Topological nodal line semimetals predicted from first-principles calculations
Rui Yu, Zhong Fang, Xi Dai, Hongming Weng
Topological nodal line semimetals predicted from first-principles calculations
Topological semimetals are newly discovered states of quantum matter, which have extended the concept of topological states from insulators to metals and attracted great research interest in recent years. In general, there are three kinds of topological semimetals, namely Dirac semimetals, Weyl semimetals, and nodal line semimetals. Nodal line semimetals can be considered as precursor states for other topological states. For example, starting from such nodal line states, the nodal line structure might evolve into Weyl points, convert into Dirac points, or become a topological insulator by introducing the spin–orbit coupling (SOC) or mass term. In this review paper, we introduce theoretical materials that show the nodal line semimetal state, including the all-carbon Mackay–Terrones crystal (MTC), anti-perovskite Cu3PdN, pressed black phosphorus, and the CaP3 family of materials, and we present the design principles for obtaining such novel states of matter.
topological states / topological semimetals / nodal line semimetal
[1] |
G. E. Volovik, The Universe in a Helium Droplet, Oxford, 2009
CrossRef
ADS
Google scholar
|
[2] |
Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, The anomalous Hall effect and magnetic monopoles in momentum space, Science 302(5642), 92 (2003)
CrossRef
ADS
Google scholar
|
[3] |
H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Quantum anomalous Hall effect and related topological electronic states, Adv. Phys. 64(3), 227 (2015)
CrossRef
ADS
Google scholar
|
[4] |
C. Fang, Y. Chen, H. Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92(8), 081201 (2015)
CrossRef
ADS
Google scholar
|
[5] |
Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PT and CP invariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)
CrossRef
ADS
Google scholar
|
[6] |
H. B. Nielsen and M. Ninomiya, The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130(6), 389 (1983)
CrossRef
ADS
Google scholar
|
[7] |
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef
ADS
Google scholar
|
[8] |
G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett. 107(18), 186806 (2011)
CrossRef
ADS
Google scholar
|
[9] |
L. Balents, Weyl electrons kiss, Physics 4, 36 (2011)
CrossRef
ADS
Google scholar
|
[10] |
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
CrossRef
ADS
Google scholar
|
[11] |
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
CrossRef
ADS
Google scholar
|
[12] |
A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)
CrossRef
ADS
Google scholar
|
[13] |
H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in three dimensional graphene networks, arxiv: 1411.2175
|
[14] |
B. J. Yang and N. Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology, Nat. Commun. 5, 4898 (2014)
CrossRef
ADS
Google scholar
|
[15] |
A. Pariari, P. Dutta, and P. Mandal, Probing the Fermi surface of three-dimensional Dirac semimetal Cd3As2 through the de Haas–van Alphen technique, Phys. Rev. B 91(15), 155139 (2015)
CrossRef
ADS
Google scholar
|
[16] |
L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett. 113(24), 246402 (2014)
CrossRef
ADS
Google scholar
|
[17] |
M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5, 3786 (2014)
CrossRef
ADS
Google scholar
|
[18] |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three dimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
CrossRef
ADS
Google scholar
|
[19] |
Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)
CrossRef
ADS
Google scholar
|
[20] |
Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, N. P. Ong, M. Hirschberger, R. Car, and R. J. Cava, Three-dimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)
CrossRef
ADS
Google scholar
|
[21] |
H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
CrossRef
ADS
Google scholar
|
[22] |
S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6, 7373 (2015)
CrossRef
ADS
Google scholar
|
[23] |
A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature 527(7579), 495 (2015)
CrossRef
ADS
Google scholar
|
[24] |
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
CrossRef
ADS
Google scholar
|
[25] |
X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3d Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
CrossRef
ADS
Google scholar
|
[26] |
B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Observation of Weyl nodes in TaAs, Nat. Phys. 11(9), 724 (2015)
CrossRef
ADS
Google scholar
|
[27] |
S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)
CrossRef
ADS
Google scholar
|
[28] |
N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autès, O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding, and M. Shi, Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun. 7, 11006 (2016)
CrossRef
ADS
Google scholar
|
[29] |
B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, and H. Ding, Observation of Fermi-arc spin texture in TaAs, Phys. Rev. Lett. 115(21), 217601 (2015)
CrossRef
ADS
Google scholar
|
[30] |
G. Chang, S.Y. Xu, D. S. Sanchez, S.M. Huang, C.C. Lee, T.R. Chang, H. Zheng, G. Bian, I. Belopolski, N. Alidoust, H.T. Jeng, A. Bansil, H. Lin, and M. Z. Hasan, A strongly robust Weyl fermion semimetal state in Ta3S2, arXiv: 1512.08781
|
[31] |
J. Ruan, S. K. Jian, D. Zhang, H. Yao, H. Zhang, S. C. Zhang, and D. Xing, Ideal Weyl Semimetals in the Chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2, Phys. Rev. Lett. 116(22), 226801 (2016)
CrossRef
ADS
Google scholar
|
[32] |
J. Ruan, S. K. Jian, H. Yao, H. Zhang, S. C. Zhang, and D. Xing, Symmetry-protected ideal Weyl semimetal in HgTe-class materials, Nat. Commun. 7, 11136 (2016)
CrossRef
ADS
Google scholar
|
[33] |
M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater. (2016), arXiv: 1602.07219
|
[34] |
Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-reversal breaking Weyl fermions in magnetic Heuslers, arXiv: 1603.00479
|
[35] |
G. Autès, D. Gresch, M. Troyer, A. A. Soluyanov, and O. V. Yazyev, Robust type-II Weyl semimetal phase in transition metal diphosphides XP2 (X= Mo, W), Phys. Rev. Lett. 117(6), 066402 (2016)
CrossRef
ADS
Google scholar
|
[36] |
C. K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B 90(20), 205136 (2014)
CrossRef
ADS
Google scholar
|
[37] |
T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, Flat bands in topological media, JETP Lett. 94(3), 233 (2011)
CrossRef
ADS
Google scholar
|
[38] |
T. T. Heikkilä and G. E. Volovik, Dimensional crossover in topological matter: Evolution of the multiple Dirac point in the layered system to the flat band on the surface, JETP Lett. 93(2), 59 (2011)
CrossRef
ADS
Google scholar
|
[39] |
T. T. Heikkila and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, arXiv: 1504.05824
|
[40] |
H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in three dimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
CrossRef
ADS
Google scholar
|
[41] |
K. Mullen, B. Uchoa, and D. T. Glatzhofer, Line of Dirac nodes in hyperhoney comb lattices, Phys. Rev. Lett. 115(2), 026403 (2015)
CrossRef
ADS
Google scholar
|
[42] |
M. Ezawa, Loop-nodal and point-nodal semimetals in three-dimensional honeycomb lattices, Phys. Rev. Lett. 116(12), 127202 (2016)
CrossRef
ADS
Google scholar
|
[43] |
L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie, and R. J. Cava, A new form of Ca3P2 with a ring of Dirac nodes, APL Mater. 3(8), 083602 (2015)
CrossRef
ADS
Google scholar
|
[44] |
Y. H. Chan, C. K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3P2 and other topological semimetals with line nodes and drumhead surface states, Phys. Rev. B 93(20), 205132 (2016)
CrossRef
ADS
Google scholar
|
[45] |
M. Zeng, C. Fang, G. Chang, Y.-A. Chen, T. Hsieh, A. Bansil, H. Lin, and L. Fu, Topological semimetals and topological insulators in rare earth monopnictides, arXiv: 1504.03492
|
[46] |
R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett. 115(3), 036807 (2015)
CrossRef
ADS
Google scholar
|
[47] |
Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)
CrossRef
ADS
Google scholar
|
[48] |
Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett. 15(10), 6974 (2015)
CrossRef
ADS
Google scholar
|
[49] |
G. Bian, T. R. Chang, H. Zheng, S. Velury, S. Y. Xu, T. Neupert, C. K. Chiu, S. M. Huang, D. S. Sanchez, I. Belopolski, N. Alidoust, P. J. Chen, G. Chang, A. Bansil, H. T. Jeng, H. Lin, and M. Z. Hasan, Drumhead surface states and topological nodal-line fermions in TlTaSe2, Phys. Rev. B 93(12), 121113 (2016)
CrossRef
ADS
Google scholar
|
[50] |
G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C. Lee, H.-T. Jeng, A. Bansil, F. Chou, H. Lin, and M. Zahid Hasan, Topological nodalline fermions in the non-centrosymmetric superconductor compound PbTaSe2, arXiv: 1505.03069
|
[51] |
L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)
CrossRef
ADS
Google scholar
|
[52] |
J. M. Carter, V. V. Shankar, M. A. Zeb, and H. Y. Kee, Semimetal and topological insulator in perovskite iridates, Phys. Rev. B 85(11), 115105 (2012)
CrossRef
ADS
Google scholar
|
[53] |
H. S. Kim, Y. Chen, and H. Y. Kee, Surface states of perovskite iridates AIrO3: Signatures of a topological crystalline metal with nontrivial Z2 index, Phys. Rev. B 91(23), 235103 (2015)
CrossRef
ADS
Google scholar
|
[54] |
J. Liu, D. Kriegner, L. Horak, D. Puggioni, C. Rayan Serrao, R. Chen, D. Yi, C. Frontera, V. Holy, A. Vishwanath, J. M. Rondinelli, X. Marti, and R. Ramesh, Strain-induced nonsymmorphic symmetry breaking and removal of Dirac semimetallic nodal line in an orthoperovskite iridate, Phys. Rev. B 93(8), 085118 (2016)
CrossRef
ADS
Google scholar
|
[55] |
Y. Chen, Y. M. Lu, and H. Y. Kee, Topological crystalline metal in orthorhombic perovskite iridates, Nat. Commun. 6, 6593 (2015)
CrossRef
ADS
Google scholar
|
[56] |
A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X= P, As), JPSJ 85(1), 013708 (2016)
CrossRef
ADS
Google scholar
|
[57] |
Q. F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-surface and node-line fermions from nonsymmorphic lattice symmetries, Phys. Rev. B 93(8), 085427 (2016)
CrossRef
ADS
Google scholar
|
[58] |
J. Zhao, R. Yu, H. Weng, and Z. Fang, Topological node-line semimetal in compressed black phosphorus, arXiv: 1511.05704
|
[59] |
Q. Xu, R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals in CaP3 family of materials, arXiv: 1608.03172
|
[60] |
M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Topological Dirac nodal lines in fcc calcium, strontium, and ytterbium, arXiv: 1602.06501
|
[61] |
J. T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen, Body-centered orthorhombic C16: A novel topological node-line semimetal, Phys. Rev. Lett. 116(19), 195501 (2016)
CrossRef
ADS
Google scholar
|
[62] |
R. Li, H. Ma, X. Cheng, S. Wang, D. Li, Z. Zhang, Y. Li, and X. Q. Chen, Dirac node lines in pure alkali earth metals, Phys. Rev. Lett. 117(9), 096401 (2016)
CrossRef
ADS
Google scholar
|
[63] |
J. L. Lu, W. Luo, X. Y. Li, S. Q. Yang, J. X. Cao, X. G. Gong, and H. J. Xiang, Two-dimensional nodeline semimetals in a Honeycomb-Kagome lattice, arXiv: 1603.04596
|
[64] |
Y. Jin, R. Wang, J. Zhao, C. Zheng, L.Y. Gan, J. Liu, H. Xu, and S. Y. Tong, A family group of two dimensional node-line semimetals, arXiv: 1608.05791
|
[65] |
G. E. Volovik, The Topology of the Quantum Vacuum, Analogue Gravity Phenomenology, Lecture Notes in Physics, Vol. 870, p. 343 (2013)
CrossRef
ADS
Google scholar
|
[66] |
N. B. Kopnin, T. T. Heikkila, and G. E. Volovik, Hightemperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83(22), 220503 (2011)
CrossRef
ADS
Google scholar
|
[67] |
G. E. Volovik, From standard model of particle physics to room-temperature superconductivity, Phys. Scr. 2015(T164), 014014 (2015)
CrossRef
ADS
Google scholar
|
[68] |
T. T. Heikkila and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, arXiv: 1504.05824
|
[69] |
J. W. Rhim and Y. B. Kim, Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra, Phys. Rev. B 92(4), 045126 (2015)
CrossRef
ADS
Google scholar
|
[70] |
Z. Yan, P. W. Huang, and Z. Wang, Collective modes in nodal line semimetals, Phys. Rev. B 93(8), 085138 (2016)
CrossRef
ADS
Google scholar
|
[71] |
A. L. Mackay, Periodic minimal surfaces, Nature 314(6012), 604 (1985)
CrossRef
ADS
Google scholar
|
[72] |
R. S. K. Mong and V. Shivamoggi, Edge states and the bulk-boundary correspondence in Dirac hamiltonians, Phys. Rev. B 83(12), 125109 (2011)
CrossRef
ADS
Google scholar
|
[73] |
A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
CrossRef
ADS
Google scholar
|
[74] |
N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84(4), 1419 (2012)
CrossRef
ADS
Google scholar
|
[75] |
R. Fei, V. Tran, and L. Yang, Topologically protected Dirac cones in compressed bulk black phosphorus, Phys. Rev. B 91(19), 195319 (2015)
CrossRef
ADS
Google scholar
|
[76] |
Z. J. Xiang, G. J. Ye, C. Shang, B. Lei, N. Z. Wang, K. S. Yang, D. Y. Liu, F. B. Meng, X. G. Luo, L. J. Zou, Z. Sun, Y. Zhang, and X. H. Chen, Pressure-induced electronic transition in black phosphorus, Phys. Rev. Lett. 115(18), 186403 (2015)
CrossRef
ADS
Google scholar
|
[77] |
K. Akiba, A. Miyake, Y. Akahama, K. Matsubayashi, Y. Uwatoko, H. Arai, Y. Fuseya, and M. Tokunaga, Anomalous quantum transport properties in semimetallic black phosphorus, J. Phys. Soc. Jpn. 84(7), 073708 (2015)
CrossRef
ADS
Google scholar
|
[78] |
W. Dahlmann and H. G. v. Schnering, CaP3, ein neues Calciumphosphid, Naturwissenschaften 60(11), 518 (1973)
CrossRef
ADS
Google scholar
|
[79] |
Z. Yan and Z. Wang, Tunable Weyl points in periodically driven nodal line semimetals, Phys. Rev. Lett. 117(8), 087402 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |