Graphene based functional devices: A short review
Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan
Graphene based functional devices: A short review
Graphene is an ideal 2D material system bridging electronic and photonic devices. It also breaks the fundamental speed and size limits by electronics and photonics, respectively. Graphene offers multiple functions of signal transmission, emission, modulation, and detection in a broad band, high speed, compact size, and low loss. Here, we have a brief view of graphene based functional devices at microwave, terahertz, and optical frequencies. Their fundamental physics and computational models were discussed as well.
graphene / terahertz / antenna / microwave
[1] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[2] |
A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
CrossRef
ADS
Google scholar
|
[3] |
M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
CrossRef
ADS
Google scholar
|
[4] |
P. Avouris, Graphene: Electronic and photonic properties and devices, Nano Lett. 10(11), 4285 (2010)
CrossRef
ADS
Google scholar
|
[5] |
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
CrossRef
ADS
Google scholar
|
[6] |
Q. L. Bao and K. P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano 6(5), 3677 (2012)
CrossRef
ADS
Google scholar
|
[7] |
A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6(11), 749 (2012)
CrossRef
ADS
Google scholar
|
[8] |
K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490, 192 (2012)
CrossRef
ADS
Google scholar
|
[9] |
P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics, Nat. Photonics 6(4), 259 (2012)
CrossRef
ADS
Google scholar
|
[10] |
F. J. G. de Abajo, Graphene nanophotonics, Science 339(6122), 917 (2013)
CrossRef
ADS
Google scholar
|
[11] |
F. J. G. de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
CrossRef
ADS
Google scholar
|
[12] |
T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)
CrossRef
ADS
Google scholar
|
[13] |
T. Otsuji, V. Popov, and V. Ryzhii, Active graphene plasmonics for terahertz device applications, J. Phys. D Appl. Phys. 47(9), 094006 (2014)
CrossRef
ADS
Google scholar
|
[14] |
T. Stauber, Plasmonics in Dirac systems: from graphene to topological insulators, J. Phys.: Condens. Matter 26(12), 123201 (2014)
CrossRef
ADS
Google scholar
|
[15] |
N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Graphene: A dynamic platform for electrical control of plasmonic resonance, Nanophotonics 4, 214 (2015)
CrossRef
ADS
Google scholar
|
[16] |
S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, Graphene-plasmon polaritons: From fundamental properties to potential applications, Front. Phys. 11(2), 117801 (2016)
CrossRef
ADS
Google scholar
|
[17] |
S. Y. Huang, C. Y. Song, G. W. Zhang, and H. G. Yan, Graphene plasmonics: Physics and potential applications, Nanophotonics-Berlin 6, 1191 (2017)
CrossRef
ADS
Google scholar
|
[18] |
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Magneto-optical conductivity in graphene, J. Phys.: Condens. Matter 19(2), 026222 (2007)
CrossRef
ADS
Google scholar
|
[19] |
M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)
CrossRef
ADS
Google scholar
|
[20] |
Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, Broad electrical tuning of grapheneloaded plasmonic antennas, Nano Lett. 13(3), 1257 (2013)
CrossRef
ADS
Google scholar
|
[21] |
V. Nayyeri, M. Soleimani, and O. M. Ramahi, Modeling graphene in the finite-difference time-domain method using a surface boundary condition, IEEE Trans. An-tennas Propag. 61(8), 4176 (2013)
CrossRef
ADS
Google scholar
|
[22] |
P. Li, L. J. Jiang, and H. Bagci, A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene, IEEE Trans. Antenn. Propag. 63(7), 3065 (2015)
CrossRef
ADS
Google scholar
|
[23] |
P. Li, and L. J. Jiang, Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE, IEEE Trans. Antenn. Propag. 63(10), 4458 (2015)
CrossRef
ADS
Google scholar
|
[24] |
Y. Shao, J. J. Yang, and M. Huang, A review of computational electromagnetic methods for graphene modeling, Int. J. Antennas Propag. 2016, 1 (2016)
CrossRef
ADS
Google scholar
|
[25] |
K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Twodimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
CrossRef
ADS
Google scholar
|
[26] |
P. Neugebauer, M. Orlita, C. Faugeras, A. L. Barra, and M. Potemski, How perfect can graphene be? Phys. Rev. Lett. 103(13), 136403 (2009)
CrossRef
ADS
Google scholar
|
[27] |
D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, and A. K. Geim, Dirac cones reshaped by interaction effects in suspended graphene, Nat. Phys. 7(9), 701 (2011)
|
[28] |
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, and E. H. Conrad, Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777), 1191 (2006)
CrossRef
ADS
Google scholar
|
[29] |
K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, and E. Rotenberg, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater. 8(3), 203 (2009)
CrossRef
ADS
Google scholar
|
[30] |
W. A. De Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, and E. Conrad, Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide, Proc. Natl. Acad. Sci. USA 108(41), 16900 (2011)
CrossRef
ADS
Google scholar
|
[31] |
J. Hass, J. E. Millán-Otoya, P. N. First, and E. H. Conrad, Interface structure of epitaxial graphene grown on 4HSiC (0001), Phys. Rev. B 78(20), 205424 (2008)
CrossRef
ADS
Google scholar
|
[32] |
Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science 327(5966), 662 (2010)
CrossRef
ADS
Google scholar
|
[33] |
R. F. Davis, G. Kelner, M. Shur, J. W. Palmour, and J. A. Edmond, Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide, Proc. IEEE 79(5), 677 (1991)
CrossRef
ADS
Google scholar
|
[34] |
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of highquality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
CrossRef
ADS
Google scholar
|
[35] |
N. Petrone, C. R. Dean, I. Meric, A. M. van Der Zande, P. Y. Huang, L. Wang, and J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene, Nano Lett. 12(6), 2751 (2012)
CrossRef
ADS
Google scholar
|
[36] |
X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, and L. Fu, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Lett. 10(11), 4328 (2010)
CrossRef
ADS
Google scholar
|
[37] |
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
CrossRef
ADS
Google scholar
|
[38] |
R. Wang, S. Raju, M. Chan, and L. J. Jiang, Low frequency behavior of CVD graphene from DC to 40 GHz, Prog. Electromagnetics Res. 71, 1 (2017)
CrossRef
ADS
Google scholar
|
[39] |
M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets, J. Appl. Phys. 112(11), 114915 (2012)
CrossRef
ADS
Google scholar
|
[40] |
Z. Chang, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, Generation of THz wave with orbital angular momentum by graphene patch reectarray, Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2015 IEEE MTT-S International Microwave Workshop, pp 1–3 (2015)
|
[41] |
Y. L. Xu, X. C. Wei, and E. P. Li, Three-dimensional tunable frequency selective surface based on vertical graphene micro-ribbons, J. Electromagnet. Wave 29(16), 2130 (2015)
CrossRef
ADS
Google scholar
|
[42] |
G. W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys. 103(6), 064302 (2008)
CrossRef
ADS
Google scholar
|
[43] |
Y. S. Cao, L. J. Jiang, and A. E. Ruehli, An equivalent circuit model for graphene-based terahertz antenna using the PEEC method, IEEE Trans. Antenn. Propag. 64(4), 1385 (2016)
CrossRef
ADS
Google scholar
|
[44] |
L. Pierantoni, D. Mencarelli, M. Bozzi, R. Moro, S. Moscato, L. Perregrini, and S. Bellucci, Broadband microwave attenuator based on few layer graphene akes, IEEE Trans. Microw. Theory 63(8), 2491 (2015)
CrossRef
ADS
Google scholar
|
[45] |
R. Wang and L. J. Jiang, Electrically tunable behavior of graphene on high-resistivity silicon substrate, Antennas and Propagation and USNC/URSI National Radio Science Meeting, 2017 IEEE International Symposium, pp 1031–1032 (2017)
|
[46] |
J. Yang, F. Kong, and K. Li, Broad tunable nanoantenna based on graphene log-periodic toothed structure, Plasmonics 11(4), 981 (2016)
CrossRef
ADS
Google scholar
|
[47] |
Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14(1), 299 (2014)
CrossRef
ADS
Google scholar
|
[48] |
Z. Y. Fang, Y. M. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, Plasmon-induced doping of graphene, ACS Nano 6(11), 10222 (2012)
CrossRef
ADS
Google scholar
|
[49] |
J. Wu, Tunable ultra-narrow spectrum selective absorption in a graphene monolayer at terahertz frequency, J. Phys. D Appl. Phys. 49(21), 215108 (2016)
CrossRef
ADS
Google scholar
|
[50] |
F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, Ultrabroad band, more than one order absorption enhancement in graphene with plasmonic light trapping, Sci. Rep. 5(1), 16998 (2015)
CrossRef
ADS
Google scholar
|
[51] |
V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6(1), 7032 (2015)
CrossRef
ADS
Google scholar
|
[52] |
B. Mehta, and M. E. Zaghloul, Tuning the scattering response of the optical nano antennas using graphene, IEEE Photonics J. 6(1), 1 (2014)
CrossRef
ADS
Google scholar
|
[53] |
D. Sikdar, W. Zhu, W. Cheng, and M. Premaratne, Substrate-mediated broadband tunability in plasmonic resonances of metal nanoantennas on finite highpermittivity dielectric substrate, Plasmonics 10(6), 1663 (2015)
CrossRef
ADS
Google scholar
|
[54] |
A. Locatelli, G. E. Town, and C. De Angelis, Graphenebased terahertz waveguide modulators, IEEE Trans. Terahertz Sci. Technol. 5(3), 351 (2015)
CrossRef
ADS
Google scholar
|
[55] |
R. Yu, V. Pruneri, and F. J. Garcia de Abajo, Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas, Sci. Rep. 6(1), 32144 (2016)
CrossRef
ADS
Google scholar
|
[56] |
Z. Li and N. Yu, Modulation of mid-infrared light using graphene-metal plasmonic antennas, Appl. Phys. Lett. 102(13), 131108 (2013)
CrossRef
ADS
Google scholar
|
[57] |
N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, Midinfrared tunable magnetic response in graphene-based diabolo nanoantennas, Carbon 94, 501 (2015)
CrossRef
ADS
Google scholar
|
[58] |
Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Wide wavelength tuning of optical antennas on graphene with nanosecond response time, Nano Lett. 14(1), 214 (2014)
CrossRef
ADS
Google scholar
|
[59] |
Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators, Nano Lett. 14(11), 6526 (2014)
CrossRef
ADS
Google scholar
|
[60] |
X. C. Wang, W. S. Zhao, J. Hu, and W. Y. Yin, Reconfigurable terahertz leaky-wave antenna using graphenebased high-impedance surface, IEEE T. Nanotechnology 14(1), 62 (2015)
|
[61] |
Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna, J. Phys.: Condens. Matter 30(14), 144007 (2018)
CrossRef
ADS
Google scholar
|
[62] |
W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions, IEEE T. Antenn. Propag. 65(4), 1651 (2017)
CrossRef
ADS
Google scholar
|
[63] |
Y. Wu, M. Qu, L. Jiao, Y. Liu, and Z. Ghassemlooy, Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns, AIP Adv. 6(6), 065308 (2016)
CrossRef
ADS
Google scholar
|
[64] |
A. Hosseinbeig, A. Pirooj, and F. B. Zarrabi, A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator, J. Magn. Magn. Mater. 423, 203 (2017)
CrossRef
ADS
Google scholar
|
[65] |
F. B. Zarrabi, M. Mohaghegh, M. Bazgir, and A. S. Arezoomand, Graphene-Gold Nano-ring antenna for Dualresonance optical application,Opt. Mater. 51, 98 (2016)
CrossRef
ADS
Google scholar
|
[66] |
Z. Dong, C. Sun, J. Si, and X. Deng, A tunable plasmonic nano-antenna based on metal-graphene doublenanorods, Laser Phys. Lett. 15(5), 056202 (2018)
CrossRef
ADS
Google scholar
|
[67] |
A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, Use of terahertz photoconductive sources to characterize tunable graphene RF plasmonic antennas, IEEE T. Nanotechnology 14(2), 390 (2015)
|
[68] |
M. M. Seyedsharbaty, and R. A. Sadeghzadeh, Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load, Opt. Quantum Electron. 49(6), 221 (2017)
CrossRef
ADS
Google scholar
|
[69] |
S. Abadal, I. Llatser, A. Mestres, H. Lee, E. Alarcon, and A. Cabellos-Aparicio, Time-domain analysis of graphenebased miniaturized antennas for ultra-short-range impulse radio communications, Ieee. T. Commun. 63(4), 1470 (2015)
CrossRef
ADS
Google scholar
|
[70] |
X. He, P. Gao, and W. Shi, A further comparison of graphene and thin metal layers for plasmonics, Nanoscale 8(19), 10388 (2016)
CrossRef
ADS
Google scholar
|
[71] |
Y. Bao, S. Zu, Y. Zhang, and Z. Fang, Active control of graphene-based unidirectional surface plasmon launcher, ACS Photonics 2(8), 1135 (2015)
CrossRef
ADS
Google scholar
|
[72] |
X. L. Zhao, C. Yuan, L. Zhu, and J. Q. Yao, Graphenebased tunable terahertz plasmon-induced transparency metamaterial, Nanoscale 8(33), 15273 (2016)
CrossRef
ADS
Google scholar
|
[73] |
M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett. 15(10), 7099 (2015)
CrossRef
ADS
Google scholar
|
[74] |
X. G. Ren, W. E. I. Sha, and W. C. H. Choy, Tuning optical responses of metallic dipole nanoantenna using graphene, Opt. Express 21(26), 31824 (2013)
CrossRef
ADS
Google scholar
|
[75] |
Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. G. de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
CrossRef
ADS
Google scholar
|
[76] |
B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, and Z. Fang, Plasmonic hot electron tunneling photo-detection in vertical Au-graphene hybrid nanostructures, Laser Photonics Rev. 11(1), 1600148 (2017)
CrossRef
ADS
Google scholar
|
[77] |
R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, Tunable graphene antennas for selective enhancement of THz-emission, Opt. Express 21(3), 3737 (2013)
CrossRef
ADS
Google scholar
|
[78] |
T. Zhou, Z. Cheng, H. Zhang, M. Le Berre, L. Militaru, and F. Calmon, Miniaturized tunable terahertz antenna based on graphene, Opt. Techn. Let. 56(8), 1792 (2014)
CrossRef
ADS
Google scholar
|
[79] |
M. Dragoman, M. Aldrigo, A. Dinescu, D. Dragoman, and A. Costanzo, Towards a terahertz direct receiver based on graphene up to 10 THz, J. Appl. Phys. 115(4), 044307 (2014)
CrossRef
ADS
Google scholar
|
[80] |
D. Correas-Serrano, J. S. Gomez-Diaz, A. Alu, and A. Alvarez-Melcon, Electrically and magnetically biased graphene-based cylindrical waveguides: Analysis and applications as reconfigurable antennas, IEEE Trans. Terahertz Sci. Technol. 5(6), 951 (2015)
CrossRef
ADS
Google scholar
|
[81] |
J. M. Jornet, and I. F. Akyildiz, Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks, IEEE J. Sel. Area. Comm. 31(12), 685 (2013)
CrossRef
ADS
Google scholar
|
[82] |
J. Li, M. He, C. Wu, and C. Zhang, Radiation pattern reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure,IEEE Antennas Wirel. Propag. Lett. 16, 1771 (2017)
CrossRef
ADS
Google scholar
|
[83] |
W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, A reconfigurable substrate? superstrate graphene-based leaky-wave THz antenna, IEEE Antennas Wirel. Propag. Lett. 15, 1545 (2016)
CrossRef
ADS
Google scholar
|
[84] |
G. Moreno, H. Mehrpour Bernety, and A. B. Yakovlev, Reduction of mutual coupling between strip dipole antennas at terahertz frequencies with an elliptically shaped graphene monolayer, IEEE Antennas Wirel. Propag. Lett. 15, 1533 (2016)
CrossRef
ADS
Google scholar
|
[85] |
X. H. Cheng, Y. Yao, S. W. Qu, Y. L. Wu, J. S. Yu, and X. D. Chen, Circular beam-reconfigurable antenna base on graphene-metal hybrid, Electron. Lett. 52(7), 494 (2016)
CrossRef
ADS
Google scholar
|
[86] |
M. Tamagnone and J. R. Mosig, Theoretical Limits on the Efficiency of Reconfigurable and Nonreciprocal Graphene Antennas, IEEE Antennas Wirel. Propag. Lett. 15, 1549 (2016)
CrossRef
ADS
Google scholar
|
[87] |
B. Zhu, G. Ren, Y. Gao, B. Wu, Y. Lian, and S. Jian, Creation of graphene plasmons vortex via cross shape nanoantennas under linearly polarized incidence, Plasmonics 12(3), 863 (2017)
CrossRef
ADS
Google scholar
|
[88] |
Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, A reconfigurable graphene reectarray for generation of vortex THz waves, IEEE Antennas Wirel. Propag. Lett. 15, 1537 (2016)
CrossRef
ADS
Google scholar
|
[89] |
S. Kosuga, R. Suga, O. Hashimoto, and S. Koh, Graphene-based optically transparent dipole antenna, Appl. Phys. Lett. 110(23), 233102 (2017)
CrossRef
ADS
Google scholar
|
[90] |
T. T. Tung, S. J. Chen, C. Fumeaux, and D. Losic, Scalable realization of conductive graphene films for highefficiency microwave antennas, J. Mater. Chem. C 4(45), 10620 (2016)
CrossRef
ADS
Google scholar
|
[91] |
M. Dragoman, D. Neculoiu, A. C. Bunea, G. Deligeorgis, M. Aldrigo, D. Vasilache, A. Dinescu, G. Konstantinidis, D. Mencarelli, L. Pierantoni, and M. Modreanu, A tunable microwave slot antenna based on graphene, Appl. Phys. Lett. 106(15), 153101 (2015)
CrossRef
ADS
Google scholar
|
[92] |
C. Nunez Alvarez, R. Cheung, and J. S. Thompson, Performance analysis of hybrid metal-graphene frequency reconfigurable antennas in the microwave regime, Ieee. T. Antenn. Propag. 65(4), 1558 (2017)
CrossRef
ADS
Google scholar
|
[93] |
M. Aldrigo, M. Dragoman, and D. Dragoman, Smart antennas based on graphene, J. Appl. Phys. 116(11), 114302 (2014)
CrossRef
ADS
Google scholar
|
[94] |
P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
CrossRef
ADS
Google scholar
|
[95] |
M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, Sinusoidally modulated graphene leaky-wave antenna for electronic beam-scanning at THz, IEEE Trans. Terahertz Sci. Technol. 4(1), 116 (2014)
CrossRef
ADS
Google scholar
|
[96] |
D. Correas-Serrano, J. S. Gomez-Diaz, D. L. Sounas, Y. Hadad, A. Alvarez-Melcon, and A. Alu, Nonreciprocal graphene devices and antennas based on spatiotemporal modulation, IEEE Antennas Wirel. Propag. Lett. 15, 1529 (2016)
CrossRef
ADS
Google scholar
|
[97] |
P. Y. Chen, M. Farhat, A. N. Askarpour, M. Tymchenko, and A. Alu, Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer, J. Opt. 16(9), 094008 (2014)
CrossRef
ADS
Google scholar
|
[98] |
Y. Cheng, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, A sinusoidally-modulated leaky-wave antenna with gapped graphene ribbons, IEEE Antennas Wirel. Propag. Lett. 16, 3000 (2017)
CrossRef
ADS
Google scholar
|
[99] |
Z. Zhu, S. Joshi, S. Grover, and G. Moddel, Graphene geometric diodes for terahertz rectennas, J. Phys. D Appl. Phys. 46(18), 185101 (2013)
CrossRef
ADS
Google scholar
|
[100] |
C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. Nick Vamivakas, Optical antenna enhanced graphene photodetector, Appl. Phys. Lett. 105(24), 241114 (2014)
CrossRef
ADS
Google scholar
|
[101] |
X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, Highly flexible and conductive printed graphene for wireless wearable communications applications, Sci. Rep. 5(1), 18298 (2016)
CrossRef
ADS
Google scholar
|
[102] |
M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider and M. Helm, Ultrafast graphenebased broadband THz detector, Appl. Phys. Lett. 103(2), 021113 (2013)
CrossRef
ADS
Google scholar
|
[103] |
Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, High-responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection, Nano Lett. 14(7), 3749 (2014)
CrossRef
ADS
Google scholar
|
[104] |
Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, Graphene-antenna sandwich photodetector, Nano Lett. 12(7), 3808 (2012)
CrossRef
ADS
Google scholar
|
[105] |
S. Anand, D. Sriram Kumar, R. J. Wu, and M. Chavali, Graphene nanoribbon based terahertz antenna on polyimide substrate, Optik 125(19), 5546 (2014)
CrossRef
ADS
Google scholar
|
[106] |
A. S. Thampy, M. S. Darak, and S. K. Dhamodharan, Analysis of graphene based optically transparent patch antenna for terahertz communications, Physica E 66, 67 (2015)
CrossRef
ADS
Google scholar
|
[107] |
S. A. Naghdehforushha and G. Moradi, High directivity plasmonic graphene-based patch array antennas with tunable THz band communications, Optik 168, 440 (2018)
CrossRef
ADS
Google scholar
|
[108] |
R. Bala and A. Marwaha, Characterization of graphene for performance enhancement of patch antenna in THz region, Optik 127(4), 2089 (2016)
CrossRef
ADS
Google scholar
|
[109] |
Y. Dong, P. Liu, D. Yu, G. Li, and F. Tao, Dual-band reconfigurable terahertz patch antenna with graphenestack- based backing cavity, IEEE Antennas Wirel. Propag. Lett. 15, 1541 (2016)
CrossRef
ADS
Google scholar
|
[110] |
R. Bala, and A. Marwaha, Development of computational model for tunable characteristics of graphene based triangular patch antenna in THz regime, J. Comput. Electron. 15(1), 222 (2016)
CrossRef
ADS
Google scholar
|
[111] |
P. Kopyt, B. Salski, M. Olszewska-Placha, D. Janczak, M. Sloma, T. Kurkus, M. Jakubowska, and W. Gwarek, Graphene-based dipole antenna for a UHF RFID tag, IEEE T. Antenn. Propag. 64(7), 2862 (2016)
CrossRef
ADS
Google scholar
|
[112] |
M. Akbari, M. W. A. Khan, M. Hasani, T. Bjorninen, L. Sydanheimo, and L. Ukkonen, Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags, IEEE Antennas Wirel. Propag. Lett. 15, 1569 (2016)
CrossRef
ADS
Google scholar
|
[113] |
X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, Binder-free highly conductive graphene laminate for low cost printed radio frequency applications, Appl. Phys. Lett. 106(20), 203105 (2015)
CrossRef
ADS
Google scholar
|
[114] |
Z. Xu, X. Dong, and J. Bornemann, Design of a Reconfigurable MIMO System for THz communications based on graphene antennas, IEEE Trans. Terahertz Sci. Technol. 4(5), 609 (2014)
CrossRef
ADS
Google scholar
|
[115] |
S. Abadal, E. Alarcon, A. Cabellos-Aparicio, M. C. Lemme, and M. Nemirovsky, Graphene-enabled wireless communication for massive multicore architectures, IEEE Commun. Mag. 51(11), 137 (2013)
CrossRef
ADS
Google scholar
|
[116] |
B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. (Grace) Xing, Unique prospects for graphene-based terahertz modulators, Appl. Phys. Lett. 99(11), 113104 (2011)
CrossRef
ADS
Google scholar
|
[117] |
X. He and S. Kim, Tunable terahertz graphene metamaterials, Carbon 86, 237 (2015)
CrossRef
ADS
Google scholar
|
[118] |
A. Tredicucci, and M. S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum Electron. 20(1), 130 (2014)
CrossRef
ADS
Google scholar
|
[119] |
M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, Fundamental limits and nearoptimal design of graphene modulators and nonreciprocal devices, Nat. Photonics 8(7), 556 (2014)
CrossRef
ADS
Google scholar
|
[120] |
Y. Chen, H. Huang, D. Akinwande, and A. Alu, Graphene-based plasmonic platform for reconfigurable terahertz nanodevices, ACS Photonics 1(8), 647 (2014)
CrossRef
ADS
Google scholar
|
[121] |
M. Rahm, J. S. Li, and W. J. Padilla, THz wave modulators: A brief review on different modulation techniques, J. Infrared Millim. Terahertz Waves 34(1), 1 (2013)
CrossRef
ADS
Google scholar
|
[122] |
P. Y. Chen, and A. Alu, Terahertz metamaterial devices based on graphene nanostructures, IEEE Trans. Terahertz Sci. Technol. 3(6), 748 (2013)
CrossRef
ADS
Google scholar
|
[123] |
H. Tanoto, L. Ding, and J. H. Teng, Tunable terahertz metamaterials, Terahertz Sci. Technol. 6(1), 1 (2013)
|
[124] |
S. H. Lee, H. D. Kim, H. J. Choi, B. Kang, Y. R. Cho, and B. Min, Broadband modulation of terahertz waves with non-resonant graphene meta-devices, IEEE Trans. Terahertz Sci. Technol. 3(6), 764 (2013)
CrossRef
ADS
Google scholar
|
[125] |
Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene, Phys. Chem. Chem. Phys. 15(14), 5084 (2013)
CrossRef
ADS
Google scholar
|
[126] |
A. Andryieuski and A. V. Lavrinenko, Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach, Opt. Express 21(7), 9144 (2013)
CrossRef
ADS
Google scholar
|
[127] |
M. Amin, M. Farhat, and H. Bagci, A dynamically reconfigurable fano metamaterial through graphene tuning for switching and sensing applications, Sci. Rep. 3(1), 2105 (2013)
CrossRef
ADS
Google scholar
|
[128] |
B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, Tunable metamaterials based on split ring resonators and doped graphene, Appl. Phys. Lett. 103(1), 011102 (2013)
CrossRef
ADS
Google scholar
|
[129] |
K. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, Graphene-based tunable metamaterial terahertz filters, Appl. Phys. Lett. 105(9), 093105 (2014)
CrossRef
ADS
Google scholar
|
[130] |
Y. Bludov, V. N. M. R. Peres, and M. I. Vasilevskiy, Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence, J. Opt. 15(11), 114004 (2013)
CrossRef
ADS
Google scholar
|
[131] |
J. T. Liu, N. H. Liu, L. Wang, X. H. Deng, and F. H. Su, Gate-tunable nearly total absorption in graphene with resonant metal back reflector, Europhys. Lett. 104(5), 57002 (2013)
CrossRef
ADS
Google scholar
|
[132] |
B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3(1), 780 (2012)
CrossRef
ADS
Google scholar
|
[133] |
I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy, Nano Lett. 12(2), 551 (2012)
CrossRef
ADS
Google scholar
|
[134] |
B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, Extraordinary control of terahertz beam reflectance in graphene electroabsorption modulators, Nano Lett. 12(9), 4518 (2012)
CrossRef
ADS
Google scholar
|
[135] |
B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, Terahertz imaging employing graphene modulator arrays, Opt. Express 21(2), 2324 (2013)
CrossRef
ADS
Google scholar
|
[136] |
L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)
CrossRef
ADS
Google scholar
|
[137] |
B. Sensale-Rodriguez, R. Yan, M. Zhu, D. Jena, L. Liu, and H. G. Xing, Efficient terahertz electro-absorption modulation employing graphene plasmonic structures, Appl. Phys. Lett. 101(26), 261115 (2012)
CrossRef
ADS
Google scholar
|
[138] |
X.-J. He, T.-Y. Li, L. Wang, J.-M. Wang, J.-X. Jiang, G.-H. Yang, F.-Y. Meng, and Q. Wu, Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene, J. Appl. Phys. 115, 17B903 (2014)
|
[139] |
Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency, Opt. Express 22(19), 22743 (2014)
CrossRef
ADS
Google scholar
|
[140] |
J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows, Sci. Rep. 4(1), 6128 (2015)
CrossRef
ADS
Google scholar
|
[141] |
Z. Wang, M. Zhou, X. Lin, H. Liu, H. Wang, F. Yu, S. Lin, E. Li, and H. Chen, A circuit method to integrate metamaterial and graphene in absorber design, Opt. Commun. 329, 76 (2014)
CrossRef
ADS
Google scholar
|
[142] |
B. Grześkiewicz, A. Sierakowski, J. Marczewski, N. Pałka, and E. Wolarz, Polarization-insensitive metamaterial absorber of selective response in terahertz frequency range, J. Opt. 16(10), 105104 (2014)
CrossRef
ADS
Google scholar
|
[143] |
L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, Highly sensitive and wideband tunable terahertz response of plasma waves based on graphene field effect transistors, Sci. Rep. 4(1), 5470 (2015)
CrossRef
ADS
Google scholar
|
[144] |
N. Born, M. Scheller, M. Koch, and J. V. Moloney, Cavity enhanced terahertz modulation, Appl. Phys. Lett. 104(10), 103508 (2014)
CrossRef
ADS
Google scholar
|
[145] |
B. Wang, X. Zhang, K. P. Loh, and J. Teng, Tunable broadband transmission and phase modulation of light through graphene multilayers, J. Appl. Phys. 115(21), 213102 (2014)
CrossRef
ADS
Google scholar
|
[146] |
D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6(1), 8846 (2015)
CrossRef
ADS
Google scholar
|
[147] |
Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors, Opt. Lett. 39(19), 5649 (2014)
CrossRef
ADS
Google scholar
|
[148] |
X. He and H. Lu, Graphene-supported tunable extraordinary transmission, Nanotechnology 25(32), 325201 (2014)
CrossRef
ADS
Google scholar
|
[149] |
S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
CrossRef
ADS
Google scholar
|
[150] |
R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, A new class of tunable metamaterial terahertz modulators, Opt. Express 20(27), 28664 (2012)
CrossRef
ADS
Google scholar
|
[151] |
R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, Low-bias terahertz amplitude modulator based on split-ring resonators and graphene, ACS Nano 8(3), 2548 (2014)
CrossRef
ADS
Google scholar
|
[152] |
A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. Uhd Jepsen, and A. V. Lavrinenko, Non-resonant terahertz field enhancement in periodically arranged nanoslits, J. Appl. Phys. 112(7), 074318 (2012)
CrossRef
ADS
Google scholar
|
[153] |
S. F. Shi, B. Zeng, H. L. Han, X. Hong, H. Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures, Nano Lett. 15(1), 372 (2015)
CrossRef
ADS
Google scholar
|
[154] |
Y. Wu, C. Laovorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. M. Chia, and H. Yang, Graphene terahertz modulators by ionic liquid gating, Adv. Mater. 27(11), 1874 (2015)
CrossRef
ADS
Google scholar
|
[155] |
P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, Spectrally wide-band terahertz wave modulator based on optically tuned graphene, ACS Nano 6(10), 9118 (2012)
CrossRef
ADS
Google scholar
|
[156] |
Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, Graphene based all-optical spatial terahertz modulator, Sci. Rep. 4(1), 7409 (2015)
CrossRef
ADS
Google scholar
|
[157] |
S. A. Mikhailov, Non-linear graphene optics for terahertz applications, Microelectronics J. 40(4–5), 712 (2009)
CrossRef
ADS
Google scholar
|
[158] |
K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, The linear and nonlinear THz properties of graphene, Terahertz Sci. Technol. 6(4), 223 (2016)
|
[159] |
I. Khromova, A. Andryieuski, and A. Lavrinenko, Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials, Laser Photonics Rev. 8(6), 916 (2014)
CrossRef
ADS
Google scholar
|
[160] |
G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100 modulation depth, ACS Photonics 2(11), 1559 (2015)
CrossRef
ADS
Google scholar
|
[161] |
Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, and W. Zhang, Active graphene-silicon hybrid diode for terahertz waves, Nat. Commun. 6(1), 7082 (2015)
CrossRef
ADS
Google scholar
|
[162] |
A. Tredicucci and M. S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2007)
|
[163] |
F. Sizov and A. Rogalski, THz detectors, Prog. Quantum Electron. 34(5), 278 (2010)
CrossRef
ADS
Google scholar
|
[164] |
N. Zhang, R. Song, M. Hu, G. Shan, C. Wang, and J. Yang, A low-loss design of bandpass filter at the terahertz band, IEEE Microw. Wirel. Compon. Lett. 28(7), 573 (2018)
CrossRef
ADS
Google scholar
|
[165] |
A. Pitanti, D. Coquillat, D. Ercolani, L. Sorba, F. Teppe, W. Knap, G. De Simoni, F. Beltram, A. Tredicucci, and M. S. Vitiello, Terahetz detection by heterostructured InAs/InSb nanowire based field effect transistors, Appl. Phys. Lett. 101(14), 141103 (2012)
CrossRef
ADS
Google scholar
|
[166] |
W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lausakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y. M. Meziani, and T. Otsuji, Field effect transistors for terahertz detection: Physics and first imaging applications, J. Infrared Millim. Terahertz Waves 30, 1319 (2009)
CrossRef
ADS
Google scholar
|
[167] |
E. Ojefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, A 0.65 THz focal-plane array in a quarter-micron CMOS process technology, IEEE J. Solid-State Circuits 44(7), 1968 (2009)
CrossRef
ADS
Google scholar
|
[168] |
M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Thermoelectric detection and imaging of propagating graphene plasmons, Nat. Mater. 16(2), 204 (2017)
CrossRef
ADS
Google scholar
|
[169] |
L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Graphene field-effect transistors as Roomtemperature terahertz detectors, Nat. Mater. 11(10), 865 (2012)
CrossRef
ADS
Google scholar
|
[170] |
R. M. Feenstra, D. Jena, and G. Gu, Single-particle tunneling in doped graphene insulator-graphene junctions, J. Appl. Phys. 111(4), 043711 (2012)
CrossRef
ADS
Google scholar
|
[171] |
V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, Dynamic effects in double graphenelayer structures with inter-layer resonant-tunnelling negative conductivity, J. Phys. D Appl. Phys. 46(31), 315107 (2013)
CrossRef
ADS
Google scholar
|
[172] |
A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R. Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y. J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal’ko, A. K. Geim, L. Eaves, and K. S. Novoselov, Twist controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol. 9(10), 808 (2014)
CrossRef
ADS
Google scholar
|
[173] |
B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C. Corbet, K. Kim, H. C. P. Movva, T. Taniguchi, K. Watanabe, L. F. Register, S. K. Banerjee, and E. Tutuc, Gate-tunable resonant tunneling in double bilayer graphene heterostructures, Nano Lett. 15(1), 428 (2015)
CrossRef
ADS
Google scholar
|
[174] |
A. Tomadin, A. Tredicucci, V. Pellegrini, M. S. Vitiello, and M. Polini, Photocurrent-based detection of terahertz radiation in graphene, Appl. Phys. Lett. 103(21), 211120 (2013)
CrossRef
ADS
Google scholar
|
[175] |
V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, M. S. Shur, Graphene vertical cascade interband terahertz and infrared photodetectors, 2D Mater. 2(2), 025002 (2015)
|
[176] |
B. Sensale-Rodriguez, Graphene-insulator-graphene active plasmonic terahertz devices, Appl. Phys. Lett. 103(12), 123109 (2013)
CrossRef
ADS
Google scholar
|
[177] |
A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, Antenna-Integrated 0.6 THz FET direct detectors based on CVD graphene, Nano Lett. 14(10), 5834 (2014)
CrossRef
ADS
Google scholar
|
[178] |
G. C. Shan, C. H. Shek, and M. J. Hu, Developments of Cavity-Controlled Devices with Graphene and Graphene Nanoribbon for Optoelectronics Applications, Graphene Science Handbook, Chapter 24, pp 395–410, CRC Press, 2016
|
[179] |
W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanometer size field effect transistors for terahertz detectors, Nanotechnology 24(21), 214002 (2013)
CrossRef
ADS
Google scholar
|
[180] |
J. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, Hot carrier transport and photocurrent response in graphene, Nano Lett. 11(11), 4688 (2011)
CrossRef
ADS
Google scholar
|
[181] |
M. Freitag, T. Low, F. Xia, and P. Avouris, Photoconductivity of biased graphene, Nat. Photonics 7(1), 53 (2013)
CrossRef
ADS
Google scholar
|
[182] |
J. Yan, M. H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, Dual-gated bilayer graphene hot-electron bolometer, Nat. Nanotechnol. 7(7), 472 (2012)
CrossRef
ADS
Google scholar
|
[183] |
X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene, Nat. Nanotechnol. 9(10), 814 (2014)
CrossRef
ADS
Google scholar
|
[184] |
A. V. Muraviev, S. L. Rumyantsev, G. Liu, A. A. Balandin, W. Knap, and M. S. Shur, Plasmonic and bolometric terahertz detection by graphene field-effect transistor, Appl. Phys. Lett. 103(18), 181114 (2013)
CrossRef
ADS
Google scholar
|
[185] |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef
ADS
Google scholar
|
[186] |
F. Schwierz, Graphene transistors: Status, prospects, and problems, Proc. IEEE 101(7), 1567 (2013)
CrossRef
ADS
Google scholar
|
[187] |
W. Y. Fu, L. Jiang, E. P. van Geest, L. M. C. Lima, and G. F. Schneider, Sensing at the surface of graphene field-effect transistors, Adv. Mater. 29(6), 1603610 (2017)
CrossRef
ADS
Google scholar
|
[188] |
J. S. Friedman, A. Girdhar, R. M. Gelfand, G. Memik, H. Mohseni, A. Taove, B. W. Wessels, J. P. Leburton, and A. V. Sahakian, Cascaded spintronic logic with lowdimensional carbon, Nat. Commun. 8, 15635 (2017)
CrossRef
ADS
Google scholar
|
[189] |
E. C. Ahn, H. S. P. Wong and E. Pop, Carbon nanomaterials for non-volatile memories, Nature Reviews Materials 3(3), (2018)
|
[190] |
F. Hui, E. Grustan-Gutierrez, S. B. Long, Q. Liu, A. K. Ott, A. C. Ferrari and M. Lanza, Graphene and related materials for resistive random access memories, Advanced Electronic Materials 3(8), (2017)
|
[191] |
J. Y. Son, Y. H. Shin, H. Kim, and H. M. Jang, NiO Resistive Random Access Memory Nanocapacitor Array on Graphene, ACS Nano 4(5), 2655 (2010)
CrossRef
ADS
Google scholar
|
[192] |
H. J. Hwang, J. H. Yang, Y. G. Lee, C. Cho, C. G. Kang, S. C. Kang, W. Park, and B. H. Lee, Ferroelectric polymer-gated graphene memory with high speed conductivity modulation, Nanotechnology 24(17), 175202 (2013)
CrossRef
ADS
Google scholar
|
[193] |
H. Tian, H. Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T. L. Ren, Y. Zhang, and H. S. Wong, Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode, Nano Lett. 13(2), 651 (2013)
CrossRef
ADS
Google scholar
|
[194] |
Y. Ji, S. Lee, B. Cho, S. Song, and T. Lee, Flexible organic memory devices with multilayer graphene electrodes, ACS Nano 5(7), 5995 (2011)
CrossRef
ADS
Google scholar
|
[195] |
X. Wang, W. Xie, and J. B. Xu, Graphene based nonvolatile memory devices, Adv. Mater. 26(31), 5496 (2014)
CrossRef
ADS
Google scholar
|
[196] |
A. Nag, A. Mitra, and S. C. Mukhopadhyay, Graphene and its sensor-based applications: A review, Sensors and Actuators A-Physical 270, 177 (2018)
CrossRef
ADS
Google scholar
|
[197] |
C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, Graphene based sensors and biosensors, TrAC Trends in Analytical Chemistry 91, 53 (2017)
CrossRef
ADS
Google scholar
|
[198] |
T. Wang, D. Huang, Z. Yang, S. S. Xu, G. L. He, X. L. Li, N. T. Hu, G. L. Yin, D. N. He, and L. Y. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications, Nano-Micro Lett. 8(2), 95 (2016)
CrossRef
ADS
Google scholar
|
[199] |
E. W. Hill, A. Vijayaragahvan, and K. Novoselov, Graphene sensors, IEEE Sens. J. 11(12), 3161 (2011)
CrossRef
ADS
Google scholar
|
[200] |
E. Singh, M. Meyyappan, and H. S. Nalwa, Flexible graphene-based wearable gas and chemical sensors, ACS Appl. Mater. Interfaces 9(40), 34544 (2017)
CrossRef
ADS
Google scholar
|
[201] |
A. Gutés, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro, and R. Maboudian, Graphene decoration with metal nanoparticles: towards easy integration for sensing applications, Nanoscale 4(2), 438 (2012)
CrossRef
ADS
Google scholar
|
[202] |
X. H. Li, W. C. H. Choy, X. G. Ren, D. Zhang, and H. F. Lu, Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system, Adv. Funct. Mater. 24(21), 3114 (2014)
CrossRef
ADS
Google scholar
|
[203] |
X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS, Nanoscale 7(26), 11291 (2015)
CrossRef
ADS
Google scholar
|
[204] |
Y. Zhao and Y. W. Zhu, Graphene-based hybrid films for plasmonic sensing, Nanoscale 7(35), 14561 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |