Preserving qubit coherence by dynamical decoupling

Wen YANG, Zhen-Yu WANG, Ren-Bao LIU

PDF(314 KB)
PDF(314 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 2-14. DOI: 10.1007/s11467-010-0113-8
REVIEW ARTICLE
REVIEW ARTICLE

Preserving qubit coherence by dynamical decoupling

Author information +
History +

Abstract

In quantum information processing, it is vital to protect the coherence of qubits in noisy environments. Dynamical decoupling (DD), which applies a sequence of flips on qubits and averages the qubit-environment coupling to zero, is a promising strategy compatible with other desired functionalities, such as quantum gates. Here, we review the recent progresses in theories of dynamical decoupling and experimental demonstrations. We give both semiclassical and quantum descriptions of the qubit decoherence due to coupling to noisy environments. Based on the quantum picture, a geometrical interpretation of DD is presented. The periodic Carr-Purcell-Meiboom-Gill DD and the concatenated DD are reviewed, followed by a detailed exploration of the recently developed Uhrig DD, which employs the least number of pulses in an unequally spaced sequence to suppress the qubit-environment coupling to a given order of the evolution time. Some new developments and perspectives are also discussed.

Keywords

qubit / decoherence / dynamical decoupling

Cite this article

Download citation ▾
Wen YANG, Zhen-Yu WANG, Ren-Bao LIU. Preserving qubit coherence by dynamical decoupling. Front. Phys., 2011, 6(1): 2‒14 https://doi.org/10.1007/s11467-010-0113-8

References

[1]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[2]
D. DiVincenzo, Fortschr. Phys., 2000, 48: 771
CrossRef ADS Google scholar
[3]
R. Kubo, J. Phys. Soc. Jpn., 1954, 9: 935
CrossRef ADS Google scholar
[4]
P. W. Anderson, J. Phys. Soc. Jpn., 1954, 9: 316
CrossRef ADS Google scholar
[5]
W. Yao, R. B. Liu, and L. J. Sham, Phys. Rev. B, 2006, 74: 195301
CrossRef ADS Google scholar
[6]
I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B, 2002, 65: 205309
CrossRef ADS Google scholar
[7]
T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature, 2002, 419: 278
CrossRef ADS Google scholar
[8]
J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature, 2004, 430: 431
CrossRef ADS Google scholar
[9]
M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Nature, 2004, 432: 81
CrossRef ADS Google scholar
[10]
Y. G. Semenov and K.W. Kim, Phys. Rev. B, 2003, 67: 073301
CrossRef ADS Google scholar
[11]
C. Deng and X. Hu, Phys. Rev. B, 2006, 73: 241303(R)
CrossRef ADS Google scholar
[12]
N. Shenvi, R. de Sousa, and K. B. Whaley, Phys. Rev. B, 2005, 71: 144419
CrossRef ADS Google scholar
[13]
W. M. Witzel and S. Das Sarma, Phys. Rev. B, 2006, 74: 035322
CrossRef ADS Google scholar
[14]
W. M. Witzel and S. Das Sarma, Phys. Rev. Lett., 2007, 98: 077601
CrossRef ADS Google scholar
[15]
S. K. Saikin, W. Yao, and L. J. Sham, Phys. Rev. B, 2007, 75: 125314
CrossRef ADS Google scholar
[16]
W. Yang and R. B. Liu, Phys. Rev. B, 2008, 78: 085315
CrossRef ADS Google scholar
[17]
W. Yang and R. B. Liu, Phys. Rev. B, 2009, 79: 115320
CrossRef ADS Google scholar
[18]
L. M. Duan and G. C. Guo, Phys. Rev. Lett., 1997, 79: 1953
CrossRef ADS Google scholar
[19]
D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett., 1998, 81: 2594
CrossRef ADS Google scholar
[20]
E. L. Hahn, Phys. Rev., 1950, 80: 580
CrossRef ADS Google scholar
[21]
M. Mehring, Principles of High Resolution NMR in Solids, 2nd Ed., Berlin: Spinger-Verleg, 1983
[22]
W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. Lett., 1970, 25: 218
CrossRef ADS Google scholar
[23]
U. Haeberlen, High Resolution NMR in Solids: Selective Averaging, New York: Academic Press, 1976
[24]
L. Viola and S. Lloyd, Phys. Rev. A, 1998, 58: 2733
CrossRef ADS Google scholar
[25]
M. Ban, J. Mod. Opt., 1998, 45: 2315
CrossRef ADS Google scholar
[26]
P. Zanardi, Phys. Lett. A, 1999, 258: 77
CrossRef ADS Google scholar
[27]
L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett., 1999, 82: 2417
CrossRef ADS Google scholar
[28]
L. Viola and E. Knill, Phys. Rev. Lett., 2005, 94: 060502
CrossRef ADS Google scholar
[29]
O. Kern and G. Alber, Phys. Rev. Lett., 2005, 95: 250501
CrossRef ADS Google scholar
[30]
K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett., 2005, 95: 180501
CrossRef ADS Google scholar
[31]
K. Khodjasteh and D. A. Lidar, Phys. Rev. A, 2007, 75: 062310
CrossRef ADS Google scholar
[32]
L. F. Santos and L. Viola, Phys. Rev. Lett., 2006, 97: 150501
CrossRef ADS Google scholar
[33]
W. Yao, R. B. Liu, and L. J. Sham, Phys. Rev. Lett., 2007, 98: 077602
CrossRef ADS Google scholar
[34]
R. B. Liu, W. Yao, and L. J. Sham, New J. Phys., 2007, 9: 226
CrossRef ADS Google scholar
[35]
W. M. Witzel and S. Das Sarma, Phys. Rev. B, 2007, 76: 241303(R)
CrossRef ADS Google scholar
[36]
W. X. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and B. N. Harmon, Phys. Rev. B, 2007, 75: 201302(R)
CrossRef ADS Google scholar
[37]
G. S. Uhrig, Phys. Rev. Lett., 2007, 98: 100504
CrossRef ADS Google scholar
[38]
L. Cywiński, R.M. Lutchyn, C. P. Nave, and S. Das Sarma, Phys. Rev. B, 2008, 77: 174509
CrossRef ADS Google scholar
[39]
J. J. L. Morton, A. M. Tyryshkin, A. Ardavan, S. C. Benjamin, K. Porfyrakis, S. A. Lyon, and G. A. D. Briggs, Nature Phys., 2006, 2: 40
CrossRef ADS Google scholar
[40]
M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Nature, 2009, 458: 996
CrossRef ADS Google scholar
[41]
J. F. Du, X. Rong, N. Zhao, Y. Wang, J. H. Yang, and R. B. Liu, Nature, 2009, 461: 1265
CrossRef ADS Google scholar
[42]
K. Khodjasteh and D. A. Lidar, Phys. Rev. A, 2008, 78: 012355
CrossRef ADS Google scholar
[43]
J. R. West, D. A. Lidar, B. H. Fong, M. F. Gyure, X. Peng, and D. Suter, arXiv: 0911.2398, 2009
[44]
H. K. Ng, D. A. Lidar, and J. Preskill, arXiv: 0911.3202, 2009
[45]
H. Carr and E. M. Purcell, Phys. Rev., 1954, 94: 630
CrossRef ADS Google scholar
[46]
S. Meiboom and D. Gill, Rev. Sci. Instrum., 1958, 29: 688
CrossRef ADS Google scholar
[47]
M. S. Byrd and D. A. Lidar, Quant. Info. Proc., 2002, 1: 19
[48]
B. Lee,W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett., 2008, 100: 160505
CrossRef ADS Google scholar
[49]
G. S. Uhrig, New J. Phys., 2008, 10: 083024
CrossRef ADS Google scholar
[50]
W. Yang and R. B. Liu, Phys. Rev. Lett., 2008, 101: 180403
CrossRef ADS Google scholar
[51]
D. Dhar, L. K. Grover, and S. M. Roy, Phys. Rev. Lett., 2006, 96: 100405
CrossRef ADS Google scholar
[52]
G. S. Uhrig and D. A. Lidar, Phys. Rev. A, 2010, 82: 012301
CrossRef ADS Google scholar
[53]
S. Pasini and G. S. Uhrig, Phys. Rev. A, 2010, 81: 012309
CrossRef ADS Google scholar
[54]
W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys., 1990, 62: 867
CrossRef ADS Google scholar
[55]
S. Pasini and G. S. Uhrig, J. Phys. A: Math. Theor., 2010, 43: 132001
CrossRef ADS Google scholar
[56]
S. Pasini, T. Fischer, P. Karbach, and G. S. Uhrig, Phys. Rev. A, 2008, 77: 032315
CrossRef ADS Google scholar
[57]
S. Pasini and G. S. Uhrig, J. Phys. A: Math. Theor., 2008, 41: 312005
CrossRef ADS Google scholar
[58]
G. S. Uhrig and S. Pasini, New J. Phys., 2010, 12: 045001
CrossRef ADS Google scholar
[59]
K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev. Lett., 2010, 104: 090501
CrossRef ADS Google scholar
[60]
T. E. Hodgson, L. Viola, and I. D’Amico, Phys. Rev. A, 2010, 81: 062321
CrossRef ADS Google scholar
[61]
M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Phys. Rev. A, 2009, 79: 062324
CrossRef ADS Google scholar
[62]
H. Uys, M. J. Biercuk, and J. J. Bollinger, Phys. Rev. Lett., 2009, 103: 040501
CrossRef ADS Google scholar
[63]
G. S. Uhrig, Phys. Rev. Lett., 2009, 102: 120502
CrossRef ADS Google scholar
[64]
J. R. West, B. H. Fong, and D. A. Lidar, Phys. Rev. Lett., 2010, 104: 130501
CrossRef ADS Google scholar
[65]
Z. Y. Wang, unpublished
[66]
M. Mukhtar, T. B. Saw, W. T. Soh, and J. Gong, Phys. Rev. A, 2010, 81: 012331
CrossRef ADS Google scholar
[67]
E. R. Jenista, A. M. Stokes, R. T. Branca, and S. Warren, J. Chem. Phys., 2009, 131: 204510
CrossRef ADS Google scholar
[68]
N. Zhao, J. L. Hu, S.W. Ho, J. T. K. Wan, and R. B. Liu, arXiv: 1003.4320, 2010
[69]
K. Khodjasteh and D. A. Lidar, Phys. Rev. A, 2003, 68: 022322; Erratum: Phys. Rev. A, 2005, 72: 029905(E)
[70]
P. Wocjan, M. Rötteler, D. Janzing, and T. Beth, Phys. Rev. A, 2002, 65: 042309
CrossRef ADS Google scholar
[71]
G. Gordon, G. Kurizki, and D. A. Lidar, Phys. Rev. Lett., 2008, 101: 010403
CrossRef ADS Google scholar
[72]
P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K. Wilhelm, Phys. Rev. Lett., 2009, 102: 090401
CrossRef ADS Google scholar
[73]
K. Khodjasteh and L. Viola, Phys. Rev. Lett., 2009, 102: 080501
CrossRef ADS Google scholar
[74]
J. Clausen, G. Bensky, and G. Kurizki, Phys. Rev. Lett., 2010, 104: 040401
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(314 KB)

Accesses

Citations

Detail

Sections
Recommended

/