Nonequilibrium Green’s function method for quantum thermal transport

Jian-Sheng Wang, Bijay Kumar Agarwalla, Huanan Li, Juzar Thingna

PDF(537 KB)
PDF(537 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 673-697. DOI: 10.1007/s11467-013-0340-x
REVIEW ARTICLE
REVIEW ARTICLE

Nonequilibrium Green’s function method for quantum thermal transport

Author information +
History +

Abstract

This review deals with the nonequilibrium Green’s function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

Graphical abstract

Keywords

nonequilibrium Green’s function (NEGF) / contour ordered Green’s function / thermal transport

Cite this article

Download citation ▾
Jian-Sheng Wang, Bijay Kumar Agarwalla, Huanan Li, Juzar Thingna. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys., 2014, 9(6): 673‒697 https://doi.org/10.1007/s11467-013-0340-x

References

[1]
J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys., 1961, 2(3): 407
CrossRef ADS Google scholar
[2]
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin/Cummings, 1962
[3]
L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP, 1965, 20: 1018
[4]
K. C. Chou, Z. B. Su, B. L. Hao, and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rep., 1985, 118(1−2): 1
CrossRef ADS Google scholar
[5]
P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys., 1984, 152(2): 239
CrossRef ADS Google scholar
[6]
J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys., 1986, 58(2): 323
CrossRef ADS Google scholar
[7]
M. Bonitz (Ed.), Progress in Nonequilibrium Green’s Functions, Singapore: World Scientific, 2000
[8]
M. Bonitz and D. Semkat (Eds.), Progress in Nonequilibrium Green’s Functions (II), Singapore: World Scientific, 2003
[9]
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Direct calculation of the tunneling current, J. Phys. C, 1971, 4(8): 916
[10]
Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett., 1992, 68(16): 2512
CrossRef ADS Google scholar
[11]
A. Prociuk, H. Phillips, and B. D. Dunietz, Modeling transient aspects of coherence-driven electron transport, J. Phys.: Conf. Ser., 2010, 220: 012008
[12]
U. Aeberhard, Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism, J. Comput. Electron., 2011, 10(4): 394
CrossRef ADS Google scholar
[13]
N. A. Zimbovskaya and M. R. Pederson, Electron transport through molecular junctions, Phys. Rep., 2011, 509(1): 1
CrossRef ADS Google scholar
[14]
B. K. Nikolić, K. K. Saha, T. Markussen, and K. S. Thygesen, First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes, J. Comput. Electron., 2012, 11(1): 78
CrossRef ADS Google scholar
[15]
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B, 2008, 62(4): 381
CrossRef ADS Google scholar
[16]
J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations, Phys. Rev. B, 2009, 79(11): 115401
CrossRef ADS Google scholar
[17]
P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods, J. Appl. Phys., 2009, 106(6): 063503
CrossRef ADS Google scholar
[18]
Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter, 2011, 23(31): 315302
CrossRef ADS Google scholar
[19]
Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B, 2012, 86(23): 235304
CrossRef ADS Google scholar
[20]
M. Bachmann, M. Czerner, S. Edalati-Boostan, and C. Heiliger, Ab initio calculations of phonon transport in ZnO and ZnS, Eur. Phys. J. B, 2012, 85(5): 146
CrossRef ADS Google scholar
[21]
P. S. E. Yeo, K. P. Loh, and C. K. Gan, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 2012, 23(49): 495702
CrossRef ADS Google scholar
[22]
P. Brouwer, 2005, https://www.physics.udel.edu/~bnikolic/QTTG/shared/reviews/brouwer_notes.pdf
[23]
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009
[24]
J. W. Jiang, J. S. Wang, and B. Li, Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach, Phys. Rev. B, 2009, 80(20): 205429
CrossRef ADS Google scholar
[25]
B. K. Agarwalla, B. Li, and J. S. Wang, Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems, Phys. Rev. E, 2012, 85(5 Pt 1): 051142
CrossRef ADS Google scholar
[26]
A. Böhm, Quantum Mechanics, Heidelberg: Springer-Verlag, 1979
[27]
K. Huang, Statistical Mechanics, 2nd Ed., New York: John Wiley & Sons, 1987
[28]
R. Kubo, Statistical-mechanical theory of irreversible processes (I): General theory and simple applications to magnetic and Conduction Problems, J. Phys. Soc. Jpn., 1957, 12(6): 570
CrossRef ADS Google scholar
[29]
P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev., 1959, 115(6): 1342
CrossRef ADS Google scholar
[30]
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971
[31]
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer, 1992
[32]
A. Altland and B. Simons, Condsensed Matter Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 2010
[33]
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, 1996
[34]
A. M. Zagoskin, Quantum Theory of Many-Body Systems, Springer, 1998
CrossRef ADS Google scholar
[35]
J. Rammer, Quantum Field Theory of Non-Equilibrium States, Cambridge: Cambridge University Press, 2007
CrossRef ADS Google scholar
[36]
M. Di Ventra, Electrical Transport in Nanoscale Systems, Cambridge: Cambridge University Press, 2008
CrossRef ADS Google scholar
[37]
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge: Cambridge University Press, 2011
[38]
D. C. Langreth, in: Linear and Nonlinear Electron Transport in Solids, edited by J. T. Devreese and E. van Doren, Plenum, 1976: 3−32
CrossRef ADS Google scholar
[39]
C. Niu, D. L. Lin, and T. H. Lin, Equation of motion for nonequilibrium Green functions, J. Phys.: Condens. Matter, 1999, 11(6): 1511
CrossRef ADS Google scholar
[40]
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Publ., 1963
[41]
S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physicists, W. A. Benjamin, 1974
[42]
G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic, 2000
CrossRef ADS Google scholar
[43]
H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An introduction, Oxford: Oxford University Press, 2004
[44]
H. L. Friedman, A Course in Statistical Mechanics, Prentice- Hall, 1985
[45]
B. K. Agarwalla, Study of full-counting statistics in heat transport in transient and steady state and quantum fuctuation theorems, Ph.D. thesis, National University Singapore, 2013
[46]
P. C. K. Kwok, Green’s function method in lattice dynamics, Solid State Phys., 1968, 20: 213
CrossRef ADS Google scholar
[47]
M. L. Leek, Mathematical details in the application of nonequilibrium Green’s functions (NEGF) and quantum kinetic equations (QKE) to thermal transport, arXiv: 1207.6204, 2012
[48]
H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in φ4 and φ2A theory, Phys. Rev. E, 2000, 62(2): 1537
CrossRef ADS Google scholar
[49]
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
CrossRef ADS Google scholar
[50]
R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop., 1957, 1(3): 223
CrossRef ADS Google scholar
[51]
R. Landauer, Electrical resistance of disordered onedimensional lattices, Philos. Mag., 1970, 21(172): 863
CrossRef ADS Google scholar
[52]
A. Ozpineci and S. Ciraci, Quantum effects of thermal conductance through atomic chains, Phys. Rev. B, 2001, 63(12): 125415
CrossRef ADS Google scholar
[53]
D. Segal, A. Nitzan, and P. Hänggi, Thermal conductance through molecular wires, J. Chem. Phys., 2003, 119(13): 6840
CrossRef ADS Google scholar
[54]
N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B, 2003, 68(24): 245406
CrossRef ADS Google scholar
[55]
A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 805
[56]
A. Dhar and D. Sen, Nonequilibrium Green’s function formalism and the problem of bound states, Phys. Rev. B, 2006, 73(8): 085119
CrossRef ADS Google scholar
[57]
J. S. Wang, J. Wang, and N. Zeng, Nonequilibrium Green’s function approach to mesoscopic thermal transport, Phys. Rev. B, 2006, 74(3): 033408
CrossRef ADS Google scholar
[58]
T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett., 2006, 96(25): 255503
CrossRef ADS Google scholar
[59]
W. Zhang, T. S. Fisher, and N. Mingo, The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport, Numer. Heat Transf. B, 2007, 51(4): 333
CrossRef ADS Google scholar
[60]
S. G. Das and A. Dhar, Landauer formula for phonon heat conduction: Relation between energy transmittance and transmission coefficient, Eur. Phys. J. B, 2012, 85(11): 372
CrossRef ADS Google scholar
[61]
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F, 1984, 14(5): 1205
CrossRef ADS Google scholar
[62]
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851
CrossRef ADS Google scholar
[63]
A. P. Arya, Introduction to Classical Mechanics, Allyn and Bacon, 1990, Chap. 15.5
[64]
E. C. Cuansing, H. Li, and J. S. Wang, Role of the on-site pinning potential in establishing quasi-steady-state conditions of heat transport in finite quantum systems, Phys. Rev. E, 2012, 86(3): 031132
CrossRef ADS Google scholar
[65]
J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green’s function method for thermal transport in junctions, Phys. Rev. E, 2007, 75(6): 061128
CrossRef ADS Google scholar
[66]
J. Wang and J. S. Wang, Mode-dependent energy transmission across nanotube junctions calculated with a lattice dynamics approach, Phys. Rev. B, 2006, 74(5): 054303
CrossRef ADS Google scholar
[67]
L. Zhang, P. Keblinski, J. S. Wang, and B. Li, Interfacial thermal transport in atomic junctions, Phys. Rev. B, 2011, 83(6): 064303
CrossRef ADS Google scholar
[68]
M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett., 1986, 57(14): 1761
CrossRef ADS Google scholar
[69]
M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Develop., 1988, 32(3): 317
CrossRef ADS Google scholar
[70]
M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B, 1988, 38(14): 9375
CrossRef ADS Google scholar
[71]
Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep., 2000, 336(1−2): 1
CrossRef ADS Google scholar
[72]
L. Zhang, J.-S. Wang, and B. Li, Ballistic thermal rectification in nanoscale three-terminal junctions, Phys. Rev. B, 2010, 81(10): 100301(R)
CrossRef ADS Google scholar
[73]
Z. X. Xie, K. M. Li, L. M. Tang, C. N. Pan, and K. Q. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions, Appl. Phys. Lett., 2012, 100(18): 183110
CrossRef ADS Google scholar
[74]
A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 801
CrossRef ADS Google scholar
[75]
D. Roy, Crossover from ballistic to diffusive thermal transport in quantum Langevin dynamics study of a harmonic chain connected to self-consistent reservoirs, Phys. Rev. E, 2008, 77(6): 062102
CrossRef ADS Google scholar
[76]
M. Bandyopadhyay and D. Segal, Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations, Phys. Rev. E, 2011, 84(1): 011151
CrossRef ADS Google scholar
[77]
L. Zhang, J. S. Wang, and B. Li, Phonon Hall effect in fourterminal nano-junctions, New J. Phys., 2009, 11(11): 113038
CrossRef ADS Google scholar
[78]
H. Li, B. K. Agarwalla, and J. S. Wang, Generalized Caroli formula for the transmission coefficient with lead-lead coupling, Phys. Rev. E, 2012, 86(1): 011141
CrossRef ADS Google scholar
[79]
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys., 2009, 81(4): 1665
CrossRef ADS Google scholar
[80]
M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys., 2011, 83(3): 771
CrossRef ADS Google scholar
[81]
U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., 2012, 75(12): 126001
CrossRef ADS Google scholar
[82]
M. L. Roukes, Yoctocalorimetry: Phonon counting in nanostructures, Physica B, 1999, 263: 1
CrossRef ADS Google scholar
[83]
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep., 2009, 478(1−3): 1
CrossRef ADS Google scholar
[84]
H. Li, B. K. Agarwalla, and J. S. Wang, Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling, Phys. Rev. B, 2012, 86(16): 165425
CrossRef ADS Google scholar
[85]
J. S. Wang, B. K. Agarwalla, and H. Li, Transient behavior of full counting statistics in thermal transport, Phys. Rev. B, 2011, 84(15): 153412
CrossRef ADS Google scholar
[86]
A. O. Gogolin and A. Komnik, Towards full counting statistics for the Anderson impurity model, Phys. Rev. B, 2006, 73(19): 195301
CrossRef ADS Google scholar
[87]
H. Li, B. K. Agarwalla, B. Li, and J. S. Wang, Cumulants of heat transfer in nonlinear quantum systems, arXiv: 1210.2798, 2012
[88]
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett., 1993, 58: 230
[89]
L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys., 1996, 37(10): 4845
CrossRef ADS Google scholar
[90]
K. Saito and A. Dhar, Fluctuation theorem in quantum heat conduction, Phys. Rev. Lett., 2007, 99(18): 180601
CrossRef ADS Google scholar
[91]
G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., 1995, 74(14): 2694
CrossRef ADS Google scholar
[92]
A. Kundu, S. Sabhapandit, and A. Dhar, Large deviations of heat flow in harmonic chains, J. Stat. Mech., 2011, 2011(03): P03007
CrossRef ADS Google scholar
[93]
K. Saito and A. Dhar, Generating function formula of heat transfer in harmonic networks, Phys. Rev. E, 2011, 83(4 Pt 1): 041121
CrossRef ADS Google scholar
[94]
E. C. Cuansing and J. S. Wang, Transient behavior of heat transport in a thermal switch, Phys. Rev. B, 2010, 81(5): 052302
CrossRef ADS Google scholar
[95]
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976
[96]
J. W. Jiang, J. S. Wang, and B. Li, Thermal contraction in silicon nanowires at low temperatures, Nanoscale, 2010, 2(12): 2864
CrossRef ADS Google scholar
[97]
J. W. Jiang and J. S. Wang, Thermal expansion in multiple layers of graphene, arXiv: 1108.5820, 2011
[98]
A. A. Maradudin and A. E. Fein, Scattering of neutrons by an anharmonic crystal, Phys. Rev., 1962, 128(6): 2589
CrossRef ADS Google scholar
[99]
Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phonon-phonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B, 2008, 78(22): 224303
CrossRef ADS Google scholar
[100]
N. Mingo, Anharmonic phonon flow through molecular-sized junctions, Phys. Rev. B, 2006, 74(12): 125402
CrossRef ADS Google scholar
[101]
M. Luisier, Atomistic modeling of anharmonic phononphonon scattering in nanowires, Phys. Rev. B, 2012, 86(24): 245407
CrossRef ADS Google scholar
[102]
J. T. Lü and J. S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B, 2007, 76(16): 165418
CrossRef ADS Google scholar
[103]
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107
CrossRef ADS Google scholar
[104]
L. A. Wu and D. Segal, Quantum heat transfer: A Born-Oppenheimer method, Phys. Rev. E, 2011, 83(5): 051114
CrossRef ADS Google scholar
[105]
L. Lindsay, D. A. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules, Phys. Rev. B, 2009, 80(12): 125407
CrossRef ADS Google scholar
[106]
L. Zhang, J. Thingna, D. He, J.-S. Wang, and B. Li, Nonlinearity enchanced interfacial thermal conducntance and rectification, 2013 (in preparation)
[107]
D. He, S. Buyukdagli, and B. Hu, Thermal conductivity of anharmonic lattices: effective phonons and quantum corrections, Phys. Rev. E, 2008, 78(6): 061103
CrossRef ADS Google scholar
[108]
J. Thingna, Steady-state transport properties of anharmonic systems, Ph.D. thesis, National University Singapore, 2013
[109]
A. Dhar, K. Saito, and P. Hänggi, Nonequilibrium densitymatrix description of steady-state quantum transport, Phys. Rev. E, 2012, 85(1): 011126
CrossRef ADS Google scholar
[110]
H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
[111]
K. Saito, Strong evidence of normal heat conduction in a one-dimensional quantum system, Europhys. Lett., 2003, 61(1): 34
CrossRef ADS Google scholar
[112]
D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett., 2005, 94(3): 034301
CrossRef ADS Google scholar
[113]
D. Segal, Heat flow in nonlinear molecular junctions: Master equation analysis, Phys. Rev. B, 2006, 73(20): 205415
CrossRef ADS Google scholar
[114]
W. Pauli, in: Festschrift zum 60. Geburtstage A. Sommerfeld, Hirzel, Leipzig, 1928
[115]
A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A, 1983, 121(3): 587
CrossRef ADS Google scholar
[116]
A. G. Redfield, On the theory of relaxation processes, IBM J. Res. Develop., 1957, 1(1): 19
CrossRef ADS Google scholar
[117]
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 1976, 48(2): 119
CrossRef ADS Google scholar
[118]
T. Mori and S. Miyashita, Dynamics of the density matrix in contact with a thermal bath and the quantum master equation, J. Phys. Soc. Jpn., 2008, 77(12): 124005
CrossRef ADS Google scholar
[119]
C. H. Fleming and N. I. Cummings, Accuracy of perturbative master equations, Phys. Rev. E, 2011, 83(3): 031117
CrossRef ADS Google scholar
[120]
J. Thingna, J. S. Wang, and P. Hänggi, Generalized Gibbs state with modified Redfield solution: exact agreement up to second order, J. Chem. Phys., 2012, 136(19): 194110
CrossRef ADS Google scholar
[121]
B. B. Laird, J. Budimir, and J. L. Skinner, Quantummechanical derivation of the Bloch equations: Beyond the weak-coupling limit, J. Chem. Phys., 1991, 94(6): 4391
CrossRef ADS Google scholar
[122]
S. Jang, J. Cao, and R. J. Silbey, Fourth-order quantum master equation and its Markovian bath limit, J. Chem. Phys., 2002, 116(7): 2705
CrossRef ADS Google scholar
[123]
S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys., 1958, 20(6): 948
CrossRef ADS Google scholar
[124]
R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys., 1960, 33(5): 1338
CrossRef ADS Google scholar
[125]
F. Shibata, Y. Takahashi, and N. Hashitsume, A generalized stochastic Liouville equation, non-Markovian versus memoryless master equations, J. Stat. Phys., 1977, 17(4): 171
CrossRef ADS Google scholar
[126]
G. Nan, Q. Shi, and Z. Shuai, Nonperturbative timeconvolutionless quantum master equation from the path integral approach, J. Chem. Phys., 2009, 130(13): 134106
CrossRef ADS Google scholar
[127]
J. Thingna, J. L. García-Palacios, and J. S. Wang, Steadystate thermal transport in anharmonic systems: Application to molecular junctions, Phys. Rev. B, 2012, 85(19): 195452
CrossRef ADS Google scholar
[128]
L. A. Wu, C. X. Yu, and D. Segal, Nonlinear quantum heat transfer in hybrid structures: Sufficient conditions for thermal rectification, Phys. Rev. E, 2009, 80(4): 041103
CrossRef ADS Google scholar
[129]
J. Thingna and J.-S. Wang, 2013 (in preparation)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(537 KB)

Accesses

Citations

Detail

Sections
Recommended

/