS Google scholar
[105]
A. N. Pal and A. Ghosh, Resistance noise in electrically biased bilayer graphene, Phys. Rev. Lett.102(12), 126805 (2009)
CrossRef ADS Google scholar
[106]
Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended graphene sensors with improved signal and reduced noise, Nano Lett.10(5), 1864 (2010)
CrossRef ADS Google scholar
[107]
S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A. A. Balandin, Electrical and noise characteristics of graphene fieldeffect transistors: Ambient effects, noise sources and physical mechanisms, J. Phys.: Condens. Matter22(39), 395302 (2010)
CrossRef ADS Google scholar
[108]
G. Liu, S. Rumyantsev, M. Shur, and A. A. Balandin, Graphene thickness-graded transistors with reduced electronic noise, Appl. Phys. Lett.100(3), 033103 (2012)
CrossRef ADS Google scholar
[109]
M. Z. Hossain, S. L. Roumiantsev, M. Shur, and A. A. Balandin, Reduction of 1/f noise in graphene after electronbeam irradiation, Appl. Phys. Lett.102(15), 153512 (2013)
CrossRef ADS Google scholar
[110]
K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B76(11), 115409 (2007)
CrossRef ADS Google scholar
[111]
S. Yien, V. Tayari, J. O. Island, J. M. Porter, and A. R. Champagne, Electronic thermal conductivity measurements in intrinsic graphene, Phys. Rev. B87(24), 241411 (2013)
CrossRef ADS Google scholar
[112]
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B62(4), 381 (2008)
CrossRef ADS Google scholar
[113]
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium greens function method for quantum thermal transport, Front. Phys.9(6), 673 (2013)
CrossRef ADS Google scholar
[114]
S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater.11(3), 203 (2012)
CrossRef ADS Google scholar
[115]
Z. Guo, D. Zhang, and X. G. Gong, Thermal conductivity of graphene nanoribbons, Appl. Phys. Lett.95(16), 163103 (2009)
CrossRef ADS Google scholar
[116]
Y. Xu, X. Chen, B. L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett.95(23), 233116 (2009)
CrossRef ADS Google scholar
[117]
S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano5(1), 321 (2011)
CrossRef ADS Google scholar
[118]
N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology22(10), 105705 (2011)
CrossRef ADS Google scholar
[119]
Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon49(8), 2653 (2011)
CrossRef ADS Google scholar
[120]
Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter23(31), 315302 (2011)
CrossRef ADS Google scholar
[121]
X. Zhai and G. Jin, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, Europhys. Lett.96(1), 16002 (2011)
CrossRef ADS Google scholar
[122]
X. F. Peng, X. J. Wang, Z. Q. Gong, and K. Q. Chen, Ballistic thermal conductance in graphene nanoribbon with double-cavity structure, Appl. Phys. Lett.99(23), 233105 (2011)
CrossRef ADS Google scholar
[123]
F. Ma, H. B. Zheng, Y. J. Sun, D. Yang, K. W. Xu, and P. K. Chu, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett.101(11), 111904 (2012)
CrossRef ADS Google scholar
[124]
Z. X. Guo, J. W. Ding, and X. G. Gong, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B85(23), 235429 (2012)
CrossRef ADS Google scholar
[125]
N. Mingo and D. A. Broido, Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett.95(9), 096105 (2005)
CrossRef ADS Google scholar
[126]
N. Mingo and D. A. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”, Nano Lett.5(7), 1221 (2005)
CrossRef ADS Google scholar
[127]
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering, Phys. Rev. B79(15), 155413 (2009)
CrossRef ADS Google scholar
[128]
D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett.12(6), 3238 (2012)
CrossRef ADS Google scholar
[129]
X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Lengthdependent thermal conductivity in suspended single-layer graphene, Nat. Commun.5, 3689 (2014)
CrossRef ADS Google scholar
[130]
D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, Phys. Status Solidi B248(11), 2609 (2011)
CrossRef ADS Google scholar
[131]
J. Wang, X. M. Wang, Y. F. Chen, and J. S. Wang, Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach, J. Phys.: Condens. Matter24(29), 295403 (2012)
CrossRef ADS Google scholar
[132]
D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter24(23), 233203 (2012)
CrossRef ADS Google scholar
[133]
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys.84(3), 1045 (2012)
CrossRef ADS Google scholar
[134]
J. W. Jiang, J. Lan, J. S. Wang, and B. Li, Iso-topic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism, J. Appl. Phys.107(5), 054314 (2010)
CrossRef ADS Google scholar
[135]
W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett.10(5), 1645 (2010)
CrossRef ADS Google scholar
[136]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett.8(3), 902 (2008)
CrossRef ADS Google scholar
[137]
S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett.92(15), 151911 (2008)
CrossRef ADS Google scholar
[138]
L. Lindsay, D. A. Broido, and N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B83(23), 235428 (2011)
CrossRef ADS Google scholar
[139]
Z. Aksamija and I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering, Appl. Phys. Lett.98(14), 141919 (2011)
CrossRef ADS Google scholar
[140]
L. Chen and S. Kumar, Thermal transport in graphene supported on copper, J. Appl. Phys.112(4), 043502 (2012)
CrossRef ADS Google scholar
[141]
Z. Wei, J. Yang, K. Bi, and Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys.116(15), 153503 (2014)
CrossRef ADS Google scholar
[142]
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater.9(7), 555 (2010)
CrossRef ADS Google scholar
[143]
D. Singh, J. Y. Murthy, and T. S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys.110(4), 044317 (2011)
CrossRef ADS Google scholar
[144]
G. Zhang and H. Zhang, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale3(11), 4604 (2011)
CrossRef ADS Google scholar
[145]
W.R. Zhong, M.P. Zhang, B.Q. Ai, and D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of fewlayer graphene: A molecular dynamics study, Appl. Phys. Lett.98(11), 113107 (2011)
CrossRef ADS Google scholar
[146]
W. R. Zhong, W. H. Huang, X. R. Deng, and B. Q. Ai, Thermal rectification in thickness-asymmetric graphene nanoribbons, Appl. Phys. Lett.99(19), 193104 (2011)
CrossRef ADS Google scholar
[147]
A. Rajabpour and S. M. Vaez Allaei, Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study, Appl. Phys. Lett.101(5), 053115 (2012)
CrossRef ADS Google scholar
[148]
H. Y. Cao, Z. X. Guo, H. Xiang, and X. G. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Phys. Lett. A376(4), 525 (2012)
CrossRef ADS Google scholar
[149]
T. Sun, J. Wang, and W. Kang, Van der waals interactiontuned heat transfer in nanostructures, Nanoscale5(1), 128 (2012)
CrossRef ADS Google scholar
[150]
S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, Temperature dependent raman studies and thermal conductivity of few layer MoS2, J. Phys. Chem. C117(17), 9042 (2013)
CrossRef ADS Google scholar
[151]
V. Varshney, S. S. Patnaik, C. Muratore, A. K. Roy, A. A. Voevodin, and B. L. Farmer, Md simulations of molybdenum disulphide (MoS2): Force-field parameterization and thermal transport behavior, Comput. Mater. Sci.48(1), 101 (2010)
CrossRef ADS Google scholar
[152]
W. Huang, H. Da, and G. Liang, Thermoelectric performance of MX2 (M=Mo, W; X=S, Se) monolayers, J. Appl. Phys.113(10), 104304 (2013)
CrossRef ADS Google scholar
[153]
J. W. Jiang, X. Y. Zhuang, and T. Rabczuk, Orientation dependent thermal conductance in single-layer MoS2, Scientific Reports3, 2209 (2013)
CrossRef ADS Google scholar
[154]
J. W. Jiang, J. S. Wang, and B. Li, Thermal conductance of graphene and dimerite, Phys. Rev. B79(20), 205418 (2009)
CrossRef ADS Google scholar
[155]
X. Liu, G. Zhang, Q. X. Pei, and Y. W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett.103(13), 133113 (2013)
CrossRef ADS Google scholar
[156]
Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Graphene quilts for thermal management of high-power gan transistors, Nat. Commun.3, 827 (2012)
CrossRef ADS Google scholar
[157]
V. Goyal and A. A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials, Appl. Phys. Lett.100(7), 073113 (2012)
CrossRef ADS Google scholar
[158]
K. M. F. Shahil and A. A. Balandin, Graphenemultilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett.12(2), 861 (2012)
CrossRef ADS Google scholar
[159]
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources248(15), 37 (2014)
CrossRef ADS Google scholar
[160]
H. Malekpour, K. H. Chang, J. C. Chen, C. Y. Lu, D. L. Nika, K. S. Novoselov, and A. A. Balandin, Thermal conductivity of graphene laminate, Nano Lett.14(9), 5155 (2014)
CrossRef ADS Google scholar
[161]
P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropy-lene nanocomposites with enhanced mechanical and thermal properties, Polymer52(18), 4001 (2011)
CrossRef ADS Google scholar
[162]
W. Yu, H. Xie, and D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets, Nanotechnology21(5), 055705 (2010)
CrossRef ADS Google scholar
[163]
W. Yu, H. Xie, and W. Chen, Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets, J. Appl. Phys.107(9), 094317 (2010)
CrossRef ADS Google scholar
[164]
W. Yu, H. Xie, X. Wang, and X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A375(10), 1323 (2011)
CrossRef ADS Google scholar
[165]
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, , Supercapacitor devices based on graphene materials, J. Phys. Chem. C113, 131030 (2009)
CrossRef ADS Google scholar
[166]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438(7065), 197 (2005)
CrossRef ADS Google scholar
[167]
S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.H. Lee, S. G. Louie, and A. Lanzara, First direct observation of Dirac fermions in graphite, Nat. Phys.2(9), 595 (2006)
CrossRef ADS Google scholar
[168]
B. Partoens and F. M. Peeters, Normal and dirac fermions in graphene multilayers: Tight-binding description of the electronic structure, Phys. Rev. B75(19), 193402 (2007)
CrossRef ADS Google scholar
[169]
J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. First, L. Magaud, and E. Conrad, Why multi-layer graphene on 4h-sic 000ī behaves like a single sheet of graphene, Phys. Rev. Lett.100(12), 125504 (2008)
CrossRef ADS Google scholar
[170]
S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Tightbinding description of graphene, Phys. Rev. B66(3), 035412 (2002)
CrossRef ADS Google scholar
[171]
V. Pereira, A. Castro Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B80(4), 045401 (2009)
CrossRef ADS Google scholar
[172]
F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering, Nat. Phys.6(1), 30 (2010)
CrossRef ADS Google scholar
[173]
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B54(24), 17954 (1996)
CrossRef ADS Google scholar
[174]
K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group vi transition metal dichalcogenides, J. Phys. Chem.86(4), 463 (1982)
CrossRef ADS Google scholar
[175]
T. Eknapakul, P. D. C. King, M. Asakawa, P. Buaphet, R. H. He, S. K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Electronic structure of a quasi-freestanding MoS2 monolayer, Nano Lett.14(3), 1312 (2014)
CrossRef ADS Google scholar
[176]
Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanorib-bons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc.130(49), 16739 (2008)
CrossRef ADS Google scholar
[177]
P. Lu, X. Wu, W. Guo, and X. C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes, Phys. Chem. Chem. Phys.14(37), 13035 (2012)
CrossRef ADS Google scholar
[178]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol.6(3), 147 (2011)
CrossRef ADS Google scholar
[179]
V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors, Nano Lett.13(9), 4351 (2013)
CrossRef ADS Google scholar
[180]
E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Research5(1), 43 (2012)
CrossRef ADS Google scholar
[181]
H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett.13(8), 3626 (2013)
CrossRef ADS Google scholar
[182]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett.105(13), 136805 (2010)
CrossRef ADS Google scholar
[183]
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science320(5881), 1308 (2008)
CrossRef ADS Google scholar
[184]
F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol.4(12), 839 (2009)
CrossRef ADS Google scholar
[185]
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Raden-ovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol.8(7), 497 (2013)
CrossRef ADS Google scholar
[186]
C. H. Lui, A. J. Frenzel, D. V. Pilon, Y. H. Lee, X. Ling, G. M. Akselrod, , Trion induced negative photoconductivity in monolayer MoS2, arXiv: 1406.5100 (2014)
[187]
K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, S. Kaushal, and A. Ghosh, Optically active heterostructures of graphene and ultrathin MoS2, Solid State Commun.175-176, 35 (2013)
CrossRef ADS Google scholar
[188]
G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, and U. Kaiser, The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett.103(20), 203107 (2013)
CrossRef ADS Google scholar
[189]
N. Myoung, K. Seo, S. J. Lee, and G. Ihm, Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures, ACS Nano7(8), 7021 (2013)
CrossRef ADS Google scholar
[190]
S. Bertolazzi, D. Krasnozhon, and A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures, Nano Lett.7(4), 3246 (2013)
CrossRef ADS Google scholar
[191]
S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Band offset and negative compressibility in graphene- MoS2 heterostructures, Nano Lett.14(4), 2039 (2014)
CrossRef ADS Google scholar
[192]
W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, , Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports4, 3826 (2014)
CrossRef ADS Google scholar
[193]
F. Xia, X. Hu, Y. Sun, W. Luo, and Y. Huang, Layer-bylayer assembled MoO2 graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries, Nanoscale4(15), 4707 (2012)
CrossRef ADS Google scholar
[194]
W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, , Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports4, 3826 (2013)
[195]
H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate, Opt. Express22(13), 15969 (2014)
CrossRef ADS Google scholar
[196]
L. F. Wang, T. B. Ma, Y. Z. Hu, Q. Zheng, H. Wang, and J. Luo, Superlubricity of two-dimensional fluorographene/ MoS2 heterostructure: A first-principles study, Nanotechnology25(38), 385701 (2014)
CrossRef ADS Google scholar
[197]
Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale3(9), 3883 (2011)
CrossRef ADS Google scholar
[198]
L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett.14(6), 3055 (2014)
CrossRef ADS Google scholar
[199]
R. H. Miwa and W. L. Scopel, Lithium incorporation at the MoS2/graphene interface: An ab initio investigation, J. Phys.: Condens. Matter25(44), 445301 (2013)
CrossRef ADS Google scholar
[200]
J. W. Jiang and H. S. Park, Mechanical properties of MoS2/graphene heterostructures, Appl. Phys. Lett.105(3), 033108 (2014)
CrossRef ADS Google scholar
[201]
K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, Effective permittivity of mixtures: Numerical validation by the FDTD method, IEEE Trans. Geosci. Rem. Sens.38(3), 1303 (2000)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(424 KB)

Accesses

Citations

Detail

Sections
Recommended

/