Review of borophene and its potential applications
Zhi-Qiang Wang, Tie-Yu Lü, Hui-Qiong Wang, Yuan Ping Feng, Jin-Cheng Zheng
Review of borophene and its potential applications
Since two-dimensional boron sheet (borophene) synthesized on Ag substrates in 2015, research on borophene has grown fast in the fields of condensed matter physics, chemistry, material science, and nanotechnology. Due to the unique physical and chemical properties, borophene has various potential applications. In this review, we summarize the progress on borophene with a particular emphasis on the recent advances. First, we introduce the phases of borophene by experimental synthesis and theoretical predictions. Then, the physical and chemical properties, such as mechanical, thermal, electronic, optical and superconducting properties are summarized. We also discuss in detail the utilization of the borophene for wide ranges of potential application among the alkali metal ion batteries, Li-S batteries, hydrogen storage, supercapacitor, sensor and catalytic in hydrogen evolution, oxygen reduction, oxygen evolution, and CO2 electroreduction reaction. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.
borophene / structural diversity / high anisotropy / boron vacancy concentration
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef
ADS
Google scholar
|
[2] |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef
ADS
Google scholar
|
[3] |
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of grapheme and graphene layers, Phys. Rev. Lett. 97(18), 187401 (2006)
CrossRef
ADS
Google scholar
|
[4] |
H. J. Yan, B. Xu, S. Q. Shi, and C. Y. Ouyang, Firstprinciples study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries, J. Appl. Phys. 112(10), 104316 (2012)
CrossRef
ADS
Google scholar
|
[5] |
N. Wei, Y. Chen, K. Cai, J. Zhao, H. Q. Wang, and J. C. Zheng, Thermal conductivity of graphene kirigami: Ultralow and strain robustness, Carbon 104, 203 (2016)
CrossRef
ADS
Google scholar
|
[6] |
Y. Chen, Y. Zhang, K. Cai, J. Jiang, J. C. Zheng, J. Zhao, and N. Wei, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon 117, 399 (2017)
CrossRef
ADS
Google scholar
|
[7] |
Y. H. Lu, W. Chen, Y. P. Feng, and P. M. He, Tuning the electronic structure of graphene by an organic molecule, J. Phys. Chem. B 113(1), 2 (2009)
CrossRef
ADS
Google scholar
|
[8] |
Y. P. Feng, L. Shen, M. Yang, A. Z. Wang, M. G. Zeng, Q. Y. Wu, S. Chintalapati, and C. R. Chang, Prospects of spintronics based on 2D materials, WIRES Comput. Mol. Sci. 7(5), e1313 (2017)
CrossRef
ADS
Google scholar
|
[9] |
N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
CrossRef
ADS
Google scholar
|
[10] |
L. Q. Xu, N. Wei, Y. P. Zheng, Z. Y. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3D networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2012)
CrossRef
ADS
Google scholar
|
[11] |
F. Rao, Z. Wang, B. Xu, L. Chen, and C. Ouyang, Firstprinciples study of lithium and sodium atoms intercalation in fluorinated graphite, Engineering 1(2), 243 (2015)
CrossRef
ADS
Google scholar
|
[12] |
K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)
CrossRef
ADS
Google scholar
|
[13] |
G. Liu, X. L. Lei, M. S. Wu, B. Xu, and C. Y. Ouyang, Comparison of the stability of free-standing silicene and hydrogenated silicene in oxygen: A first principles investigation, J. Phys.: Condens. Matter 26(35), 355007 (2014)
CrossRef
ADS
Google scholar
|
[14] |
A. Molle, C. Grazianetti, L. Tao, D. Taneja, M. H. Alam, and D. Akinwande, Silicene, silicene derivatives, and their device applications, Chem. Soc. Rev. 47(16), 6370 (2018)
CrossRef
ADS
Google scholar
|
[15] |
G. Li, L. Zhang, W. Xu, J. Pan, S. Song, Y. Zhang, H. Zhou, Y. Wang, L. Bao, Y. Y. Zhang, S. Du, M. Ouyang, S. T. Pantelides, and H. J. Gao, Stable silicone in graphene/silicene van der Waals heterostructures, Adv. Mater. 30(49), 1804650 (2018)
CrossRef
ADS
Google scholar
|
[16] |
G. Liu, S. B. Liu, B. Xu, C. Y. Ouyang, H. Y. Song, S. Guan, and S. A. Yang, Multiple Dirac points and hydrogenation-induced magnetism of germanene layer on Al(111) surface, J. Phys. Chem. Lett. 6(24), 4936 (2015)
CrossRef
ADS
Google scholar
|
[17] |
X. R. Hu, J. M. Zheng, and Z. Y. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys.13, 137302 (2017)
CrossRef
ADS
Google scholar
|
[18] |
Y. Q. Cai, Z. Q. Bai, H. Pan, Y. P. Feng, B. I. Yakobson, and Y. W. Zhang, Constructing metallic nanoroads on a MoS(2) monolayer via hydrogenation, Nanoscale 6(3), 1691 (2014)
CrossRef
ADS
Google scholar
|
[19] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef
ADS
Google scholar
|
[20] |
J. Pei, J. Yang, R. Xu, Y. H. Zeng, Y. W. Myint, S. Zhang, J. C. Zheng, Q. Qin, X. Wang, W. Jiang, and Y. Lu, Exciton and trion dynamics in bilayer MoS2, Small 11(48), 6384 (2015)
CrossRef
ADS
Google scholar
|
[21] |
J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lu, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, Excited state biexcitons in atomically thin MoSe2, ACS Nano 11(7), 7468 (2017)
CrossRef
ADS
Google scholar
|
[22] |
C. Shang, B. Xu, X. Lei, S. Yu, D. Chen, M. Wu, B. Sun, G. Liu, and C. Ouyang, Bandgap tuning in MoSSe bilayers: Synergistic effects of dipole moment and interlayer distance, Phys. Chem. Chem. Phys. 20(32), 20919 (2018)
CrossRef
ADS
Google scholar
|
[23] |
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef
ADS
Google scholar
|
[24] |
S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
CrossRef
ADS
Google scholar
|
[25] |
J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Twodimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7(1), 13352 (2016)
CrossRef
ADS
Google scholar
|
[26] |
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
CrossRef
ADS
Google scholar
|
[27] |
W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, and K. Wu, Experimental realization of honeycomb borophene, Sci. Bull. (Beijing) 63(5), 282 (2018)
CrossRef
ADS
Google scholar
|
[28] |
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
CrossRef
ADS
Google scholar
|
[29] |
E. S. Penev, A. Kutana, and B. I. Yakobson, Can twodimensional boron superconduct? Nano Lett. 16(4), 2522 (2016)
CrossRef
ADS
Google scholar
|
[30] |
S. G. Xu, Y. J. Zhao, J. H. Liao, X. B. Yang, and H. Xu, The nucleation and growth of borophene on the Ag(111) surface, Nano Res. 9(9), 2616 (2016)
CrossRef
ADS
Google scholar
|
[31] |
A. Lopez-Bezanilla and P.B. Littlewood, Electronic properties of 8–Pmmn borophene, Phys. Rev. B 93, 241405(R) (2016)
|
[32] |
B. Peng, H. Zhang, H. Z. Shao, Y. F. Xu, R. J. Zhang, and H. Y. Zhu, Electronic, optical, and thermodynamic properties of borophene from first-principle calculations, J. Mater. Chem. C 4(16), 3592 (2016)
CrossRef
ADS
Google scholar
|
[33] |
J. Carrete, W. Li, L. Lindsay, D. A. Broido, L. J. Gallego, and N. Mingo, Physically founded phonon dispersions of few-layer materials and the case of borophene, Mater. Res. Lett. 4(4), 204 (2016)
CrossRef
ADS
Google scholar
|
[34] |
H. F. Wang, Q. F. Li, Y. Gao, F. Miao, X. F. Zhou, and X. G. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New J. Phys. 18(7), 073016 (2016)
CrossRef
ADS
Google scholar
|
[35] |
R. C. Xiao, D. F. Shao, W. J. Lu, H. Y. Lv, J. Y. Li, and Y. P. Sun, Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction, Appl. Phys. Lett. 109(12), 122604 (2016)
CrossRef
ADS
Google scholar
|
[36] |
M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95(2), 024505 (2017)
CrossRef
ADS
Google scholar
|
[37] |
Y. X. Liu, Y. J. Dong, Z. Y. Tang, X. F. Wang, L. Wang, T. J. Hou, H. P. Lin, and Y. Y. Li, Stable and metallic borophene nanoribbons from first-principles calculations, J. Mater. Chem. C 4(26), 6380 (2016)
CrossRef
ADS
Google scholar
|
[38] |
X. B. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties, Phys. Rev. B 77, 041402(R) (2008)
|
[39] |
A. D. Zabolotskiy and Y. E. Lozovik, Strain-induced pseudomagnetic field in Dirac semimetal borophene, Phys. Rev. B 94(16), 165403 (2016)
CrossRef
ADS
Google scholar
|
[40] |
J. H. Yuan, L. W. Zhang, and K. M. Liew, Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons, RSC Advances 5(91), 74399 (2015)
CrossRef
ADS
Google scholar
|
[41] |
H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)
CrossRef
ADS
Google scholar
|
[42] |
X. M. Zhang, J. P. Hu, Y. C. Cheng, H. Y. Yang, Y. G. Yao, and S. Y. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)
CrossRef
ADS
Google scholar
|
[43] |
H. Shu, F. Li, P. Liang, and X. Chen, Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface, Nanoscale 8(36), 16284 (2016)
CrossRef
ADS
Google scholar
|
[44] |
X. Liu, Z. Zhang, L. Wang, B. I. Yakobson, and M. C. Hersam, Intermixing and periodic self-assembly of borophene line defects, Nat. Mater. 17(9), 783 (2018)
CrossRef
ADS
Google scholar
|
[45] |
V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)
CrossRef
ADS
Google scholar
|
[46] |
Z. Pang, X. Qian, Y. Wei, and R. Yang, Super-stretchable borophene, EPL 116(3), 36001 (2016)
CrossRef
ADS
Google scholar
|
[47] |
Y. An, J. Jiao, Y. Hou, H. Wang, R. Wu, C. Liu, X. Chen, T. Wang, and K. Wang, Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers, J. Phys.: Condens. Matter 31, 065301 (2019)
CrossRef
ADS
Google scholar
|
[48] |
X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21, 617 (2019)
CrossRef
ADS
Google scholar
|
[49] |
H. Cui, X. Zhang, and D. Chen, Borophene: A promising adsorbent material with strong ability and capacity for SO2 adsorption, Appl. Phys. A 124, 636 (2018)
CrossRef
ADS
Google scholar
|
[50] |
L. Kong, K. Wu, and L. Chen, Recent progress on borophene: Growth and structures, Front. Phys. 13(3), 138105 (2018)
CrossRef
ADS
Google scholar
|
[51] |
A. Lherbier, A. R. Botello-Méndez, and J.C. Charlier, Electronic and optical properties of pristine and oxidized borophene, 2D Materials 3, 045006 (2016)
|
[52] |
E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)
CrossRef
ADS
Google scholar
|
[53] |
Z. H. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)
CrossRef
ADS
Google scholar
|
[54] |
Y. Zhao, S. Zeng, and J. Ni, Superconductivity in twodimensional boron allotropes, Phys. Rev. B 93, 014502 (2016)
CrossRef
ADS
Google scholar
|
[55] |
X. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties, Phys. Rev. B 77, 041402 (2008)
CrossRef
ADS
Google scholar
|
[56] |
Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional materials: Polyphony in B flat, Nat. Chem. 8(6), 525 (2016)
CrossRef
ADS
Google scholar
|
[57] |
T. Tsafack and B. I. Yakobson, Thermomechanical analysis of two-dimensional boron monolayers, Phys. Rev. B 93, 165434 (2016)
CrossRef
ADS
Google scholar
|
[58] |
Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)
CrossRef
ADS
Google scholar
|
[59] |
Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)
CrossRef
ADS
Google scholar
|
[60] |
F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)
CrossRef
ADS
Google scholar
|
[61] |
Y. Zhao, S. Zeng, and J. Ni, Phonon-mediated superconductivity in borophenes, Appl. Phys. Lett. 108(24), 242601 (2016)
CrossRef
ADS
Google scholar
|
[62] |
Z. H. Zhang, Y. Yang, G. Y. Gao, and B. I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)
CrossRef
ADS
Google scholar
|
[63] |
R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)
CrossRef
ADS
Google scholar
|
[64] |
A. Bhattacharya, S. Bhattacharya, and G. P. Das, Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet, Phys. Rev. B 84(7), 075454 (2011)
CrossRef
ADS
Google scholar
|
[65] |
M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)
CrossRef
ADS
Google scholar
|
[66] |
Y. Jiao, F. Ma, J. Bell, A. Bilic, and A. Du, Twodimensional boron hydride sheets: high stability, massless Dirac fermions, and excellent mechanical properties, Angew. Chem. Int. Ed. 55(35), 10292 (2016)
CrossRef
ADS
Google scholar
|
[67] |
L. C. Xu, A. Du, and L. Kou, Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity, Phys. Chem. Chem. Phys. 18(39), 27284 (2016)
CrossRef
ADS
Google scholar
|
[68] |
Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, High anisotropy of fully hydrogenated borophene, Phys. Chem. Chem. Phys. 18(46), 31424 (2016)
CrossRef
ADS
Google scholar
|
[69] |
G. I. Giannopoulos, Mechanical behavior of planar borophenes: A molecular mechanics study, Comput. Mater. Sci. 129, 304 (2017)
CrossRef
ADS
Google scholar
|
[70] |
B. Mortazavi, O. Rahaman, A. Dianat, and T. Rabczuk, Mechanical responses of borophene sheets: A firstprinciples study, Phys. Chem. Chem. Phys. 18(39), 27405 (2016)
CrossRef
ADS
Google scholar
|
[71] |
Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, and S. De, Mechanical properties and stabilities of alpha-boron monolayers, Phys. Chem. Chem. Phys. 17(3), 2160 (2015)
CrossRef
ADS
Google scholar
|
[72] |
M. Q. Le, B. Mortazavi, and T. Rabczuk, Mechanical properties of borophene films: A reactive molecular dynamics investigation, Nanotechnology 27(44), 445709 (2016)
CrossRef
ADS
Google scholar
|
[73] |
L. Shao, Y. Li, Q. Yuan, M. Li, Y. Du, F. Zeng, P. Ding, and H. Ye, Effects of strain on mechanical and electronic properties of borophene, Mater. Res. Express 4(4), 045020 (2017)
CrossRef
ADS
Google scholar
|
[74] |
R. Peköz, M. Konuk, M. E. Kilic, and E. Durgun, Twodimensional fluorinated boron sheets: Mechanical, electronic, and thermal properties, ACS Omega 3(2), 1815 (2018)
CrossRef
ADS
Google scholar
|
[75] |
Q. Wei and X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Appl. Phys. Lett. 104(25), 251915 (2014)
CrossRef
ADS
Google scholar
|
[76] |
Y. P. Zhou and J. W. Jiang, Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential, Sci. Rep. 7(1), 45516 (2017)
CrossRef
ADS
Google scholar
|
[77] |
W. C. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J. Y. Liu, and M. S. Miao, Honeycomb boron allotropes with Dirac cones: a true analogue to graphene, J. Phys. Chem. Lett. 8(12), 2647 (2017)
CrossRef
ADS
Google scholar
|
[78] |
H. Zhong, K. Huang, G. Yu, and S. Yuan, Electronic and mechanical properties of few-layer borophene, Phys. Rev. B 98(5), 054104 (2018)
CrossRef
ADS
Google scholar
|
[79] |
Z. Q. Wang, H. Cheng, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, A super-stretchable boron nanoribbon network, Phys. Chem. Chem. Phys. 20(24), 16510 (2018)
CrossRef
ADS
Google scholar
|
[80] |
Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, New crystal structure prediction of fully hydrogenated borophene by first principles calculations, Sci. Rep. 7(1), 609 (2017)
CrossRef
ADS
Google scholar
|
[81] |
R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)
CrossRef
ADS
Google scholar
|
[82] |
X. D. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Nonlinear elastic behavior of graphene: Ab initiocalculations to continuum description, Phys. Rev. B 80(20), 205407 (2009)
CrossRef
ADS
Google scholar
|
[83] |
J. Yuan, N. Yu, K. Xue, and X. Miao, Ideal strength and elastic instability in single-layer 8-Pmmn borophene, RSC Advances 7(14), 8654 (2017)
CrossRef
ADS
Google scholar
|
[84] |
Q. Peng, C. Liang, W. Ji, and S. De, A first-principles study of the mechanical properties of g-GeC, Mech. Mater. 64, 135 (2013)
CrossRef
ADS
Google scholar
|
[85] |
B. Mortazavi, O. Rahaman, M. Makaremi, A. Dianat, G. Cuniberti, and T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene, Physica E 87, 228 (2017)
CrossRef
ADS
Google scholar
|
[86] |
D. F. Li, J. He, G. Q. Ding, Q. Q. Tang, Y. Ying, J. J. He, C. Y. Zhong, Y. Liu, C. B. Feng, Q. L. Sun, H. B. Zhou, P. Zhou, and G. Zhang, Stretch-driven increase in ultrahigh thermal conductance of hydrogenated borophene and dimensionality crossover in phonon transmission, Adv. Funct. Mater. 28(31), 1801685 (2018)
CrossRef
ADS
Google scholar
|
[87] |
B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C. V. Singh, T. Rabczuk, and L. F. C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties, Nanoscale 10(8), 3759 (2018)
CrossRef
ADS
Google scholar
|
[88] |
H. B. Zhou, Y. Q. Cai, G. Zhang, and Y. W. Zhang, Superior lattice thermal conductance of single-layer borophene, npj 2D Mater. Appl. 1, 14 (2017)
|
[89] |
G. Liu, H. Wang, Y. Gao, J. Zhou, and H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations, Phys. Chem. Chem. Phys. 19(4), 2843 (2017)
CrossRef
ADS
Google scholar
|
[90] |
H. Sun, Q. Li, and X. G. Wan, First-principles study of thermal properties of borophene, Phys. Chem. Chem. Phys. 18(22), 14927 (2016)
CrossRef
ADS
Google scholar
|
[91] |
B. Mortazavi, M. Q. Le, T. Rabczuk, and L. F. C. Pereira, Anomalous strain effect on the thermal conductivity of borophene: A reactive molecular dynamics study, Physica E 93, 202 (2017)
CrossRef
ADS
Google scholar
|
[92] |
H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, and J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7(1), 45986 (2017)
CrossRef
ADS
Google scholar
|
[93] |
X. Gu and R. Yang, First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene, J. Appl. Phys. 117(2), 025102 (2015)
CrossRef
ADS
Google scholar
|
[94] |
G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, Phys. Chem. Chem. Phys. 17(7), 4854 (2015)
CrossRef
ADS
Google scholar
|
[95] |
H. J. Yan, Z. Q. Wang, B. Xu, and C. Y. Ouyang, Strain induced enhanced migration of polaron and lithium ion in l-MnO2, Funct. Mater. Lett. (Singap.) 5(04), 1250037 (2012)
CrossRef
ADS
Google scholar
|
[96] |
Z. Q. Wang, M. S. Wu, G. Liu, X. L. Lei, X. Bo, and C. Y. Ouyang, Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations, Int. J. Electrochem. Sci. 9, 562 (2014)
|
[97] |
T. Y. Lü, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)
CrossRef
ADS
Google scholar
|
[98] |
V. Shukla, A. Grigoriev, N. K. Jena, and R. Ahuja, Strain controlled electronic and transport anisotropies in twodimensional borophene sheets, Phys. Chem. Chem. Phys. 20(35), 22952 (2018)
CrossRef
ADS
Google scholar
|
[99] |
Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Band structure engineering of borophane by first principles calculations, RSC Advances 7(75), 47746 (2017)
CrossRef
ADS
Google scholar
|
[100] |
B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C 4, 3592 (2016)
CrossRef
ADS
Google scholar
|
[101] |
J. H. Liao, Y. C. Zhao, Y. J. Zhao, H. Xu, and X. B. Yang, Phonon-mediated superconductivity in Mg intercalated bilayer borophenes, Phys. Chem. Chem. Phys. 19(43), 29237 (2017)
CrossRef
ADS
Google scholar
|
[102] |
M. Gao, Q. Z. Li, X.W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95, 024505 (2017)
CrossRef
ADS
Google scholar
|
[103] |
H. L. Li, L. Jing, W. W. Liu, J. J. Lin, R. Y. Tay, S. H. Tsang, and E. H. T. Teo, Scalable production of fewlayer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance, ACS Nano 12(2), 1262 (2018)
CrossRef
ADS
Google scholar
|
[104] |
G. Li, Y. Zhao, S. Zeng, M. Zulfiqar, and J. Ni, Strain effect on the superconductivity in borophenes, J. Phys. Chem. C 122(29), 16916 (2018)
CrossRef
ADS
Google scholar
|
[105] |
C. Cheng, J. T. Sun, H. Liu, H. X. Fu, J. Zhang, X. R. Chen, and S. Meng, Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping, 2D Materials 4, 025032 (2017)
|
[106] |
J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)
CrossRef
ADS
Google scholar
|
[107] |
H. R. Jiang, Z. Lu, M. C. Wu, F. Ciucci, and T. S. Zhao, Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries, Nano Energy 23, 97 (2016)
CrossRef
ADS
Google scholar
|
[108] |
G. A. Tritsaris, E. Kaxiras, S. Meng, and E. Wang, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13(5), 2258 (2013)
CrossRef
ADS
Google scholar
|
[109] |
Q. F. Li, C. G. Duan, X. G. Wan, and J. L. Kuo, Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus, J. Phys. Chem. C 119(16), 8662 (2015)
CrossRef
ADS
Google scholar
|
[110] |
Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries, J. Phys. Chem. C 117(48), 25409 (2013)
CrossRef
ADS
Google scholar
|
[111] |
Q. Tang, Z. Zhou, and P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer, J. Am. Chem. Soc. 134(40), 16909 (2012)
CrossRef
ADS
Google scholar
|
[112] |
B. Ziebarth, M. Klinsmann, T. Eckl, and C. Elsässer, Lithium diffusion in the spinel phase Li4Ti5O12 and in the rock salt phase Li7Ti5O12 of lithium titanate from first principles, Phys. Rev. B 89, 174301 (2014)
CrossRef
ADS
Google scholar
|
[113] |
Z. Q. Wang, Y. C. Chen, and C. Y. Ouyang, Polaron states and migration in F-doped Li2MnO3, Phys. Lett. A 378(32-33), 2449 (2014)
CrossRef
ADS
Google scholar
|
[114] |
Z. Q. Wang, M. S. Wu, B. Xu, and C. Y. Ouyang, Improving the electrical conductivity and structural stability of the Li2MnO3 cathode via P doping, J. Alloys Compd. 658, 818 (2016)
CrossRef
ADS
Google scholar
|
[115] |
J. Liu, C. Zhang, L. Xu, and S. Ju, Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT, RSC Advances 8(32), 17773 (2018)
CrossRef
ADS
Google scholar
|
[116] |
X. Zhang, J. Hu, Y. Cheng, H. Y. Yang, Y. Yao, and S. A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)
CrossRef
ADS
Google scholar
|
[117] |
L. Shi, T. Zhao, A. Xu, and J. Xu, Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries, Sci. Bull. (Beijing) 61(14), 1138 (2016)
CrossRef
ADS
Google scholar
|
[118] |
S. Banerjee, G. Periyasamy, and S. K. Pati, Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study, J. Mater. Chem. A 2(11), 3856 (2014)
CrossRef
ADS
Google scholar
|
[119] |
D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen, H. Xia, J. Liu, and R. Lu, Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries, J. Mater. Chem. A Mater. Energy Sustain. 5(5), 2328 (2017)
CrossRef
ADS
Google scholar
|
[120] |
N. Jiang, B. Li, F. Ning, and D. Xia, All boron-based 2D material as anode material in Li-ion batteries, J. Energy Chem. 27(6), 1651 (2018)
CrossRef
ADS
Google scholar
|
[121] |
P. Liang, Y. Cao, B. Tai, L. Zhang, H. Shu, F. Li, D. Chao, and X. Du, Is borophene a suitable anode material for sodium ion battery? J. Alloys Compd. 704, 152 (2017)
CrossRef
ADS
Google scholar
|
[122] |
B. Mortazavi, O. Rahaman, S. Ahzi, and T. Rabczuk, Flat borophene films as anode materials for Mg, Na or Liion batteries with ultra high capacities: A first-principles study, Appl. Mater. Today 8, 60 (2017)
CrossRef
ADS
Google scholar
|
[123] |
Y. Zhang, Z. F. Wu, P. F. Gao, S. L. Zhang, and Y. H. Wen, Could borophene be used as a promising anode material for high-performance lithium ion battery? ACS Appl. Mater. Interfaces 8(34), 22175 (2016)
CrossRef
ADS
Google scholar
|
[124] |
J. Liu, L. Zhang, and L. Xu, Theoretical prediction of borophene monolayer as anode materials for highperformance lithium-ion batteries, Ionics(2017)
|
[125] |
H. Chen, W. Zhang, X. Q. Tang, Y. H. Ding, J. R. Yin, Y. Jiang, P. Zhang, and H. B. Jin, First principles study of P-doped borophene as anode materials for lithium ion batteries, Appl. Surf. Sci. 427, 198 (2018)
CrossRef
ADS
Google scholar
|
[126] |
N. K. Jena, R. B. Araujo, V. Shukla, and R. Ahuja, Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries, ACS Appl. Mater. Interfaces 9(19), 16148 (2017)
CrossRef
ADS
Google scholar
|
[127] |
F. Li, Y. Su, and J. Zhao, Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries, Phys. Chem. Chem. Phys. 18(36), 25241 (2016)
CrossRef
ADS
Google scholar
|
[128] |
L. Zhang, P. Liang, H. B. Shu, X. L. Man, F. Li, J. Huang, Q. M. Dong, and D. L. Chao, Borophene as efficient sulfur hosts for lithium–sulfur batteries: suppressing shuttle effect and improving conductivity, J. Phys. Chem. C 121(29), 15549 (2017)
CrossRef
ADS
Google scholar
|
[129] |
H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)
CrossRef
ADS
Google scholar
|
[130] |
F. Li and J. J. Zhao, Atomic sulfur anchored on silicene, phosphorene, and borophene for excellent cycle performance of Li-S batteries, ACS Appl. Mater. Interfaces 9(49), 42836 (2017)
CrossRef
ADS
Google scholar
|
[131] |
H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: A firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)
CrossRef
ADS
Google scholar
|
[132] |
S. P. Jand, Y. X. Chen, and P. Kaghazchi, Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene, J. Power Sources 308, 166 (2016)
CrossRef
ADS
Google scholar
|
[133] |
J. Zhao, Y. Yang, R. S. Katiyar, and Z. Chen, Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study, J. Mater. Chem. A 4(16), 6124 (2016)
CrossRef
ADS
Google scholar
|
[134] |
S. Er, G. A. de Wijs, and G. Brocks, DFT study of planar boron sheets: A new template for hydrogen storage, J. Phys. Chem. C 113(43), 18962 (2009)
CrossRef
ADS
Google scholar
|
[135] |
L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, C. Wang, M. Zhang, and X. Wu, Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation, Appl. Surf. Sci. 434, 843 (2018)
CrossRef
ADS
Google scholar
|
[136] |
L. Li, H. Zhang, and X. Cheng, The high hydrogen storage capacities of Li-decorated borophene, Comput. Mater. Sci. 137, 119 (2017)
CrossRef
ADS
Google scholar
|
[137] |
X. Chen, L. Wang, W. Zhang, J. Zhang, and Y. Yuan, Cadecorated borophene as potential candidates for hydrogen storage: A first-principle study, Int. J. Hydrogen Energy 42(31), 20036 (2017)
CrossRef
ADS
Google scholar
|
[138] |
J. Wang, Y. Du, and L. Sun, Ca-decorated novel boron sheet: A potential hydrogen storage medium, Int. J. Hydrogen Energy 41(10), 5276 (2016)
CrossRef
ADS
Google scholar
|
[139] |
S. Haldar, S. Mukherjee, and C. V. Singh, Hydrogen storage in Li, Na and Ca decorated and defective borophene: A first principles study, RSC Advances 8(37), 20748 (2018)
CrossRef
ADS
Google scholar
|
[140] |
F. Zhang, R. Chen, W. Zhang, and W. Zhang, A Tidecorated boron monolayer: A promising material for hydrogen storage, RSC Advances 6(16), 12925 (2016)
CrossRef
ADS
Google scholar
|
[141] |
X. Tang, Y. Gu, and L. Kou, Theoretical investigation of calcium-decorated b 12 boron sheet for hydrogen storage, Chem. Phys. Lett. 695, 211 (2018)
CrossRef
ADS
Google scholar
|
[142] |
T. A. Abtew, B. C. Shih, P. Dev, V. H. Crespi, and P. H. Zhang, Prediction of a multicenter-bonded solid boron hydride for hydrogen storage, Phys. Rev. B 83(9), 094108 (2011)
CrossRef
ADS
Google scholar
|
[143] |
Y. S. Wang, F. Wang, M. Li, B. Xu, Q. Sun, and Y. Jia, Theoretical prediction of hydrogen storage on Li decorated planar boron sheets, Appl. Surf. Sci. 258(22), 8874 (2012)
CrossRef
ADS
Google scholar
|
[144] |
J. L. Li, H. Y. Zhang, and G. W. Yang, Ultrahighcapacity molecular hydrogen storage of a lithiumdecorated boron monolayer, J. Phys. Chem. C 119(34), 19681 (2015)
CrossRef
ADS
Google scholar
|
[145] |
I. Cabria, M. J. López, and J. A. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)
CrossRef
ADS
Google scholar
|
[146] |
A. Lebon, R. H. Aguilera-del-Toro, L. J. Gallego, and A. Vega, Li-decorated Pmmn8 phase of borophene for hydrogen storage: A van der Waals corrected densityfunctional theory study, Int. J. Hydrogen Energy 44(2), 1021 (2019)
CrossRef
ADS
Google scholar
|
[147] |
T. Liu, Y. Chen, H. Wang, M. Zhang, L. Yuan, and C. Zhang, Li-decoratedβ12-borophene as potential candidates for hydrogen storage: a first-principle study, Materials (Basel) 10(12), 1399 (2017)
CrossRef
ADS
Google scholar
|
[148] |
Y. F. Zhang and X. L. Cheng, Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation, Physica E 107, 170 (2019)
CrossRef
ADS
Google scholar
|
[149] |
C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, Highcapacity hydrogen storage by metallized graphene, Appl. Phys. Lett. 93(4), 043123 (2008)
CrossRef
ADS
Google scholar
|
[150] |
B. Xu, X. L. Lei, G. Liu, M. S. Wu, and C. Y. Ouyang, Li-decorated graphyne as high-capacity hydrogen storage media: First-principles plane wave calculations, Int. J. Hydrogen Energy 39(30), 17104 (2014)
CrossRef
ADS
Google scholar
|
[151] |
F. Li, C. W. Zhang, H. X. Luan, and P. J. Wang, Firstprinciples study of hydrogen storage on Li-decorated silicene, J. Nanopart. Res. 15(10), 1972 (2013)
CrossRef
ADS
Google scholar
|
[152] |
X. L. Lei, G. Liu, M. S. Wu, B. Xu, C. Y. Ouyang, and B. C. Pan, Hydrogen storage on calcium-decorated BC7 sheet: A first-principles study, Int. J. Hydrogen Energy 39(5), 2142 (2014)
CrossRef
ADS
Google scholar
|
[153] |
C. Zhang, S. Tang, M. Deng, and Y. Du, Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage, Chin. Phys. B 27(6), 066103 (2018)
CrossRef
ADS
Google scholar
|
[154] |
M. Moradi, and N. Naderi, First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet, Struct. Chem. 25(4), 1289 (2014)
CrossRef
ADS
Google scholar
|
[155] |
L. Shi, C. Ling, Y. Ouyang, and J. Wang, High intrinsic catalytic activity of two-dimensional boron monolayers for the hydrogen evolution reaction, Nanoscale 9(2), 533 (2017)
CrossRef
ADS
Google scholar
|
[156] |
S. H. Mir, S. Chakraborty, P. C. Jha, J. Wärnå, H. Soni, P. K. Jha, and R. Ahuja, Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction, Appl. Phys. Lett. 109(5), 053903 (2016)
CrossRef
ADS
Google scholar
|
[157] |
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
CrossRef
ADS
Google scholar
|
[158] |
C. W. Liu, Z. X. Dai, J. Zhang, Y. G. Jin, D. S. Li, and C. H. Sun, Two-dimensional boron sheets as metalfree catalysts for hydrogen evolution reaction, J. Phys. Chem. C 122(33), 19051 (2018)
CrossRef
ADS
Google scholar
|
[159] |
H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, and B. P. T. Fokwa, Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed. 56(20), 5575 (2017)
CrossRef
ADS
Google scholar
|
[160] |
Y. Chen, G. Yu, W. Chen, Y. Liu, G. D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa, and X. Zou, Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction, J. Am. Chem. Soc. 139(36), 12370 (2017)
CrossRef
ADS
Google scholar
|
[161] |
P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.Y. Wang, K. H. Lim, and X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction, Energy Environ. Sci. 7(8), 2624 (2014)
CrossRef
ADS
Google scholar
|
[162] |
Y. Singh, S. Back, and Y. Jung, Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts, Phys. Chem. Chem. Phys. 20(32), 21095 (2018)
CrossRef
ADS
Google scholar
|
[163] |
J. Rossmeisl, A. Logadottir, and J. K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319(1-3), 178 (2005)
CrossRef
ADS
Google scholar
|
[164] |
X. Tan, H. A. Tahini, and S. C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture, ACS Appl. Mater. Interfaces 9(23), 19825 (2017)
CrossRef
ADS
Google scholar
|
[165] |
T. B. Tai and M. T. Nguyen, Interaction mechanism of CO2 ambient adsorption on transition-metal-coated boron sheets, Chemistry 19(9), 2942 (2013)
CrossRef
ADS
Google scholar
|
[166] |
H. Shen, Y. Li, and Q. Sun, Cu atomic chains supported on b-borophene sheets for effective CO2 electroreduction, Nanoscale 10(23), 11064 (2018)
CrossRef
ADS
Google scholar
|
[167] |
V. Nagarajan and R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol – A first-principles study, Comput. Theor. Chem. 1105, 52 (2017)
CrossRef
ADS
Google scholar
|
[168] |
A. Shahbazi Kootenaei and G. Ansari, B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis, Phys. Lett. A 380(34), 2664 (2016)
CrossRef
ADS
Google scholar
|
[169] |
A. Omidvar, Borophene: A novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection, Comput. Theor. Chem. 1115, 179 (2017)
CrossRef
ADS
Google scholar
|
[170] |
R. Chandiramouli and V. Nagarajan, Borospherene nanostructure as CO and NO sensor – A first-principles study, Vacuum 142, 13 (2017)
CrossRef
ADS
Google scholar
|
[171] |
V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, and R. Ahuja, Toward the realization of 2D borophene based gas sensor, J. Phys. Chem. C 121(48), 26869 (2017)
CrossRef
ADS
Google scholar
|
[172] |
R. Y. Guo, T. Li, S. E. Shi, and T. H. Li, Oxygen defects formation and optical identification in monolayer borophene, Mater. Chem. Phys. 198, 346 (2017)
CrossRef
ADS
Google scholar
|
[173] |
Q. Li, Q. Zhou, X. Niu, Y. Zhao, Q. Chen, and J. Wang, Covalent functionalization of black phosphorus from firstprinciples, J. Phys. Chem. Lett. 7(22), 4540 (2016)
CrossRef
ADS
Google scholar
|
[174] |
Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |