Review of borophene and its potential applications

Zhi-Qiang Wang, Tie-Yu Lü, Hui-Qiong Wang, Yuan Ping Feng, Jin-Cheng Zheng

PDF(4243 KB)
PDF(4243 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (3) : 33403. DOI: 10.1007/s11467-019-0884-5

Review of borophene and its potential applications

Author information +
History +

Abstract

Since two-dimensional boron sheet (borophene) synthesized on Ag substrates in 2015, research on borophene has grown fast in the fields of condensed matter physics, chemistry, material science, and nanotechnology. Due to the unique physical and chemical properties, borophene has various potential applications. In this review, we summarize the progress on borophene with a particular emphasis on the recent advances. First, we introduce the phases of borophene by experimental synthesis and theoretical predictions. Then, the physical and chemical properties, such as mechanical, thermal, electronic, optical and superconducting properties are summarized. We also discuss in detail the utilization of the borophene for wide ranges of potential application among the alkali metal ion batteries, Li-S batteries, hydrogen storage, supercapacitor, sensor and catalytic in hydrogen evolution, oxygen reduction, oxygen evolution, and CO2 electroreduction reaction. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.

Keywords

borophene / structural diversity / high anisotropy / boron vacancy concentration

Cite this article

Download citation ▾
Zhi-Qiang Wang, Tie-Yu Lü, Hui-Qiong Wang, Yuan Ping Feng, Jin-Cheng Zheng. Review of borophene and its potential applications. Front. Phys., 2019, 14(3): 33403 https://doi.org/10.1007/s11467-019-0884-5

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[2]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[3]
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of grapheme and graphene layers, Phys. Rev. Lett. 97(18), 187401 (2006)
CrossRef ADS Google scholar
[4]
H. J. Yan, B. Xu, S. Q. Shi, and C. Y. Ouyang, Firstprinciples study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries, J. Appl. Phys. 112(10), 104316 (2012)
CrossRef ADS Google scholar
[5]
N. Wei, Y. Chen, K. Cai, J. Zhao, H. Q. Wang, and J. C. Zheng, Thermal conductivity of graphene kirigami: Ultralow and strain robustness, Carbon 104, 203 (2016)
CrossRef ADS Google scholar
[6]
Y. Chen, Y. Zhang, K. Cai, J. Jiang, J. C. Zheng, J. Zhao, and N. Wei, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon 117, 399 (2017)
CrossRef ADS Google scholar
[7]
Y. H. Lu, W. Chen, Y. P. Feng, and P. M. He, Tuning the electronic structure of graphene by an organic molecule, J. Phys. Chem. B 113(1), 2 (2009)
CrossRef ADS Google scholar
[8]
Y. P. Feng, L. Shen, M. Yang, A. Z. Wang, M. G. Zeng, Q. Y. Wu, S. Chintalapati, and C. R. Chang, Prospects of spintronics based on 2D materials, WIRES Comput. Mol. Sci. 7(5), e1313 (2017)
CrossRef ADS Google scholar
[9]
N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
CrossRef ADS Google scholar
[10]
L. Q. Xu, N. Wei, Y. P. Zheng, Z. Y. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3D networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2012)
CrossRef ADS Google scholar
[11]
F. Rao, Z. Wang, B. Xu, L. Chen, and C. Ouyang, Firstprinciples study of lithium and sodium atoms intercalation in fluorinated graphite, Engineering 1(2), 243 (2015)
CrossRef ADS Google scholar
[12]
K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)
CrossRef ADS Google scholar
[13]
G. Liu, X. L. Lei, M. S. Wu, B. Xu, and C. Y. Ouyang, Comparison of the stability of free-standing silicene and hydrogenated silicene in oxygen: A first principles investigation, J. Phys.: Condens. Matter 26(35), 355007 (2014)
CrossRef ADS Google scholar
[14]
A. Molle, C. Grazianetti, L. Tao, D. Taneja, M. H. Alam, and D. Akinwande, Silicene, silicene derivatives, and their device applications, Chem. Soc. Rev. 47(16), 6370 (2018)
CrossRef ADS Google scholar
[15]
G. Li, L. Zhang, W. Xu, J. Pan, S. Song, Y. Zhang, H. Zhou, Y. Wang, L. Bao, Y. Y. Zhang, S. Du, M. Ouyang, S. T. Pantelides, and H. J. Gao, Stable silicone in graphene/silicene van der Waals heterostructures, Adv. Mater. 30(49), 1804650 (2018)
CrossRef ADS Google scholar
[16]
G. Liu, S. B. Liu, B. Xu, C. Y. Ouyang, H. Y. Song, S. Guan, and S. A. Yang, Multiple Dirac points and hydrogenation-induced magnetism of germanene layer on Al(111) surface, J. Phys. Chem. Lett. 6(24), 4936 (2015)
CrossRef ADS Google scholar
[17]
X. R. Hu, J. M. Zheng, and Z. Y. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys.13, 137302 (2017)
CrossRef ADS Google scholar
[18]
Y. Q. Cai, Z. Q. Bai, H. Pan, Y. P. Feng, B. I. Yakobson, and Y. W. Zhang, Constructing metallic nanoroads on a MoS(2) monolayer via hydrogenation, Nanoscale 6(3), 1691 (2014)
CrossRef ADS Google scholar
[19]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[20]
J. Pei, J. Yang, R. Xu, Y. H. Zeng, Y. W. Myint, S. Zhang, J. C. Zheng, Q. Qin, X. Wang, W. Jiang, and Y. Lu, Exciton and trion dynamics in bilayer MoS2, Small 11(48), 6384 (2015)
CrossRef ADS Google scholar
[21]
J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lu, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, Excited state biexcitons in atomically thin MoSe2, ACS Nano 11(7), 7468 (2017)
CrossRef ADS Google scholar
[22]
C. Shang, B. Xu, X. Lei, S. Yu, D. Chen, M. Wu, B. Sun, G. Liu, and C. Ouyang, Bandgap tuning in MoSSe bilayers: Synergistic effects of dipole moment and interlayer distance, Phys. Chem. Chem. Phys. 20(32), 20919 (2018)
CrossRef ADS Google scholar
[23]
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef ADS Google scholar
[24]
S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
CrossRef ADS Google scholar
[25]
J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Twodimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7(1), 13352 (2016)
CrossRef ADS Google scholar
[26]
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
CrossRef ADS Google scholar
[27]
W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, and K. Wu, Experimental realization of honeycomb borophene, Sci. Bull. (Beijing) 63(5), 282 (2018)
CrossRef ADS Google scholar
[28]
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
CrossRef ADS Google scholar
[29]
E. S. Penev, A. Kutana, and B. I. Yakobson, Can twodimensional boron superconduct? Nano Lett. 16(4), 2522 (2016)
CrossRef ADS Google scholar
[30]
S. G. Xu, Y. J. Zhao, J. H. Liao, X. B. Yang, and H. Xu, The nucleation and growth of borophene on the Ag(111) surface, Nano Res. 9(9), 2616 (2016)
CrossRef ADS Google scholar
[31]
A. Lopez-Bezanilla and P.B. Littlewood, Electronic properties of 8–Pmmn borophene, Phys. Rev. B 93, 241405(R) (2016)
[32]
B. Peng, H. Zhang, H. Z. Shao, Y. F. Xu, R. J. Zhang, and H. Y. Zhu, Electronic, optical, and thermodynamic properties of borophene from first-principle calculations, J. Mater. Chem. C 4(16), 3592 (2016)
CrossRef ADS Google scholar
[33]
J. Carrete, W. Li, L. Lindsay, D. A. Broido, L. J. Gallego, and N. Mingo, Physically founded phonon dispersions of few-layer materials and the case of borophene, Mater. Res. Lett. 4(4), 204 (2016)
CrossRef ADS Google scholar
[34]
H. F. Wang, Q. F. Li, Y. Gao, F. Miao, X. F. Zhou, and X. G. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New J. Phys. 18(7), 073016 (2016)
CrossRef ADS Google scholar
[35]
R. C. Xiao, D. F. Shao, W. J. Lu, H. Y. Lv, J. Y. Li, and Y. P. Sun, Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction, Appl. Phys. Lett. 109(12), 122604 (2016)
CrossRef ADS Google scholar
[36]
M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95(2), 024505 (2017)
CrossRef ADS Google scholar
[37]
Y. X. Liu, Y. J. Dong, Z. Y. Tang, X. F. Wang, L. Wang, T. J. Hou, H. P. Lin, and Y. Y. Li, Stable and metallic borophene nanoribbons from first-principles calculations, J. Mater. Chem. C 4(26), 6380 (2016)
CrossRef ADS Google scholar
[38]
X. B. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties, Phys. Rev. B 77, 041402(R) (2008)
[39]
A. D. Zabolotskiy and Y. E. Lozovik, Strain-induced pseudomagnetic field in Dirac semimetal borophene, Phys. Rev. B 94(16), 165403 (2016)
CrossRef ADS Google scholar
[40]
J. H. Yuan, L. W. Zhang, and K. M. Liew, Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons, RSC Advances 5(91), 74399 (2015)
CrossRef ADS Google scholar
[41]
H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)
CrossRef ADS Google scholar
[42]
X. M. Zhang, J. P. Hu, Y. C. Cheng, H. Y. Yang, Y. G. Yao, and S. Y. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)
CrossRef ADS Google scholar
[43]
H. Shu, F. Li, P. Liang, and X. Chen, Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface, Nanoscale 8(36), 16284 (2016)
CrossRef ADS Google scholar
[44]
X. Liu, Z. Zhang, L. Wang, B. I. Yakobson, and M. C. Hersam, Intermixing and periodic self-assembly of borophene line defects, Nat. Mater. 17(9), 783 (2018)
CrossRef ADS Google scholar
[45]
V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)
CrossRef ADS Google scholar
[46]
Z. Pang, X. Qian, Y. Wei, and R. Yang, Super-stretchable borophene, EPL 116(3), 36001 (2016)
CrossRef ADS Google scholar
[47]
Y. An, J. Jiao, Y. Hou, H. Wang, R. Wu, C. Liu, X. Chen, T. Wang, and K. Wang, Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers, J. Phys.: Condens. Matter 31, 065301 (2019)
CrossRef ADS Google scholar
[48]
X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21, 617 (2019)
CrossRef ADS Google scholar
[49]
H. Cui, X. Zhang, and D. Chen, Borophene: A promising adsorbent material with strong ability and capacity for SO2 adsorption, Appl. Phys. A 124, 636 (2018)
CrossRef ADS Google scholar
[50]
L. Kong, K. Wu, and L. Chen, Recent progress on borophene: Growth and structures, Front. Phys. 13(3), 138105 (2018)
CrossRef ADS Google scholar
[51]
A. Lherbier, A. R. Botello-Méndez, and J.C. Charlier, Electronic and optical properties of pristine and oxidized borophene, 2D Materials 3, 045006 (2016)
[52]
E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)
CrossRef ADS Google scholar
[53]
Z. H. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)
CrossRef ADS Google scholar
[54]
Y. Zhao, S. Zeng, and J. Ni, Superconductivity in twodimensional boron allotropes, Phys. Rev. B 93, 014502 (2016)
CrossRef ADS Google scholar
[55]
X. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties, Phys. Rev. B 77, 041402 (2008)
CrossRef ADS Google scholar
[56]
Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional materials: Polyphony in B flat, Nat. Chem. 8(6), 525 (2016)
CrossRef ADS Google scholar
[57]
T. Tsafack and B. I. Yakobson, Thermomechanical analysis of two-dimensional boron monolayers, Phys. Rev. B 93, 165434 (2016)
CrossRef ADS Google scholar
[58]
Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)
CrossRef ADS Google scholar
[59]
Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)
CrossRef ADS Google scholar
[60]
F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)
CrossRef ADS Google scholar
[61]
Y. Zhao, S. Zeng, and J. Ni, Phonon-mediated superconductivity in borophenes, Appl. Phys. Lett. 108(24), 242601 (2016)
CrossRef ADS Google scholar
[62]
Z. H. Zhang, Y. Yang, G. Y. Gao, and B. I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)
CrossRef ADS Google scholar
[63]
R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)
CrossRef ADS Google scholar
[64]
A. Bhattacharya, S. Bhattacharya, and G. P. Das, Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet, Phys. Rev. B 84(7), 075454 (2011)
CrossRef ADS Google scholar
[65]
M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)
CrossRef ADS Google scholar
[66]
Y. Jiao, F. Ma, J. Bell, A. Bilic, and A. Du, Twodimensional boron hydride sheets: high stability, massless Dirac fermions, and excellent mechanical properties, Angew. Chem. Int. Ed. 55(35), 10292 (2016)
CrossRef ADS Google scholar
[67]
L. C. Xu, A. Du, and L. Kou, Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity, Phys. Chem. Chem. Phys. 18(39), 27284 (2016)
CrossRef ADS Google scholar
[68]
Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, High anisotropy of fully hydrogenated borophene, Phys. Chem. Chem. Phys. 18(46), 31424 (2016)
CrossRef ADS Google scholar
[69]
G. I. Giannopoulos, Mechanical behavior of planar borophenes: A molecular mechanics study, Comput. Mater. Sci. 129, 304 (2017)
CrossRef ADS Google scholar
[70]
B. Mortazavi, O. Rahaman, A. Dianat, and T. Rabczuk, Mechanical responses of borophene sheets: A firstprinciples study, Phys. Chem. Chem. Phys. 18(39), 27405 (2016)
CrossRef ADS Google scholar
[71]
Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, and S. De, Mechanical properties and stabilities of alpha-boron monolayers, Phys. Chem. Chem. Phys. 17(3), 2160 (2015)
CrossRef ADS Google scholar
[72]
M. Q. Le, B. Mortazavi, and T. Rabczuk, Mechanical properties of borophene films: A reactive molecular dynamics investigation, Nanotechnology 27(44), 445709 (2016)
CrossRef ADS Google scholar
[73]
L. Shao, Y. Li, Q. Yuan, M. Li, Y. Du, F. Zeng, P. Ding, and H. Ye, Effects of strain on mechanical and electronic properties of borophene, Mater. Res. Express 4(4), 045020 (2017)
CrossRef ADS Google scholar
[74]
R. Peköz, M. Konuk, M. E. Kilic, and E. Durgun, Twodimensional fluorinated boron sheets: Mechanical, electronic, and thermal properties, ACS Omega 3(2), 1815 (2018)
CrossRef ADS Google scholar
[75]
Q. Wei and X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Appl. Phys. Lett. 104(25), 251915 (2014)
CrossRef ADS Google scholar
[76]
Y. P. Zhou and J. W. Jiang, Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential, Sci. Rep. 7(1), 45516 (2017)
CrossRef ADS Google scholar
[77]
W. C. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J. Y. Liu, and M. S. Miao, Honeycomb boron allotropes with Dirac cones: a true analogue to graphene, J. Phys. Chem. Lett. 8(12), 2647 (2017)
CrossRef ADS Google scholar
[78]
H. Zhong, K. Huang, G. Yu, and S. Yuan, Electronic and mechanical properties of few-layer borophene, Phys. Rev. B 98(5), 054104 (2018)
CrossRef ADS Google scholar
[79]
Z. Q. Wang, H. Cheng, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, A super-stretchable boron nanoribbon network, Phys. Chem. Chem. Phys. 20(24), 16510 (2018)
CrossRef ADS Google scholar
[80]
Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, New crystal structure prediction of fully hydrogenated borophene by first principles calculations, Sci. Rep. 7(1), 609 (2017)
CrossRef ADS Google scholar
[81]
R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)
CrossRef ADS Google scholar
[82]
X. D. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Nonlinear elastic behavior of graphene: Ab initiocalculations to continuum description, Phys. Rev. B 80(20), 205407 (2009)
CrossRef ADS Google scholar
[83]
J. Yuan, N. Yu, K. Xue, and X. Miao, Ideal strength and elastic instability in single-layer 8-Pmmn borophene, RSC Advances 7(14), 8654 (2017)
CrossRef ADS Google scholar
[84]
Q. Peng, C. Liang, W. Ji, and S. De, A first-principles study of the mechanical properties of g-GeC, Mech. Mater. 64, 135 (2013)
CrossRef ADS Google scholar
[85]
B. Mortazavi, O. Rahaman, M. Makaremi, A. Dianat, G. Cuniberti, and T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene, Physica E 87, 228 (2017)
CrossRef ADS Google scholar
[86]
D. F. Li, J. He, G. Q. Ding, Q. Q. Tang, Y. Ying, J. J. He, C. Y. Zhong, Y. Liu, C. B. Feng, Q. L. Sun, H. B. Zhou, P. Zhou, and G. Zhang, Stretch-driven increase in ultrahigh thermal conductance of hydrogenated borophene and dimensionality crossover in phonon transmission, Adv. Funct. Mater. 28(31), 1801685 (2018)
CrossRef ADS Google scholar
[87]
B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C. V. Singh, T. Rabczuk, and L. F. C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties, Nanoscale 10(8), 3759 (2018)
CrossRef ADS Google scholar
[88]
H. B. Zhou, Y. Q. Cai, G. Zhang, and Y. W. Zhang, Superior lattice thermal conductance of single-layer borophene, npj 2D Mater. Appl. 1, 14 (2017)
[89]
G. Liu, H. Wang, Y. Gao, J. Zhou, and H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations, Phys. Chem. Chem. Phys. 19(4), 2843 (2017)
CrossRef ADS Google scholar
[90]
H. Sun, Q. Li, and X. G. Wan, First-principles study of thermal properties of borophene, Phys. Chem. Chem. Phys. 18(22), 14927 (2016)
CrossRef ADS Google scholar
[91]
B. Mortazavi, M. Q. Le, T. Rabczuk, and L. F. C. Pereira, Anomalous strain effect on the thermal conductivity of borophene: A reactive molecular dynamics study, Physica E 93, 202 (2017)
CrossRef ADS Google scholar
[92]
H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, and J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7(1), 45986 (2017)
CrossRef ADS Google scholar
[93]
X. Gu and R. Yang, First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene, J. Appl. Phys. 117(2), 025102 (2015)
CrossRef ADS Google scholar
[94]
G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, Phys. Chem. Chem. Phys. 17(7), 4854 (2015)
CrossRef ADS Google scholar
[95]
H. J. Yan, Z. Q. Wang, B. Xu, and C. Y. Ouyang, Strain induced enhanced migration of polaron and lithium ion in l-MnO2, Funct. Mater. Lett. (Singap.) 5(04), 1250037 (2012)
CrossRef ADS Google scholar
[96]
Z. Q. Wang, M. S. Wu, G. Liu, X. L. Lei, X. Bo, and C. Y. Ouyang, Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations, Int. J. Electrochem. Sci. 9, 562 (2014)
[97]
T. Y. Lü, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)
CrossRef ADS Google scholar
[98]
V. Shukla, A. Grigoriev, N. K. Jena, and R. Ahuja, Strain controlled electronic and transport anisotropies in twodimensional borophene sheets, Phys. Chem. Chem. Phys. 20(35), 22952 (2018)
CrossRef ADS Google scholar
[99]
Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Band structure engineering of borophane by first principles calculations, RSC Advances 7(75), 47746 (2017)
CrossRef ADS Google scholar
[100]
B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C 4, 3592 (2016)
CrossRef ADS Google scholar
[101]
J. H. Liao, Y. C. Zhao, Y. J. Zhao, H. Xu, and X. B. Yang, Phonon-mediated superconductivity in Mg intercalated bilayer borophenes, Phys. Chem. Chem. Phys. 19(43), 29237 (2017)
CrossRef ADS Google scholar
[102]
M. Gao, Q. Z. Li, X.W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95, 024505 (2017)
CrossRef ADS Google scholar
[103]
H. L. Li, L. Jing, W. W. Liu, J. J. Lin, R. Y. Tay, S. H. Tsang, and E. H. T. Teo, Scalable production of fewlayer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance, ACS Nano 12(2), 1262 (2018)
CrossRef ADS Google scholar
[104]
G. Li, Y. Zhao, S. Zeng, M. Zulfiqar, and J. Ni, Strain effect on the superconductivity in borophenes, J. Phys. Chem. C 122(29), 16916 (2018)
CrossRef ADS Google scholar
[105]
C. Cheng, J. T. Sun, H. Liu, H. X. Fu, J. Zhang, X. R. Chen, and S. Meng, Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping, 2D Materials 4, 025032 (2017)
[106]
J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)
CrossRef ADS Google scholar
[107]
H. R. Jiang, Z. Lu, M. C. Wu, F. Ciucci, and T. S. Zhao, Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries, Nano Energy 23, 97 (2016)
CrossRef ADS Google scholar
[108]
G. A. Tritsaris, E. Kaxiras, S. Meng, and E. Wang, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13(5), 2258 (2013)
CrossRef ADS Google scholar
[109]
Q. F. Li, C. G. Duan, X. G. Wan, and J. L. Kuo, Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus, J. Phys. Chem. C 119(16), 8662 (2015)
CrossRef ADS Google scholar
[110]
Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries, J. Phys. Chem. C 117(48), 25409 (2013)
CrossRef ADS Google scholar
[111]
Q. Tang, Z. Zhou, and P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer, J. Am. Chem. Soc. 134(40), 16909 (2012)
CrossRef ADS Google scholar
[112]
B. Ziebarth, M. Klinsmann, T. Eckl, and C. Elsässer, Lithium diffusion in the spinel phase Li4Ti5O12 and in the rock salt phase Li7Ti5O12 of lithium titanate from first principles, Phys. Rev. B 89, 174301 (2014)
CrossRef ADS Google scholar
[113]
Z. Q. Wang, Y. C. Chen, and C. Y. Ouyang, Polaron states and migration in F-doped Li2MnO3, Phys. Lett. A 378(32-33), 2449 (2014)
CrossRef ADS Google scholar
[114]
Z. Q. Wang, M. S. Wu, B. Xu, and C. Y. Ouyang, Improving the electrical conductivity and structural stability of the Li2MnO3 cathode via P doping, J. Alloys Compd. 658, 818 (2016)
CrossRef ADS Google scholar
[115]
J. Liu, C. Zhang, L. Xu, and S. Ju, Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT, RSC Advances 8(32), 17773 (2018)
CrossRef ADS Google scholar
[116]
X. Zhang, J. Hu, Y. Cheng, H. Y. Yang, Y. Yao, and S. A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)
CrossRef ADS Google scholar
[117]
L. Shi, T. Zhao, A. Xu, and J. Xu, Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries, Sci. Bull. (Beijing) 61(14), 1138 (2016)
CrossRef ADS Google scholar
[118]
S. Banerjee, G. Periyasamy, and S. K. Pati, Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study, J. Mater. Chem. A 2(11), 3856 (2014)
CrossRef ADS Google scholar
[119]
D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen, H. Xia, J. Liu, and R. Lu, Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries, J. Mater. Chem. A Mater. Energy Sustain. 5(5), 2328 (2017)
CrossRef ADS Google scholar
[120]
N. Jiang, B. Li, F. Ning, and D. Xia, All boron-based 2D material as anode material in Li-ion batteries, J. Energy Chem. 27(6), 1651 (2018)
CrossRef ADS Google scholar
[121]
P. Liang, Y. Cao, B. Tai, L. Zhang, H. Shu, F. Li, D. Chao, and X. Du, Is borophene a suitable anode material for sodium ion battery? J. Alloys Compd. 704, 152 (2017)
CrossRef ADS Google scholar
[122]
B. Mortazavi, O. Rahaman, S. Ahzi, and T. Rabczuk, Flat borophene films as anode materials for Mg, Na or Liion batteries with ultra high capacities: A first-principles study, Appl. Mater. Today 8, 60 (2017)
CrossRef ADS Google scholar
[123]
Y. Zhang, Z. F. Wu, P. F. Gao, S. L. Zhang, and Y. H. Wen, Could borophene be used as a promising anode material for high-performance lithium ion battery? ACS Appl. Mater. Interfaces 8(34), 22175 (2016)
CrossRef ADS Google scholar
[124]
J. Liu, L. Zhang, and L. Xu, Theoretical prediction of borophene monolayer as anode materials for highperformance lithium-ion batteries, Ionics(2017)
[125]
H. Chen, W. Zhang, X. Q. Tang, Y. H. Ding, J. R. Yin, Y. Jiang, P. Zhang, and H. B. Jin, First principles study of P-doped borophene as anode materials for lithium ion batteries, Appl. Surf. Sci. 427, 198 (2018)
CrossRef ADS Google scholar
[126]
N. K. Jena, R. B. Araujo, V. Shukla, and R. Ahuja, Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries, ACS Appl. Mater. Interfaces 9(19), 16148 (2017)
CrossRef ADS Google scholar
[127]
F. Li, Y. Su, and J. Zhao, Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries, Phys. Chem. Chem. Phys. 18(36), 25241 (2016)
CrossRef ADS Google scholar
[128]
L. Zhang, P. Liang, H. B. Shu, X. L. Man, F. Li, J. Huang, Q. M. Dong, and D. L. Chao, Borophene as efficient sulfur hosts for lithium–sulfur batteries: suppressing shuttle effect and improving conductivity, J. Phys. Chem. C 121(29), 15549 (2017)
CrossRef ADS Google scholar
[129]
H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)
CrossRef ADS Google scholar
[130]
F. Li and J. J. Zhao, Atomic sulfur anchored on silicene, phosphorene, and borophene for excellent cycle performance of Li-S batteries, ACS Appl. Mater. Interfaces 9(49), 42836 (2017)
CrossRef ADS Google scholar
[131]
H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: A firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)
CrossRef ADS Google scholar
[132]
S. P. Jand, Y. X. Chen, and P. Kaghazchi, Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene, J. Power Sources 308, 166 (2016)
CrossRef ADS Google scholar
[133]
J. Zhao, Y. Yang, R. S. Katiyar, and Z. Chen, Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study, J. Mater. Chem. A 4(16), 6124 (2016)
CrossRef ADS Google scholar
[134]
S. Er, G. A. de Wijs, and G. Brocks, DFT study of planar boron sheets: A new template for hydrogen storage, J. Phys. Chem. C 113(43), 18962 (2009)
CrossRef ADS Google scholar
[135]
L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, C. Wang, M. Zhang, and X. Wu, Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation, Appl. Surf. Sci. 434, 843 (2018)
CrossRef ADS Google scholar
[136]
L. Li, H. Zhang, and X. Cheng, The high hydrogen storage capacities of Li-decorated borophene, Comput. Mater. Sci. 137, 119 (2017)
CrossRef ADS Google scholar
[137]
X. Chen, L. Wang, W. Zhang, J. Zhang, and Y. Yuan, Cadecorated borophene as potential candidates for hydrogen storage: A first-principle study, Int. J. Hydrogen Energy 42(31), 20036 (2017)
CrossRef ADS Google scholar
[138]
J. Wang, Y. Du, and L. Sun, Ca-decorated novel boron sheet: A potential hydrogen storage medium, Int. J. Hydrogen Energy 41(10), 5276 (2016)
CrossRef ADS Google scholar
[139]
S. Haldar, S. Mukherjee, and C. V. Singh, Hydrogen storage in Li, Na and Ca decorated and defective borophene: A first principles study, RSC Advances 8(37), 20748 (2018)
CrossRef ADS Google scholar
[140]
F. Zhang, R. Chen, W. Zhang, and W. Zhang, A Tidecorated boron monolayer: A promising material for hydrogen storage, RSC Advances 6(16), 12925 (2016)
CrossRef ADS Google scholar
[141]
X. Tang, Y. Gu, and L. Kou, Theoretical investigation of calcium-decorated b 12 boron sheet for hydrogen storage, Chem. Phys. Lett. 695, 211 (2018)
CrossRef ADS Google scholar
[142]
T. A. Abtew, B. C. Shih, P. Dev, V. H. Crespi, and P. H. Zhang, Prediction of a multicenter-bonded solid boron hydride for hydrogen storage, Phys. Rev. B 83(9), 094108 (2011)
CrossRef ADS Google scholar
[143]
Y. S. Wang, F. Wang, M. Li, B. Xu, Q. Sun, and Y. Jia, Theoretical prediction of hydrogen storage on Li decorated planar boron sheets, Appl. Surf. Sci. 258(22), 8874 (2012)
CrossRef ADS Google scholar
[144]
J. L. Li, H. Y. Zhang, and G. W. Yang, Ultrahighcapacity molecular hydrogen storage of a lithiumdecorated boron monolayer, J. Phys. Chem. C 119(34), 19681 (2015)
CrossRef ADS Google scholar
[145]
I. Cabria, M. J. López, and J. A. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)
CrossRef ADS Google scholar
[146]
A. Lebon, R. H. Aguilera-del-Toro, L. J. Gallego, and A. Vega, Li-decorated Pmmn8 phase of borophene for hydrogen storage: A van der Waals corrected densityfunctional theory study, Int. J. Hydrogen Energy 44(2), 1021 (2019)
CrossRef ADS Google scholar
[147]
T. Liu, Y. Chen, H. Wang, M. Zhang, L. Yuan, and C. Zhang, Li-decoratedβ12-borophene as potential candidates for hydrogen storage: a first-principle study, Materials (Basel) 10(12), 1399 (2017)
CrossRef ADS Google scholar
[148]
Y. F. Zhang and X. L. Cheng, Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation, Physica E 107, 170 (2019)
CrossRef ADS Google scholar
[149]
C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, Highcapacity hydrogen storage by metallized graphene, Appl. Phys. Lett. 93(4), 043123 (2008)
CrossRef ADS Google scholar
[150]
B. Xu, X. L. Lei, G. Liu, M. S. Wu, and C. Y. Ouyang, Li-decorated graphyne as high-capacity hydrogen storage media: First-principles plane wave calculations, Int. J. Hydrogen Energy 39(30), 17104 (2014)
CrossRef ADS Google scholar
[151]
F. Li, C. W. Zhang, H. X. Luan, and P. J. Wang, Firstprinciples study of hydrogen storage on Li-decorated silicene, J. Nanopart. Res. 15(10), 1972 (2013)
CrossRef ADS Google scholar
[152]
X. L. Lei, G. Liu, M. S. Wu, B. Xu, C. Y. Ouyang, and B. C. Pan, Hydrogen storage on calcium-decorated BC7 sheet: A first-principles study, Int. J. Hydrogen Energy 39(5), 2142 (2014)
CrossRef ADS Google scholar
[153]
C. Zhang, S. Tang, M. Deng, and Y. Du, Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage, Chin. Phys. B 27(6), 066103 (2018)
CrossRef ADS Google scholar
[154]
M. Moradi, and N. Naderi, First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet, Struct. Chem. 25(4), 1289 (2014)
CrossRef ADS Google scholar
[155]
L. Shi, C. Ling, Y. Ouyang, and J. Wang, High intrinsic catalytic activity of two-dimensional boron monolayers for the hydrogen evolution reaction, Nanoscale 9(2), 533 (2017)
CrossRef ADS Google scholar
[156]
S. H. Mir, S. Chakraborty, P. C. Jha, J. Wärnå, H. Soni, P. K. Jha, and R. Ahuja, Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction, Appl. Phys. Lett. 109(5), 053903 (2016)
CrossRef ADS Google scholar
[157]
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
CrossRef ADS Google scholar
[158]
C. W. Liu, Z. X. Dai, J. Zhang, Y. G. Jin, D. S. Li, and C. H. Sun, Two-dimensional boron sheets as metalfree catalysts for hydrogen evolution reaction, J. Phys. Chem. C 122(33), 19051 (2018)
CrossRef ADS Google scholar
[159]
H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, and B. P. T. Fokwa, Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed. 56(20), 5575 (2017)
CrossRef ADS Google scholar
[160]
Y. Chen, G. Yu, W. Chen, Y. Liu, G. D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa, and X. Zou, Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction, J. Am. Chem. Soc. 139(36), 12370 (2017)
CrossRef ADS Google scholar
[161]
P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.Y. Wang, K. H. Lim, and X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction, Energy Environ. Sci. 7(8), 2624 (2014)
CrossRef ADS Google scholar
[162]
Y. Singh, S. Back, and Y. Jung, Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts, Phys. Chem. Chem. Phys. 20(32), 21095 (2018)
CrossRef ADS Google scholar
[163]
J. Rossmeisl, A. Logadottir, and J. K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319(1-3), 178 (2005)
CrossRef ADS Google scholar
[164]
X. Tan, H. A. Tahini, and S. C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture, ACS Appl. Mater. Interfaces 9(23), 19825 (2017)
CrossRef ADS Google scholar
[165]
T. B. Tai and M. T. Nguyen, Interaction mechanism of CO2 ambient adsorption on transition-metal-coated boron sheets, Chemistry 19(9), 2942 (2013)
CrossRef ADS Google scholar
[166]
H. Shen, Y. Li, and Q. Sun, Cu atomic chains supported on b-borophene sheets for effective CO2 electroreduction, Nanoscale 10(23), 11064 (2018)
CrossRef ADS Google scholar
[167]
V. Nagarajan and R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol – A first-principles study, Comput. Theor. Chem. 1105, 52 (2017)
CrossRef ADS Google scholar
[168]
A. Shahbazi Kootenaei and G. Ansari, B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis, Phys. Lett. A 380(34), 2664 (2016)
CrossRef ADS Google scholar
[169]
A. Omidvar, Borophene: A novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection, Comput. Theor. Chem. 1115, 179 (2017)
CrossRef ADS Google scholar
[170]
R. Chandiramouli and V. Nagarajan, Borospherene nanostructure as CO and NO sensor – A first-principles study, Vacuum 142, 13 (2017)
CrossRef ADS Google scholar
[171]
V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, and R. Ahuja, Toward the realization of 2D borophene based gas sensor, J. Phys. Chem. C 121(48), 26869 (2017)
CrossRef ADS Google scholar
[172]
R. Y. Guo, T. Li, S. E. Shi, and T. H. Li, Oxygen defects formation and optical identification in monolayer borophene, Mater. Chem. Phys. 198, 346 (2017)
CrossRef ADS Google scholar
[173]
Q. Li, Q. Zhou, X. Niu, Y. Zhao, Q. Chen, and J. Wang, Covalent functionalization of black phosphorus from firstprinciples, J. Phys. Chem. Lett. 7(22), 4540 (2016)
CrossRef ADS Google scholar
[174]
Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4243 KB)

Accesses

Citations

Detail

Sections
Recommended

/