Graphene-plasmon polaritons: From fundamental properties to potential applications
Sanshui Xiao, Xiaolong Zhu, Bo-Hong Li, N. Asger Mortensen
Graphene-plasmon polaritons: From fundamental properties to potential applications
With unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. In this paper, we briefly review the recent exciting progress in graphene plasmonics. We begin with a general description of the optical properties of graphene, particularly focusing on the dispersion of graphene-plasmon polaritons. The dispersion relation of graphene-plasmon polaritons of spatially extended graphene is expressed in terms of the local response limit with an intraband contribution. With this theoretical foundation of graphene-plasmon polaritons, we then discuss recent exciting progress, paying specific attention to the following topics: excitation of graphene plasmon polaritons, electron-phonon interactions in graphene on polar substrates, and tunable graphene plasmonics with applications in modulators and sensors. Finally, we address some of the apparent challenges and promising perspectives of graphene plasmonics.
graphene / plasmonics / graphene-plasmon polariton / plasmon-phonon interaction / tunability
[1] |
S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
|
[2] |
M. L. Brongersma, Introductory lecture: Nanoplasmonics, Faraday Discuss. 178, 9 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[3] |
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)
CrossRef
ADS
Pubmed
Google scholar
|
[4] |
Editorial, Focusing in on applications, Nature Nanotechnol. 10, 1 (2015)
CrossRef
ADS
Google scholar
|
[5] |
A. Baev, P. N. Prasad, H. Ågren, M. Samoć, and M. Wegener, Metaphotonics: An emerging field with opportunities and challenges, Phys. Rep. 594, 1 (2015)
CrossRef
ADS
Google scholar
|
[6] |
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
CrossRef
ADS
Google scholar
|
[7] |
D. K. Gramotnev and S. I. Bozhevolnyi, Nanofocusing of electromagnetic radiation, Nat. Photonics 8, 13 (2014)
CrossRef
ADS
Google scholar
|
[8] |
S. Xiao and N. A. Mortensen, Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays, Opt. Lett. 36(1), 37 (2011)
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, Nearly zero transmission through periodically modulated ultrathin metal films, Appl. Phys. Lett. 97(7), 071116 (2010)
CrossRef
ADS
Google scholar
|
[10] |
C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, Gap and channeled plasmons in tapered grooves: A review, Nanoscale 7(21), 9355 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[11] |
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature 440(7083), 508 (2006)
CrossRef
ADS
Pubmed
Google scholar
|
[12] |
D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6, 8846 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[13] |
S. Xiao, L. Liu, and M. Qiu, Resonator channel drop filters in a plasmon-polaritons metal, Opt. Express 14(7), 2932 (2006)
CrossRef
ADS
Pubmed
Google scholar
|
[14] |
H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)
CrossRef
ADS
Google scholar
|
[15] |
D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, A plasmonic “antenna-in-box” platform for enhanced single-molecule analysis at micromolar concentrations, Nat. Nanotechnol. 8(7), 512 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[16] |
S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)
CrossRef
ADS
Google scholar
|
[17] |
F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, Wide field super-resolution surface imaging through plasmonic structured illumination microscopy, Nano Lett. 14(8), 4634 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[18] |
H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)
CrossRef
ADS
Pubmed
Google scholar
|
[19] |
S. Xiao, E. Stassen, and N. A. Mortensen, Ultrathinsilicon solar cells with enhanced photocurrentsassisted by plasmonic nanostructures, J. Nanophot. 6, 061503 (2012)
CrossRef
ADS
Google scholar
|
[20] |
K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, Printing colour at the optical diffraction limit, Nat. Nanotechnol. 7(9), 557 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[21] |
J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, Plasmonic metasurfaces for coloration of plastic consumer products, Nano Lett. 14(8), 4499 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[22] |
X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, Plasmonic colour laser printing, Nat. Nanotechnol.2016)
CrossRef
ADS
Google scholar
|
[23] |
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7(6), 442 (2008)
CrossRef
ADS
Pubmed
Google scholar
|
[24] |
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, A graphene-based broadband optical modulator,Nature 474(7349), 64 (2011)
CrossRef
ADS
Pubmed
Google scholar
|
[25] |
A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche,
CrossRef
ADS
Pubmed
Google scholar
|
[26] |
A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6, 749 (2012)
CrossRef
ADS
Google scholar
|
[27] |
Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, A primer on surface plasmon-polaritons in graphene, Int. J. Mod. Phys. B 27(10), 1341001 (2013)
CrossRef
ADS
Google scholar
|
[28] |
F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
CrossRef
ADS
Google scholar
|
[29] |
T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[30] |
A. Vakil and N. Engheta, Transformation optics using graphene, Science 332(6035), 1291 (2011)
CrossRef
ADS
Pubmed
Google scholar
|
[31] |
H. Raether, Surface Plasmons on Smooth and Rough Surfaces on Gratings, Berlin:Springer, 1988
|
[32] |
Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator, Nano Lett. 15(7), 4393 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[33] |
C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photonics 9, 511 (2015)
CrossRef
ADS
Google scholar
|
[34] |
I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio,A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari,On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain, arXiv: 1512.08153
|
[35] |
F. H. Koppens, D. E. Chang, and F. J. García de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett. 11(8), 3370 (2011)
CrossRef
ADS
Pubmed
Google scholar
|
[36] |
S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, Quantum finite-size effects in graphene plasmons, ACS Nano 6(2), 1766 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[37] |
T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and N. A.Mortensen, Classical and quantum plasmonics in graphene nanodisks: The role of edge states, Phys. Rev. B 90, 241414(R) (2014)
CrossRef
ADS
Google scholar
|
[38] |
S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[39] |
B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3, 780 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[40] |
G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100% modulation depth, ACS Photonics 2(11), 1559 (2015)
CrossRef
ADS
Google scholar
|
[41] |
L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)
CrossRef
ADS
Pubmed
Google scholar
|
[42] |
A. Marini, I. Silveiro, and F. J. García de Abajo,Molecular sensing with tunable graphene plasmons, ACS Photonics 2(7), 876 (2015)
CrossRef
ADS
Google scholar
|
[43] |
D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Mid-infrared plasmonic biosensing with graphene, Science 349(6244), 165 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[44] |
C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Controlling inelastic light scattering quantum pathways in graphene, Nature 471(7340), 617 (2011)
CrossRef
ADS
Pubmed
Google scholar
|
[45] |
I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun, Novel highly conductive and transparent graphene-based conductors, Adv. Mater. 24(21), 2844 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[46] |
T. Christensen, From classical to quantum plasmonics in three and two dimensions, PhD Thesis, Technical University of Denmark, 2015
|
[47] |
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
CrossRef
ADS
Google scholar
|
[48] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[49] |
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
CrossRef
ADS
Pubmed
Google scholar
|
[50] |
S. A. Mikhailov and K. Ziegler, New electromagnetic mode in graphene, Phys. Rev. Lett. 99(1), 016803 (2007)
CrossRef
ADS
Pubmed
Google scholar
|
[51] |
M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)
CrossRef
ADS
Google scholar
|
[52] |
B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Dynamical polarization of graphene at finite doping, New J. Phys. 8(12), 318 (2006)
CrossRef
ADS
Google scholar
|
[53] |
E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75(20), 205418 (2007)
CrossRef
ADS
Google scholar
|
[54] |
L. A. Falkovsky and A. A. Varlamov, Space-time dispersion of graphene conductivity, Eur. Phys. J. B 56(4), 281 (2007)
CrossRef
ADS
Google scholar
|
[55] |
S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27(18), 183204 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[56] |
J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)
Pubmed
|
[57] |
Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, Graphene surface plasmons at the near-infrared optical regime, Sci. Rep. 4, 6559 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[58] |
X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, and S. Xiao, Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating, Appl. Phys. Lett. 102(13), 131101 (2013)
CrossRef
ADS
Google scholar
|
[59] |
M. Farhat, S. Guenneau, and H. Bağcı, Exciting graphene surface plasmon polaritons through light and sound interplay, Phys. Rev. Lett. 111(23), 237404 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[60] |
H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7(5), 330 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[61] |
Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[62] |
Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z.Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface, Nano Lett. 11(11), 4701 (2011)
CrossRef
ADS
Pubmed
Google scholar
|
[63] |
G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. D. Goldflam, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, X. M. Xie, M. M. Fogler, and D. N. Basov, Plasmons in graphene Moiré superlattices, Nat. Mater. 14(12), 1217 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[64] |
E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity, Nat. Photonics 9(10), 674 (2015)
CrossRef
ADS
Google scholar
|
[65] |
P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing, Nat. Commun. 6, 7507 (2015)
CrossRef
ADS
Google scholar
|
[66] |
P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[67] |
A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials, Nano Lett. 14(5), 2896 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[68] |
K. Y. M. Yeung, J. Chee, H. Yoon, Y. Song, J. Kong, and D. Ham, Far-infrared graphene plasmonic crystals for plasmonic band engineering, Nano Lett. 14(5), 2479 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[69] |
W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[70] |
W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, Excitation and active control of propagating surface plasmon polaritons in graphene, Nano Lett. 13(8), 3698 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[71] |
J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, Coupling light into graphene plasmons through surface acoustic waves, Phys. Rev. Lett. 111(23), 237405 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[72] |
T. Christensen, A. P. Jauho, M. Wubs, and N. A. Mortensen, Localized plasmons in graphene-coated nanospheres, Phys. Rev. B 91(12), 125414 (2015)
CrossRef
ADS
Google scholar
|
[73] |
W. Wang, B. Li, E. Stassen, N. A. Mortensen, and J. Christensen, Localized surface plasmons in vibrating grapheme nanodisks, Nanoscale, 2016, arXiv: 1502.00535
CrossRef
ADS
Google scholar
|
[74] |
A. Reserbat-Plantey, K. G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger, D. Chang, C. Toninelli, A. Bachtold, and F. H. L. Koppens, Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS, Nat. Commun. 7, 10218 (2016)
CrossRef
ADS
Google scholar
|
[75] |
D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, Trapping and guiding surface plasmons in curved graphene landscapes, arXiv: 1508.02729
|
[76] |
M. Jablan, M. Soljačić, and H. Buljan, Unconventional plasmon-phonon coupling in graphene, Phys. Rev. B 83(16), 161409 (2011)
CrossRef
ADS
Google scholar
|
[77] |
Y. Liu and R. F. Willis, Plasmon-phonon strongly coupled mode in epitaxial graphene,Phys. Rev. B 81(8), 081406 (2010)
CrossRef
ADS
Google scholar
|
[78] |
H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics 7(5), 394 (2013)
CrossRef
ADS
Google scholar
|
[79] |
X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography, Nano Lett. 14(5), 2907 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[80] |
V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures, Nano Lett. 14(7), 3876 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[81] |
K. Bolotin, K .Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10), 351 (2008)
CrossRef
ADS
Google scholar
|
[82] |
S. Fratini and F. Guinea, Substrate-limited electron dynamics in graphene, Phys. Rev. B 77(19), 195415 (2008)
CrossRef
ADS
Google scholar
|
[83] |
K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Commun. 30(12), 807 (1979)
CrossRef
ADS
Google scholar
|
[84] |
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P.Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
CrossRef
ADS
Pubmed
Google scholar
|
[85] |
S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater. 6(3), 198 (2007)
CrossRef
ADS
Pubmed
Google scholar
|
[86] |
A. Mooradian and G. B. Wright, Observation of the interaction of plasmons with longitudinal optical phonons in GaAs, Phys. Rev. Lett. 16(22), 999 (1966)
CrossRef
ADS
Google scholar
|
[87] |
E. H. Hwang, R. Sensarma, and S. Das Sarma, Plasmon-phonon coupling in graphene, Phys. Rev. B 82(19), 195406 (2010)
CrossRef
ADS
Google scholar
|
[88] |
R. J. Koch, T. Seyller, and J. A. Schaefer, Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem, Phys. Rev. B 82(20), 201413 (2010)
CrossRef
ADS
Google scholar
|
[89] |
I. Forbeaux, J. M. Themlin, and J. M. Debever, Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure, Phys. Rev. B 58(24), 16396 (1998)
CrossRef
ADS
Google scholar
|
[90] |
Y. Ou, X. Zhu, V. Jokubavicius, R.Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures, Sci. Rep. 4, 4662 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[91] |
X. Zhu, Y. Ou, V. Jokubavicius, M. Syvajarvi, O. Hansen, H. Ou, N. A. Mortensen, and S. Xiao, Broadband light-extraction enhanced by arrays of whispering gallery resonators, Appl. Phys. Lett. 101(24), 241108 (2012)
CrossRef
ADS
Google scholar
|
[92] |
X. Zhu, C. Zhang, X. Liu, O. Hansen, S. Xiao, N. A. Mortensen, and J. Zi, Evaporation of water droplets on “lock-and-key” structures with nanoscale features, Langmuir 28(25), 9201 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[93] |
X. Zhu, F. Xie, L. Shi, X. Liu, N. A. Mortensen, S. Xiao, J. Zi, and W. Choy, Broadband enhancement of spontaneous emission in a photonic-plasmonic structure , Opt. Lett. 37(11), 2037 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[94] |
X. Zhu, S. Xiao, L. Shi, X. Liu, J. Zi, O. Hansen, and N. A. Mortensen, A stretch-tunable plasmonic structure with a polarization-dependent response, Opt. Express 20(5), 5237 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[95] |
Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers, Nano Lett. 14(3), 1573 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[96] |
I. D. Barcelos, A. R. Cadore, L. C. Campos, A. Malachias, K. Watanabe, T. Taniguchi, F. C. Maia, R. Freitas, and C. Deneke, Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy, Nanoscale 7(27), 11620 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[97] |
V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, Highly confined tunable mid-infrared plasmonics in graphene nanoresonators, Nano Lett. 13(6), 2541 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[98] |
M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett . 15(10), 7099 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[99] |
M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, Plasmonic tunable metamaterial absorber as ultraviolet protection film, Appl. Phys. Lett. 104(4), 041103 (2014)
CrossRef
ADS
Google scholar
|
[100] |
D. Franklin, Y. Chen, A.Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces, Nat. Commun. 6, 7337 (2015
CrossRef
ADS
Pubmed
Google scholar
|
[101] |
A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, Real-time tunable lasing from plasmonic nanocavity arrays, Nat. Commun. 6, 6939 (2015)
CrossRef
ADS
Google scholar
|
[102] |
G. C.Dyer, G. R.Aizin, S. J.Allen, A. D.Grine, D.Bethke, J. L.Reno, and E. A. Shaner, Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals, Nat. Photonics 7(11), 925 (2013)
CrossRef
ADS
Google scholar
|
[103] |
B. Fluegel, A. Mascarenhas, D. W. Snoke, L. N. Pfeiffer, and K. West, Plasmonic all-optical tunable wavelength shifter, Nat. Photonics 1(12), 701 (2007)
CrossRef
ADS
Google scholar
|
[104] |
Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J.García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[105] |
V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6, 7032 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[106] |
N. A. Mortensen, S. Xiao, and J. Pedersen, Liquid-infiltrated photonic crystals: Enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluidics 4(1), 117 (2008)
CrossRef
ADS
Google scholar
|
[107] |
L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)
CrossRef
ADS
Pubmed
Google scholar
|
[108] |
C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, Metamaterial localized resonance sensors: Prospects and limitations, Opt. Express 18(24), 25075 (2010)
CrossRef
ADS
Pubmed
Google scholar
|
[109] |
M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Photocurrent in graphene harnessed by tunable intrinsic plasmons, Nat. Commun. 4, 1951 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[110] |
X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, Enhanced light-matter interactions in graphene-covered gold nanovoid arrays, Nano Lett. 13(10), 4690 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[111] |
J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, Electrical control of optical plasmon resonance with graphene, Nano Lett. 12(11), 5598 (2012)
CrossRef
ADS
Pubmed
Google scholar
|
[112] |
S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett. 13(3), 1111 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[113] |
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)
CrossRef
ADS
Pubmed
Google scholar
|
[114] |
X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319(5867), 1229 (2008)
CrossRef
ADS
Pubmed
Google scholar
|
[115] |
S. Rasappa, J. M. Caridad, L. Schulte, A. Cagliani, D. Borah, M. A. Morris, P. Bøggild, and S.Ndoni, High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography, RSC Adv. 5, 66711 (2015)
CrossRef
ADS
Google scholar
|
[116] |
W. Wang, T.Christensen, A. P.Jauho, K. S. Thygesen, M. Wubs, and N. A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles, Sci. Rep. 5, 9535 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[117] |
A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K.Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in graphene-boron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)
CrossRef
ADS
Pubmed
Google scholar
|
[118] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
CrossRef
ADS
Google scholar
|
[119] |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef
ADS
Pubmed
Google scholar
|
[120] |
Y. Hao, M. S.Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science 342(6159), 720 (2013)
CrossRef
ADS
Pubmed
Google scholar
|
[121] |
T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, and M. Jiang, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys, Nat. Mater. 15(1), 43 (2016) PMID:26595118
CrossRef
ADS
Google scholar
|
[122] |
J. L.Cheng, N. Vermeulen, and J. E. Sipe, Third order optical nonlinearity of graphene, New J. Phys. 16(5), 053014 (2014)
CrossRef
ADS
Google scholar
|
[123] |
N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, Optical bistability of graphene in the terahertz range, Phys. Rev. B 90(12), 125425 (2014)
CrossRef
ADS
Google scholar
|
[124] |
D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, Second-harmonic generation by a graphene nanoparticle, Phys. Rev. B 90(3), 035412 (2014)
CrossRef
ADS
Google scholar
|
[125] |
T. Christensen, W. Yan, A.-P.Jauho, M. Wubs, and N. A. Mortensen, Kerr nonlinearity and plasmonic bistability in graphene nanoribbons, Phys. Rev. B 92, 121407(R) (2015) http://dx.doi.org/10.1103/PhysRevB.92.121407
CrossRef
ADS
Google scholar
|
[126] |
J. D. Cox and F. Javier García de Abajo, Electrically tunable nonlinear plasmonics in graphene nanoislands, Nat. Commun. 5, 5725 (2014)
CrossRef
ADS
Pubmed
Google scholar
|
[127] |
J. D. Cox and F. J. García de Abajo, Plasmon-enhanced nonlinear wave mixing in nanostructured graphene, ACS Photonics 2(2), 306 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |