Preserving qubit coherence by dynamical decoupling

Wen YANG , Zhen-Yu WANG , Ren-Bao LIU

Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 2 -14.

PDF (314KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 2 -14. DOI: 10.1007/s11467-010-0113-8
REVIEW ARTICLE

Preserving qubit coherence by dynamical decoupling

Author information +
History +
PDF (314KB)

Abstract

In quantum information processing, it is vital to protect the coherence of qubits in noisy environments. Dynamical decoupling (DD), which applies a sequence of flips on qubits and averages the qubit-environment coupling to zero, is a promising strategy compatible with other desired functionalities, such as quantum gates. Here, we review the recent progresses in theories of dynamical decoupling and experimental demonstrations. We give both semiclassical and quantum descriptions of the qubit decoherence due to coupling to noisy environments. Based on the quantum picture, a geometrical interpretation of DD is presented. The periodic Carr-Purcell-Meiboom-Gill DD and the concatenated DD are reviewed, followed by a detailed exploration of the recently developed Uhrig DD, which employs the least number of pulses in an unequally spaced sequence to suppress the qubit-environment coupling to a given order of the evolution time. Some new developments and perspectives are also discussed.

Keywords

qubit / decoherence / dynamical decoupling

Cite this article

Download citation ▾
Wen YANG, Zhen-Yu WANG, Ren-Bao LIU. Preserving qubit coherence by dynamical decoupling. Front. Phys., 2011, 6(1): 2-14 DOI:10.1007/s11467-010-0113-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000

[2]

D. DiVincenzo, Fortschr. Phys., 2000, 48: 771

[3]

R. Kubo, J. Phys. Soc. Jpn., 1954, 9: 935

[4]

P. W. Anderson, J. Phys. Soc. Jpn., 1954, 9: 316

[5]

W. Yao, R. B. Liu, and L. J. Sham, Phys. Rev. B, 2006, 74: 195301

[6]

I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B, 2002, 65: 205309

[7]

T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature, 2002, 419: 278

[8]

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature, 2004, 430: 431

[9]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Nature, 2004, 432: 81

[10]

Y. G. Semenov and K.W. Kim, Phys. Rev. B, 2003, 67: 073301

[11]

C. Deng and X. Hu, Phys. Rev. B, 2006, 73: 241303(R)

[12]

N. Shenvi, R. de Sousa, and K. B. Whaley, Phys. Rev. B, 2005, 71: 144419

[13]

W. M. Witzel and S. Das Sarma, Phys. Rev. B, 2006, 74: 035322

[14]

W. M. Witzel and S. Das Sarma, Phys. Rev. Lett., 2007, 98: 077601

[15]

S. K. Saikin, W. Yao, and L. J. Sham, Phys. Rev. B, 2007, 75: 125314

[16]

W. Yang and R. B. Liu, Phys. Rev. B, 2008, 78: 085315

[17]

W. Yang and R. B. Liu, Phys. Rev. B, 2009, 79: 115320

[18]

L. M. Duan and G. C. Guo, Phys. Rev. Lett., 1997, 79: 1953

[19]

D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett., 1998, 81: 2594

[20]

E. L. Hahn, Phys. Rev., 1950, 80: 580

[21]

M. Mehring, Principles of High Resolution NMR in Solids, 2nd Ed., Berlin: Spinger-Verleg, 1983

[22]

W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. Lett., 1970, 25: 218

[23]

U. Haeberlen, High Resolution NMR in Solids: Selective Averaging, New York: Academic Press, 1976

[24]

L. Viola and S. Lloyd, Phys. Rev. A, 1998, 58: 2733

[25]

M. Ban, J. Mod. Opt., 1998, 45: 2315

[26]

P. Zanardi, Phys. Lett. A, 1999, 258: 77

[27]

L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett., 1999, 82: 2417

[28]

L. Viola and E. Knill, Phys. Rev. Lett., 2005, 94: 060502

[29]

O. Kern and G. Alber, Phys. Rev. Lett., 2005, 95: 250501

[30]

K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett., 2005, 95: 180501

[31]

K. Khodjasteh and D. A. Lidar, Phys. Rev. A, 2007, 75: 062310

[32]

L. F. Santos and L. Viola, Phys. Rev. Lett., 2006, 97: 150501

[33]

W. Yao, R. B. Liu, and L. J. Sham, Phys. Rev. Lett., 2007, 98: 077602

[34]

R. B. Liu, W. Yao, and L. J. Sham, New J. Phys., 2007, 9: 226

[35]

W. M. Witzel and S. Das Sarma, Phys. Rev. B, 2007, 76: 241303(R)

[36]

W. X. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and B. N. Harmon, Phys. Rev. B, 2007, 75: 201302(R)

[37]

G. S. Uhrig, Phys. Rev. Lett., 2007, 98: 100504

[38]

L. Cywiński, R.M. Lutchyn, C. P. Nave, and S. Das Sarma, Phys. Rev. B, 2008, 77: 174509

[39]

J. J. L. Morton, A. M. Tyryshkin, A. Ardavan, S. C. Benjamin, K. Porfyrakis, S. A. Lyon, and G. A. D. Briggs, Nature Phys., 2006, 2: 40

[40]

M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Nature, 2009, 458: 996

[41]

J. F. Du, X. Rong, N. Zhao, Y. Wang, J. H. Yang, and R. B. Liu, Nature, 2009, 461: 1265

[42]

K. Khodjasteh and D. A. Lidar, Phys. Rev. A, 2008, 78: 012355

[43]

J. R. West, D. A. Lidar, B. H. Fong, M. F. Gyure, X. Peng, and D. Suter, arXiv: 0911.2398, 2009

[44]

H. K. Ng, D. A. Lidar, and J. Preskill, arXiv: 0911.3202, 2009

[45]

H. Carr and E. M. Purcell, Phys. Rev., 1954, 94: 630

[46]

S. Meiboom and D. Gill, Rev. Sci. Instrum., 1958, 29: 688

[47]

M. S. Byrd and D. A. Lidar, Quant. Info. Proc., 2002, 1: 19

[48]

B. Lee,W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett., 2008, 100: 160505

[49]

G. S. Uhrig, New J. Phys., 2008, 10: 083024

[50]

W. Yang and R. B. Liu, Phys. Rev. Lett., 2008, 101: 180403

[51]

D. Dhar, L. K. Grover, and S. M. Roy, Phys. Rev. Lett., 2006, 96: 100405

[52]

G. S. Uhrig and D. A. Lidar, Phys. Rev. A, 2010, 82: 012301

[53]

S. Pasini and G. S. Uhrig, Phys. Rev. A, 2010, 81: 012309

[54]

W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys., 1990, 62: 867

[55]

S. Pasini and G. S. Uhrig, J. Phys. A: Math. Theor., 2010, 43: 132001

[56]

S. Pasini, T. Fischer, P. Karbach, and G. S. Uhrig, Phys. Rev. A, 2008, 77: 032315

[57]

S. Pasini and G. S. Uhrig, J. Phys. A: Math. Theor., 2008, 41: 312005

[58]

G. S. Uhrig and S. Pasini, New J. Phys., 2010, 12: 045001

[59]

K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev. Lett., 2010, 104: 090501

[60]

T. E. Hodgson, L. Viola, and I. D’Amico, Phys. Rev. A, 2010, 81: 062321

[61]

M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Phys. Rev. A, 2009, 79: 062324

[62]

H. Uys, M. J. Biercuk, and J. J. Bollinger, Phys. Rev. Lett., 2009, 103: 040501

[63]

G. S. Uhrig, Phys. Rev. Lett., 2009, 102: 120502

[64]

J. R. West, B. H. Fong, and D. A. Lidar, Phys. Rev. Lett., 2010, 104: 130501

[65]

Z. Y. Wang, unpublished

[66]

M. Mukhtar, T. B. Saw, W. T. Soh, and J. Gong, Phys. Rev. A, 2010, 81: 012331

[67]

E. R. Jenista, A. M. Stokes, R. T. Branca, and S. Warren, J. Chem. Phys., 2009, 131: 204510

[68]

N. Zhao, J. L. Hu, S.W. Ho, J. T. K. Wan, and R. B. Liu, arXiv: 1003.4320, 2010

[69]

K. Khodjasteh and D. A. Lidar, Phys. Rev. A, 2003, 68: 022322; Erratum: Phys. Rev. A, 2005, 72: 029905(E)

[70]

P. Wocjan, M. Rötteler, D. Janzing, and T. Beth, Phys. Rev. A, 2002, 65: 042309

[71]

G. Gordon, G. Kurizki, and D. A. Lidar, Phys. Rev. Lett., 2008, 101: 010403

[72]

P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K. Wilhelm, Phys. Rev. Lett., 2009, 102: 090401

[73]

K. Khodjasteh and L. Viola, Phys. Rev. Lett., 2009, 102: 080501

[74]

J. Clausen, G. Bensky, and G. Kurizki, Phys. Rev. Lett., 2010, 104: 040401

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (314KB)

1862

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/