Graphene versus MoS2: A short review
Jin-Wu Jiang
Graphene versus MoS2: A short review
Graphene and MoS2 are two well-known quasi two-dimensional materials. This review presents a comparative survey of the complementary lattice dynamical and mechanical properties of graphene and MoS2, which facilitates the study of graphene/MoS2 heterostructures. These hybrid heterostructures are expected to mitigate the negative properties of each individual constituent and have attracted intense academic and industrial research interest.
graphene / molybdenum disulphide / lattice dynamics / mechanical properties
[1] |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater.6(3), 183 (2007)
CrossRef
ADS
Google scholar
|
[2] |
A. H. C. Neto and K. Novoselov, New directions in science and technology: Two-dimensional crystals, Rep. Prog. Phys.74(8), 082501 (2011)
CrossRef
ADS
Google scholar
|
[3] |
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of mono-layer graphene, Science321(5887), 385 (2008)
CrossRef
ADS
Google scholar
|
[4] |
R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide, Phys. Rev. B87(3), 035423 (2013)
CrossRef
ADS
Google scholar
|
[5] |
Z. C. Ouyang, Z. B. Su, and C. L. Wang, Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion, Phys. Rev. Lett.78(21), 4055 (1997)
CrossRef
ADS
Google scholar
|
[6] |
Z. C. Tu and Z. C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Phys. Rev. B65(23), 233407 (2002)
CrossRef
ADS
Google scholar
|
[7] |
M. Arroyo and T. Belytschko, An atomistic-based nite defor-mation membrane for single layer crystalline films, J. Mech. Phys. Solids50(9), 1941 (2002)
CrossRef
ADS
Google scholar
|
[8] |
Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys.42(10), 102002 (2009)
CrossRef
ADS
Google scholar
|
[9] |
J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, Elastic bending modulus of single-layer molybdenum disul-phide (MoS2): Finite thickness effect, Nanotechnology24(43), 435705 (2013)
CrossRef
ADS
Google scholar
|
[10] |
J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun.5, 4727 (2014)
CrossRef
ADS
Google scholar
|
[11] |
A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun.143(1-2), 47 (2007)
CrossRef
ADS
Google scholar
|
[12] |
A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[13] |
A. K. Geim, Graphene: Status and prospects, Science324(5934), 1530 (2009)
CrossRef
ADS
Google scholar
|
[14] |
L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dressel-haus, Raman spectroscopy in graphene, Physics Reports473, 51 (2009)
CrossRef
ADS
Google scholar
|
[15] |
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govin-daraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed.48(42), 7752 (2009)
CrossRef
ADS
Google scholar
|
[16] |
M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev.110(1), 132 (2010)
CrossRef
ADS
Google scholar
|
[17] |
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics4(9), 611 (2010)
CrossRef
ADS
Google scholar
|
[18] |
F. Schwierz, Graphene transistors, Nat. Nanotechnol.5(7), 487 (2010)
CrossRef
ADS
Google scholar
|
[19] |
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater.10(8), 569 (2011)
CrossRef
ADS
Google scholar
|
[20] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol.7(11), 699 (2012)
CrossRef
ADS
Google scholar
|
[21] |
M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem.5(4), 263 (2013)
CrossRef
ADS
Google scholar
|
[22] |
M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like twodimensional materials, Chem. Rev.113(5), 3766 (2013)
CrossRef
ADS
Google scholar
|
[23] |
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano7(4), 2898 (2013)
CrossRef
ADS
Google scholar
|
[24] |
X. Huang, Z. Zeng, and H. Zhang, Metal dichalcogenide nanosheets: Preparation, properties and applications, Chem. Soc. Rev.42(5), 1934 (2013)
CrossRef
ADS
Google scholar
|
[25] |
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C.Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science340(6138), 1311 (2013)
CrossRef
ADS
Google scholar
|
[26] |
R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, and K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation, ACS Nano7(11), 10167 (2013)
CrossRef
ADS
Google scholar
|
[27] |
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College, 1998
|
[28] |
J. W. Jiang, H. S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger–Weber parametrization, mechanical properties, and thermal conductivity, J. Appl. Phys.114(6), 064307 (2013)
CrossRef
ADS
Google scholar
|
[29] |
A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B84(15), 155413 (2011)
CrossRef
ADS
Google scholar
|
[30] |
N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B12(2), 659 (1975)
CrossRef
ADS
Google scholar
|
[31] |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[32] |
J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-quera, P. Ordejon, and D. Sánchez-Portal, The siesta method for ab initio ordern materials simulation, J. Phys.: Condens. Matter14(11), 2745 (2002) (Code available from http://www.icmab.es/dmmis/leem/siesta/.)
CrossRef
ADS
Google scholar
|
[33] |
D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter14(4), 783 (2002)
CrossRef
ADS
Google scholar
|
[34] |
J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett.61(25), 2879 (1988)
CrossRef
ADS
Google scholar
|
[35] |
F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B31(8), 5262 (1985)
CrossRef
ADS
Google scholar
|
[36] |
F. F. Abraham and I. P. Batra, Theoretical interpretation of atomic force microscope images of graphite, Surf. Sci.209(1-2), L125 (1989)
|
[37] |
T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond softening in monolayer graphite formed on transitionmetal carbide surfaces, Phys. Rev. B42(18), 11469 (1990)
CrossRef
ADS
Google scholar
|
[38] |
T. Liang, S. R. Phillpot, and S. B. Sinnott, Parametrization of a reactive many-body potential for Mo-S systems, Phys. Rev. B79(24), 245110 (2009)
CrossRef
ADS
Google scholar
|
[39] |
J. A. Stewart and D. E. Spearot, Atomistic simulations of nanoindentation on the basal plane of crystalline molyb-denum disulfide (MoS2), Model. Simul. Mater. Sci. Eng.21(4), 045003 (2013)
CrossRef
ADS
Google scholar
|
[40] |
J. D. Gale, Gulp: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc., Faraday Trans.93(4), 629 (1997) (Code available from https://projects.ivec.org/gulp/.)
CrossRef
ADS
Google scholar
|
[41] |
Lammps, http://www.cs.sandia.gov/~sjplimp/lammps.html (2012)
|
[42] |
S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2, Phys. Rev. B44(8), 3955 (1991)
CrossRef
ADS
Google scholar
|
[43] |
E. Dobardžić, I. Milosevic, B. Dakic, and M. Damnjanovic, Raman and infrared-active modes inMS2 nanotubes (M=Mo,W), Phys. Rev. B74(3), 033403 (2006)
CrossRef
ADS
Google scholar
|
[44] |
M. Damnjanovic, E. Dobardzic, I. Miloeevic, M. Virsek, and M. Remskar, Phonons in MoS2 and WS2 nanotubes, Mater. Manuf. Process.23(6), 579 (2008)
CrossRef
ADS
Google scholar
|
[45] |
H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Vibrational properties of graphene and graphene layers, Journal of Raman Spectroscopy40(12), 1791 (2009)
CrossRef
ADS
Google scholar
|
[46] |
X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, and P. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, Phys. Rev. B87, 115413 (2013)
CrossRef
ADS
Google scholar
|
[47] |
J. W. Jiang, H. S. Park, and T. Rabczuk, MoS2 nanoresonators: Intrinsically better than graphene? Nanoscale6(7), 3618 (2014)
CrossRef
ADS
Google scholar
|
[48] |
F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B76(6), 064120 (2007)
CrossRef
ADS
Google scholar
|
[49] |
F. Hao, D. Fang, and Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett.99(4), 041901 (2011)
CrossRef
ADS
Google scholar
|
[50] |
Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B405(5), 1301 (2010)
CrossRef
ADS
Google scholar
|
[51] |
Y. Gao and P. Hao, Mechanical properties of mono-layer graphene under tensile and compressive loading, Physica E41(8), 1561 (2009)
CrossRef
ADS
Google scholar
|
[52] |
Y. Guo, L. Jiang, and W. Guo, Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation, Phys. Rev. B82(11), 115440 (2010)
CrossRef
ADS
Google scholar
|
[53] |
Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold: A demonstration of strengthened graphene, Nanotechnology22(40), 405701 (2011)
CrossRef
ADS
Google scholar
|
[54] |
Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagonheptagon defects in graphene, Nat. Mater.11(9), 759 (2012)
CrossRef
ADS
Google scholar
|
[55] |
Y. Zhang and C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diamond Related Materials24, 1 (2012)
CrossRef
ADS
Google scholar
|
[56] |
Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain, Phys. Lett. A376(12-13), 1166 (2012)
CrossRef
ADS
Google scholar
|
[57] |
Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B74(24), 245413 (2006)
CrossRef
ADS
Google scholar
|
[58] |
L. Shen, H. S. Shen, and C. L. Zhang, Temperaturedependent elastic properties of single layer graphene sheets, Mater. Des.31(9), 4445 (2010)
CrossRef
ADS
Google scholar
|
[59] |
T. Han, P. He, Y. Luo, and X. Zhang, Research progress in the mechanical properties of graphene, Advances in Mechanics41(3), 279 (2011)
|
[60] |
L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3d networks: Intriguing thermal and mechanical properties, J. Mater. Chem.22(4), 1435 (2011)
CrossRef
ADS
Google scholar
|
[61] |
J. W. Jiang, J. S. Wang, and B. Li, Elastic and nonlinear stiffness of graphene: A simple approach, Phys. Rev. B81(7), 073405 (2010)
CrossRef
ADS
Google scholar
|
[62] |
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano5(12), 9703 (2011)
CrossRef
ADS
Google scholar
|
[63] |
R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Erratum: Nonlinear elastic behavior of twodimensional molybdenum disulfide [Phys. Rev. B 87, 035423 (2013)], Phys. Rev. B87(7), 079901 (2013)
CrossRef
ADS
Google scholar
|
[64] |
K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures, arXiv: 1407.2669 (2014)
|
[65] |
A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nano sheets, Adv. Mater.24(6), 772 (2012)
CrossRef
ADS
Google scholar
|
[66] |
E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett.102(23), 235502 (2009)
CrossRef
ADS
Google scholar
|
[67] |
C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology17(3), 864 (2006)
CrossRef
ADS
Google scholar
|
[68] |
H. Zhao, K. Min, and N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett.9(8), 3012 (2009)
CrossRef
ADS
Google scholar
|
[69] |
P. Tao, H. Guo, T. Yang, and Z. Zhang, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys.115(5), 054305 (2014)
CrossRef
ADS
Google scholar
|
[70] |
Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol.9(5), 391 (2014)
CrossRef
ADS
Google scholar
|
[71] |
J. W. Jiang, Phonon bandgap engineering of strained monolayer MoS2, Nanoscale6(14), 8326 (2014)
CrossRef
ADS
Google scholar
|
[72] |
M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C118(3), 1515 (2014)
CrossRef
ADS
Google scholar
|
[73] |
K. Q. Dang, J. P. Simpson, and D. E. Spearot, Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations, Scr. Mater.76, 41 (2014)
CrossRef
ADS
Google scholar
|
[74] |
Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending rigidity and gaussian bending stiffness of single-layered graphene, Nano Lett.13(1), 26 (2013)
CrossRef
ADS
Google scholar
|
[75] |
X. Zhou, J. J. Zhou, and Z. C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B62(20), 13692 (2000)
CrossRef
ADS
Google scholar
|
[76] |
T. Ma, B. Li, and T. Chang, Chirality- and curvaturedependent bending stiffness of single layer graphene, Appl. Phys. Lett.99(20), 201901 (2011)
CrossRef
ADS
Google scholar
|
[77] |
Y. Shen and H. Wu, Interlayer shear effect on multilayer graphene subjected to bending, Appl. Phys. Lett.100(10), 101909 (2012)
CrossRef
ADS
Google scholar
|
[78] |
X. Shi, B. Peng, N. M. Pugno, and H. Gao, Stretch-induced softening of bending rigidity in graphene, Appl. Phys. Lett.100(19), 191913 (2012)
CrossRef
ADS
Google scholar
|
[79] |
M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule, Phys. Rev. B69(11), 115415 (2004)
CrossRef
ADS
Google scholar
|
[80] |
Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano5(5), 3645 (2011)
CrossRef
ADS
Google scholar
|
[81] |
J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett.104(16), 166805 (2010)
CrossRef
ADS
Google scholar
|
[82] |
J. X. Shi, Q. Q. Ni, X. W. Lei, and T. Natsuki, Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model, Comput. Mater. Sci.50(11), 3085 (2011)
CrossRef
ADS
Google scholar
|
[83] |
C. Wang, L. Lan, and H. Tan, The physics of wrinkling in graphene membranes under local tension, Phys. Chem. Chem. Phys.15(8), 2764 (2013)
CrossRef
ADS
Google scholar
|
[84] |
S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Ed., New York: McGraw-Hill, 1987
|
[85] |
J. W. Jiang, The buckling of single-layer MoS2 under uniaxial compression, Nanotechnology25(35), 355402 (2014)
CrossRef
ADS
Google scholar
|
[86] |
M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem.81(14), 5603 (2009)
CrossRef
ADS
Google scholar
|
[87] |
Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Radio frequency electrical transduction of graphene mechanical resonators, Appl. Phys. Lett.97(24), 243111 (2010)
CrossRef
ADS
Google scholar
|
[88] |
X. Q. He, S. Kitipornchai, and K. M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology16(10), 2086 (2005)
CrossRef
ADS
Google scholar
|
[89] |
Y. Liu, Z. Xu, and Q. Zheng, The interlayer shear effect on graphene multilayer resonators, J. Mech. Phys. Solids59(8), 1613 (2011)
CrossRef
ADS
Google scholar
|
[90] |
J. Wang, X. He, S. Kitipornchai, and H. Zhang, Geometrical nonlinear free vibration of multi-layered graphene sheets, J. Phys. D: Appl. Phys.44(13), 135401 (2011)
CrossRef
ADS
Google scholar
|
[91] |
Y. Xu, S. Yan, Z. Jin, and Y. Wang, Quantum-squeezing effects of strained multilayer graphene nems, Nanoscale Res. Lett.6(1), 355 (2011)
CrossRef
ADS
Google scholar
|
[92] |
F. Gu, J. H. Zhang, L. J. Yang, and B. Gu, Molecular dynamics simulation of resonance properties of strain graphene nanoribbons, Acta Phys. Sin.60(5), 056103 (2011)
|
[93] |
Z. B. Shen, H. L. Tang, D. K. Li, and G. J. Tang, Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci.61, 200 (2012)
CrossRef
ADS
Google scholar
|
[94] |
S. M. Zhou, L. P. Sheng, and Z. B. Shen, Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci.86, 73 (2014)
CrossRef
ADS
Google scholar
|
[95] |
K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum.76(6), 061101 (2005)
CrossRef
ADS
Google scholar
|
[96] |
A. M. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Large-scale arrays of singlelayer graphene resonators, Nano Lett.10(12), 4869 (2010)
CrossRef
ADS
Google scholar
|
[97] |
C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical read-out, Nat. Nanotechnol.4(12), 861 (2009)
CrossRef
ADS
Google scholar
|
[98] |
J. W. Jiang, B. S. Wang, H. S. Park, and T. Rabczuk, Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators, Nanotechnology25(2), 025501 (2014)
CrossRef
ADS
Google scholar
|
[99] |
C. Edblom and A. Isacsson, Diffusion-induced dissipation and mode coupling in nanomechanical resonators, arXiv: 1406.1365v1 (2014)
|
[100] |
A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson- Rae, and A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene, Nat. Nanotechnol.6(6), 339 (2011)
CrossRef
ADS
Google scholar
|
[101] |
A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Singlelayer MoS2 mechanical resonators, Adv. Mater.25(46), 6719 (2013)
CrossRef
ADS
Google scholar
|
[102] |
J. Lee, Z. Wang, K. He, J. Shan, and P. X. L. Feng, High frequency MoS2 nanomechanical resonators, ACS Nano7(7), 6086 (2013)
CrossRef
ADS
Google scholar
|
[103] |
A. A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol.8(8), 549 (2013)
CrossRef
ADS
Google scholar
|
[104] |
Y. M. Lin and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett.8(8), 2119 (2008)
CrossRef
ADS
Google scholar
|
[105] |
A. N. Pal and A. Ghosh, Resistance noise in electrically biased bilayer graphene, Phys. Rev. Lett.102(12), 126805 (2009)
CrossRef
ADS
Google scholar
|
[106] |
Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended graphene sensors with improved signal and reduced noise, Nano Lett.10(5), 1864 (2010)
CrossRef
ADS
Google scholar
|
[107] |
S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A. A. Balandin, Electrical and noise characteristics of graphene fieldeffect transistors: Ambient effects, noise sources and physical mechanisms, J. Phys.: Condens. Matter22(39), 395302 (2010)
CrossRef
ADS
Google scholar
|
[108] |
G. Liu, S. Rumyantsev, M. Shur, and A. A. Balandin, Graphene thickness-graded transistors with reduced electronic noise, Appl. Phys. Lett.100(3), 033103 (2012)
CrossRef
ADS
Google scholar
|
[109] |
M. Z. Hossain, S. L. Roumiantsev, M. Shur, and A. A. Balandin, Reduction of 1/f noise in graphene after electronbeam irradiation, Appl. Phys. Lett.102(15), 153512 (2013)
CrossRef
ADS
Google scholar
|
[110] |
K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B76(11), 115409 (2007)
CrossRef
ADS
Google scholar
|
[111] |
S. Yien, V. Tayari, J. O. Island, J. M. Porter, and A. R. Champagne, Electronic thermal conductivity measurements in intrinsic graphene, Phys. Rev. B87(24), 241411 (2013)
CrossRef
ADS
Google scholar
|
[112] |
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B62(4), 381 (2008)
CrossRef
ADS
Google scholar
|
[113] |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium greens function method for quantum thermal transport, Front. Phys.9(6), 673 (2013)
CrossRef
ADS
Google scholar
|
[114] |
S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater.11(3), 203 (2012)
CrossRef
ADS
Google scholar
|
[115] |
Z. Guo, D. Zhang, and X. G. Gong, Thermal conductivity of graphene nanoribbons, Appl. Phys. Lett.95(16), 163103 (2009)
CrossRef
ADS
Google scholar
|
[116] |
Y. Xu, X. Chen, B. L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett.95(23), 233116 (2009)
CrossRef
ADS
Google scholar
|
[117] |
S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano5(1), 321 (2011)
CrossRef
ADS
Google scholar
|
[118] |
N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology22(10), 105705 (2011)
CrossRef
ADS
Google scholar
|
[119] |
Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon49(8), 2653 (2011)
CrossRef
ADS
Google scholar
|
[120] |
Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter23(31), 315302 (2011)
CrossRef
ADS
Google scholar
|
[121] |
X. Zhai and G. Jin, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, Europhys. Lett.96(1), 16002 (2011)
CrossRef
ADS
Google scholar
|
[122] |
X. F. Peng, X. J. Wang, Z. Q. Gong, and K. Q. Chen, Ballistic thermal conductance in graphene nanoribbon with double-cavity structure, Appl. Phys. Lett.99(23), 233105 (2011)
CrossRef
ADS
Google scholar
|
[123] |
F. Ma, H. B. Zheng, Y. J. Sun, D. Yang, K. W. Xu, and P. K. Chu, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett.101(11), 111904 (2012)
CrossRef
ADS
Google scholar
|
[124] |
Z. X. Guo, J. W. Ding, and X. G. Gong, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B85(23), 235429 (2012)
CrossRef
ADS
Google scholar
|
[125] |
N. Mingo and D. A. Broido, Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett.95(9), 096105 (2005)
CrossRef
ADS
Google scholar
|
[126] |
N. Mingo and D. A. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”, Nano Lett.5(7), 1221 (2005)
CrossRef
ADS
Google scholar
|
[127] |
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering, Phys. Rev. B79(15), 155413 (2009)
CrossRef
ADS
Google scholar
|
[128] |
D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett.12(6), 3238 (2012)
CrossRef
ADS
Google scholar
|
[129] |
X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Lengthdependent thermal conductivity in suspended single-layer graphene, Nat. Commun.5, 3689 (2014)
CrossRef
ADS
Google scholar
|
[130] |
D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, Phys. Status Solidi B248(11), 2609 (2011)
CrossRef
ADS
Google scholar
|
[131] |
J. Wang, X. M. Wang, Y. F. Chen, and J. S. Wang, Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach, J. Phys.: Condens. Matter24(29), 295403 (2012)
CrossRef
ADS
Google scholar
|
[132] |
D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter24(23), 233203 (2012)
CrossRef
ADS
Google scholar
|
[133] |
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys.84(3), 1045 (2012)
CrossRef
ADS
Google scholar
|
[134] |
J. W. Jiang, J. Lan, J. S. Wang, and B. Li, Iso-topic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism, J. Appl. Phys.107(5), 054314 (2010)
CrossRef
ADS
Google scholar
|
[135] |
W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett.10(5), 1645 (2010)
CrossRef
ADS
Google scholar
|
[136] |
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett.8(3), 902 (2008)
CrossRef
ADS
Google scholar
|
[137] |
S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett.92(15), 151911 (2008)
CrossRef
ADS
Google scholar
|
[138] |
L. Lindsay, D. A. Broido, and N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B83(23), 235428 (2011)
CrossRef
ADS
Google scholar
|
[139] |
Z. Aksamija and I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering, Appl. Phys. Lett.98(14), 141919 (2011)
CrossRef
ADS
Google scholar
|
[140] |
L. Chen and S. Kumar, Thermal transport in graphene supported on copper, J. Appl. Phys.112(4), 043502 (2012)
CrossRef
ADS
Google scholar
|
[141] |
Z. Wei, J. Yang, K. Bi, and Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys.116(15), 153503 (2014)
CrossRef
ADS
Google scholar
|
[142] |
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater.9(7), 555 (2010)
CrossRef
ADS
Google scholar
|
[143] |
D. Singh, J. Y. Murthy, and T. S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys.110(4), 044317 (2011)
CrossRef
ADS
Google scholar
|
[144] |
G. Zhang and H. Zhang, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale3(11), 4604 (2011)
CrossRef
ADS
Google scholar
|
[145] |
W.R. Zhong, M.P. Zhang, B.Q. Ai, and D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of fewlayer graphene: A molecular dynamics study, Appl. Phys. Lett.98(11), 113107 (2011)
CrossRef
ADS
Google scholar
|
[146] |
W. R. Zhong, W. H. Huang, X. R. Deng, and B. Q. Ai, Thermal rectification in thickness-asymmetric graphene nanoribbons, Appl. Phys. Lett.99(19), 193104 (2011)
CrossRef
ADS
Google scholar
|
[147] |
A. Rajabpour and S. M. Vaez Allaei, Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study, Appl. Phys. Lett.101(5), 053115 (2012)
CrossRef
ADS
Google scholar
|
[148] |
H. Y. Cao, Z. X. Guo, H. Xiang, and X. G. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Phys. Lett. A376(4), 525 (2012)
CrossRef
ADS
Google scholar
|
[149] |
T. Sun, J. Wang, and W. Kang, Van der waals interactiontuned heat transfer in nanostructures, Nanoscale5(1), 128 (2012)
CrossRef
ADS
Google scholar
|
[150] |
S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, Temperature dependent raman studies and thermal conductivity of few layer MoS2, J. Phys. Chem. C117(17), 9042 (2013)
CrossRef
ADS
Google scholar
|
[151] |
V. Varshney, S. S. Patnaik, C. Muratore, A. K. Roy, A. A. Voevodin, and B. L. Farmer, Md simulations of molybdenum disulphide (MoS2): Force-field parameterization and thermal transport behavior, Comput. Mater. Sci.48(1), 101 (2010)
CrossRef
ADS
Google scholar
|
[152] |
W. Huang, H. Da, and G. Liang, Thermoelectric performance of MX2 (M=Mo, W; X=S, Se) monolayers, J. Appl. Phys.113(10), 104304 (2013)
CrossRef
ADS
Google scholar
|
[153] |
J. W. Jiang, X. Y. Zhuang, and T. Rabczuk, Orientation dependent thermal conductance in single-layer MoS2, Scientific Reports3, 2209 (2013)
CrossRef
ADS
Google scholar
|
[154] |
J. W. Jiang, J. S. Wang, and B. Li, Thermal conductance of graphene and dimerite, Phys. Rev. B79(20), 205418 (2009)
CrossRef
ADS
Google scholar
|
[155] |
X. Liu, G. Zhang, Q. X. Pei, and Y. W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett.103(13), 133113 (2013)
CrossRef
ADS
Google scholar
|
[156] |
Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Graphene quilts for thermal management of high-power gan transistors, Nat. Commun.3, 827 (2012)
CrossRef
ADS
Google scholar
|
[157] |
V. Goyal and A. A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials, Appl. Phys. Lett.100(7), 073113 (2012)
CrossRef
ADS
Google scholar
|
[158] |
K. M. F. Shahil and A. A. Balandin, Graphenemultilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett.12(2), 861 (2012)
CrossRef
ADS
Google scholar
|
[159] |
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources248(15), 37 (2014)
CrossRef
ADS
Google scholar
|
[160] |
H. Malekpour, K. H. Chang, J. C. Chen, C. Y. Lu, D. L. Nika, K. S. Novoselov, and A. A. Balandin, Thermal conductivity of graphene laminate, Nano Lett.14(9), 5155 (2014)
CrossRef
ADS
Google scholar
|
[161] |
P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropy-lene nanocomposites with enhanced mechanical and thermal properties, Polymer52(18), 4001 (2011)
CrossRef
ADS
Google scholar
|
[162] |
W. Yu, H. Xie, and D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets, Nanotechnology21(5), 055705 (2010)
CrossRef
ADS
Google scholar
|
[163] |
W. Yu, H. Xie, and W. Chen, Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets, J. Appl. Phys.107(9), 094317 (2010)
CrossRef
ADS
Google scholar
|
[164] |
W. Yu, H. Xie, X. Wang, and X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A375(10), 1323 (2011)
CrossRef
ADS
Google scholar
|
[165] |
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen,
CrossRef
ADS
Google scholar
|
[166] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438(7065), 197 (2005)
CrossRef
ADS
Google scholar
|
[167] |
S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.H. Lee, S. G. Louie, and A. Lanzara, First direct observation of Dirac fermions in graphite, Nat. Phys.2(9), 595 (2006)
CrossRef
ADS
Google scholar
|
[168] |
B. Partoens and F. M. Peeters, Normal and dirac fermions in graphene multilayers: Tight-binding description of the electronic structure, Phys. Rev. B75(19), 193402 (2007)
CrossRef
ADS
Google scholar
|
[169] |
J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. First, L. Magaud, and E. Conrad, Why multi-layer graphene on 4h-sic 000ī behaves like a single sheet of graphene, Phys. Rev. Lett.100(12), 125504 (2008)
CrossRef
ADS
Google scholar
|
[170] |
S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Tightbinding description of graphene, Phys. Rev. B66(3), 035412 (2002)
CrossRef
ADS
Google scholar
|
[171] |
V. Pereira, A. Castro Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B80(4), 045401 (2009)
CrossRef
ADS
Google scholar
|
[172] |
F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering, Nat. Phys.6(1), 30 (2010)
CrossRef
ADS
Google scholar
|
[173] |
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B54(24), 17954 (1996)
CrossRef
ADS
Google scholar
|
[174] |
K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group vi transition metal dichalcogenides, J. Phys. Chem.86(4), 463 (1982)
CrossRef
ADS
Google scholar
|
[175] |
T. Eknapakul, P. D. C. King, M. Asakawa, P. Buaphet, R. H. He, S. K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Electronic structure of a quasi-freestanding MoS2 monolayer, Nano Lett.14(3), 1312 (2014)
CrossRef
ADS
Google scholar
|
[176] |
Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanorib-bons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc.130(49), 16739 (2008)
CrossRef
ADS
Google scholar
|
[177] |
P. Lu, X. Wu, W. Guo, and X. C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes, Phys. Chem. Chem. Phys.14(37), 13035 (2012)
CrossRef
ADS
Google scholar
|
[178] |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol.6(3), 147 (2011)
CrossRef
ADS
Google scholar
|
[179] |
V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors, Nano Lett.13(9), 4351 (2013)
CrossRef
ADS
Google scholar
|
[180] |
E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Research5(1), 43 (2012)
CrossRef
ADS
Google scholar
|
[181] |
H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett.13(8), 3626 (2013)
CrossRef
ADS
Google scholar
|
[182] |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett.105(13), 136805 (2010)
CrossRef
ADS
Google scholar
|
[183] |
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science320(5881), 1308 (2008)
CrossRef
ADS
Google scholar
|
[184] |
F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol.4(12), 839 (2009)
CrossRef
ADS
Google scholar
|
[185] |
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Raden-ovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol.8(7), 497 (2013)
CrossRef
ADS
Google scholar
|
[186] |
C. H. Lui, A. J. Frenzel, D. V. Pilon, Y. H. Lee, X. Ling, G. M. Akselrod,
|
[187] |
K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, S. Kaushal, and A. Ghosh, Optically active heterostructures of graphene and ultrathin MoS2, Solid State Commun.175-176, 35 (2013)
CrossRef
ADS
Google scholar
|
[188] |
G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, and U. Kaiser, The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett.103(20), 203107 (2013)
CrossRef
ADS
Google scholar
|
[189] |
N. Myoung, K. Seo, S. J. Lee, and G. Ihm, Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures, ACS Nano7(8), 7021 (2013)
CrossRef
ADS
Google scholar
|
[190] |
S. Bertolazzi, D. Krasnozhon, and A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures, Nano Lett.7(4), 3246 (2013)
CrossRef
ADS
Google scholar
|
[191] |
S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Band offset and negative compressibility in graphene- MoS2 heterostructures, Nano Lett.14(4), 2039 (2014)
CrossRef
ADS
Google scholar
|
[192] |
W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang,
CrossRef
ADS
Google scholar
|
[193] |
F. Xia, X. Hu, Y. Sun, W. Luo, and Y. Huang, Layer-bylayer assembled MoO2 graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries, Nanoscale4(15), 4707 (2012)
CrossRef
ADS
Google scholar
|
[194] |
W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang,
|
[195] |
H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate, Opt. Express22(13), 15969 (2014)
CrossRef
ADS
Google scholar
|
[196] |
L. F. Wang, T. B. Ma, Y. Z. Hu, Q. Zheng, H. Wang, and J. Luo, Superlubricity of two-dimensional fluorographene/ MoS2 heterostructure: A first-principles study, Nanotechnology25(38), 385701 (2014)
CrossRef
ADS
Google scholar
|
[197] |
Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale3(9), 3883 (2011)
CrossRef
ADS
Google scholar
|
[198] |
L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett.14(6), 3055 (2014)
CrossRef
ADS
Google scholar
|
[199] |
R. H. Miwa and W. L. Scopel, Lithium incorporation at the MoS2/graphene interface: An ab initio investigation, J. Phys.: Condens. Matter25(44), 445301 (2013)
CrossRef
ADS
Google scholar
|
[200] |
J. W. Jiang and H. S. Park, Mechanical properties of MoS2/graphene heterostructures, Appl. Phys. Lett.105(3), 033108 (2014)
CrossRef
ADS
Google scholar
|
[201] |
K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, Effective permittivity of mixtures: Numerical validation by the FDTD method, IEEE Trans. Geosci. Rem. Sens.38(3), 1303 (2000)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |