Nonequilibrium Green’s function method for quantum thermal transport
Jian-Sheng Wang, Bijay Kumar Agarwalla, Huanan Li, Juzar Thingna
Nonequilibrium Green’s function method for quantum thermal transport
This review deals with the nonequilibrium Green’s function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.
nonequilibrium Green’s function (NEGF) / contour ordered Green’s function / thermal transport
[1] |
J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys., 1961, 2(3): 407
CrossRef
ADS
Google scholar
|
[2] |
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin/Cummings, 1962
|
[3] |
L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP, 1965, 20: 1018
|
[4] |
K. C. Chou, Z. B. Su, B. L. Hao, and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rep., 1985, 118(1−2): 1
CrossRef
ADS
Google scholar
|
[5] |
P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys., 1984, 152(2): 239
CrossRef
ADS
Google scholar
|
[6] |
J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys., 1986, 58(2): 323
CrossRef
ADS
Google scholar
|
[7] |
M. Bonitz (Ed.), Progress in Nonequilibrium Green’s Functions, Singapore: World Scientific, 2000
|
[8] |
M. Bonitz and D. Semkat (Eds.), Progress in Nonequilibrium Green’s Functions (II), Singapore: World Scientific, 2003
|
[9] |
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Direct calculation of the tunneling current, J. Phys. C, 1971, 4(8): 916
|
[10] |
Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett., 1992, 68(16): 2512
CrossRef
ADS
Google scholar
|
[11] |
A. Prociuk, H. Phillips, and B. D. Dunietz, Modeling transient aspects of coherence-driven electron transport, J. Phys.: Conf. Ser., 2010, 220: 012008
|
[12] |
U. Aeberhard, Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism, J. Comput. Electron., 2011, 10(4): 394
CrossRef
ADS
Google scholar
|
[13] |
N. A. Zimbovskaya and M. R. Pederson, Electron transport through molecular junctions, Phys. Rep., 2011, 509(1): 1
CrossRef
ADS
Google scholar
|
[14] |
B. K. Nikolić, K. K. Saha, T. Markussen, and K. S. Thygesen, First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes, J. Comput. Electron., 2012, 11(1): 78
CrossRef
ADS
Google scholar
|
[15] |
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B, 2008, 62(4): 381
CrossRef
ADS
Google scholar
|
[16] |
J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations, Phys. Rev. B, 2009, 79(11): 115401
CrossRef
ADS
Google scholar
|
[17] |
P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods, J. Appl. Phys., 2009, 106(6): 063503
CrossRef
ADS
Google scholar
|
[18] |
Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter, 2011, 23(31): 315302
CrossRef
ADS
Google scholar
|
[19] |
Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B, 2012, 86(23): 235304
CrossRef
ADS
Google scholar
|
[20] |
M. Bachmann, M. Czerner, S. Edalati-Boostan, and C. Heiliger, Ab initio calculations of phonon transport in ZnO and ZnS, Eur. Phys. J. B, 2012, 85(5): 146
CrossRef
ADS
Google scholar
|
[21] |
P. S. E. Yeo, K. P. Loh, and C. K. Gan, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 2012, 23(49): 495702
CrossRef
ADS
Google scholar
|
[22] |
P. Brouwer, 2005,
|
[23] |
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009
|
[24] |
J. W. Jiang, J. S. Wang, and B. Li, Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach, Phys. Rev. B, 2009, 80(20): 205429
CrossRef
ADS
Google scholar
|
[25] |
B. K. Agarwalla, B. Li, and J. S. Wang, Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems, Phys. Rev. E, 2012, 85(5 Pt 1): 051142
CrossRef
ADS
Google scholar
|
[26] |
A. Böhm, Quantum Mechanics, Heidelberg: Springer-Verlag, 1979
|
[27] |
K. Huang, Statistical Mechanics, 2nd Ed., New York: John Wiley & Sons, 1987
|
[28] |
R. Kubo, Statistical-mechanical theory of irreversible processes (I): General theory and simple applications to magnetic and Conduction Problems, J. Phys. Soc. Jpn., 1957, 12(6): 570
CrossRef
ADS
Google scholar
|
[29] |
P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev., 1959, 115(6): 1342
CrossRef
ADS
Google scholar
|
[30] |
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971
|
[31] |
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer, 1992
|
[32] |
A. Altland and B. Simons, Condsensed Matter Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 2010
|
[33] |
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, 1996
|
[34] |
A. M. Zagoskin, Quantum Theory of Many-Body Systems, Springer, 1998
CrossRef
ADS
Google scholar
|
[35] |
J. Rammer, Quantum Field Theory of Non-Equilibrium States, Cambridge: Cambridge University Press, 2007
CrossRef
ADS
Google scholar
|
[36] |
M. Di Ventra, Electrical Transport in Nanoscale Systems, Cambridge: Cambridge University Press, 2008
CrossRef
ADS
Google scholar
|
[37] |
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge: Cambridge University Press, 2011
|
[38] |
D. C. Langreth, in: Linear and Nonlinear Electron Transport in Solids, edited by J. T. Devreese and E. van Doren, Plenum, 1976: 3−32
CrossRef
ADS
Google scholar
|
[39] |
C. Niu, D. L. Lin, and T. H. Lin, Equation of motion for nonequilibrium Green functions, J. Phys.: Condens. Matter, 1999, 11(6): 1511
CrossRef
ADS
Google scholar
|
[40] |
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Publ., 1963
|
[41] |
S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physicists, W. A. Benjamin, 1974
|
[42] |
G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic, 2000
CrossRef
ADS
Google scholar
|
[43] |
H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An introduction, Oxford: Oxford University Press, 2004
|
[44] |
H. L. Friedman, A Course in Statistical Mechanics, Prentice- Hall, 1985
|
[45] |
B. K. Agarwalla, Study of full-counting statistics in heat transport in transient and steady state and quantum fuctuation theorems, Ph.D. thesis, National University Singapore, 2013
|
[46] |
P. C. K. Kwok, Green’s function method in lattice dynamics, Solid State Phys., 1968, 20: 213
CrossRef
ADS
Google scholar
|
[47] |
M. L. Leek, Mathematical details in the application of nonequilibrium Green’s functions (NEGF) and quantum kinetic equations (QKE) to thermal transport, arXiv: 1207.6204, 2012
|
[48] |
H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in φ4 and φ2A theory, Phys. Rev. E, 2000, 62(2): 1537
CrossRef
ADS
Google scholar
|
[49] |
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
CrossRef
ADS
Google scholar
|
[50] |
R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop., 1957, 1(3): 223
CrossRef
ADS
Google scholar
|
[51] |
R. Landauer, Electrical resistance of disordered onedimensional lattices, Philos. Mag., 1970, 21(172): 863
CrossRef
ADS
Google scholar
|
[52] |
A. Ozpineci and S. Ciraci, Quantum effects of thermal conductance through atomic chains, Phys. Rev. B, 2001, 63(12): 125415
CrossRef
ADS
Google scholar
|
[53] |
D. Segal, A. Nitzan, and P. Hänggi, Thermal conductance through molecular wires, J. Chem. Phys., 2003, 119(13): 6840
CrossRef
ADS
Google scholar
|
[54] |
N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B, 2003, 68(24): 245406
CrossRef
ADS
Google scholar
|
[55] |
A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 805
|
[56] |
A. Dhar and D. Sen, Nonequilibrium Green’s function formalism and the problem of bound states, Phys. Rev. B, 2006, 73(8): 085119
CrossRef
ADS
Google scholar
|
[57] |
J. S. Wang, J. Wang, and N. Zeng, Nonequilibrium Green’s function approach to mesoscopic thermal transport, Phys. Rev. B, 2006, 74(3): 033408
CrossRef
ADS
Google scholar
|
[58] |
T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett., 2006, 96(25): 255503
CrossRef
ADS
Google scholar
|
[59] |
W. Zhang, T. S. Fisher, and N. Mingo, The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport, Numer. Heat Transf. B, 2007, 51(4): 333
CrossRef
ADS
Google scholar
|
[60] |
S. G. Das and A. Dhar, Landauer formula for phonon heat conduction: Relation between energy transmittance and transmission coefficient, Eur. Phys. J. B, 2012, 85(11): 372
CrossRef
ADS
Google scholar
|
[61] |
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F, 1984, 14(5): 1205
CrossRef
ADS
Google scholar
|
[62] |
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851
CrossRef
ADS
Google scholar
|
[63] |
A. P. Arya, Introduction to Classical Mechanics, Allyn and Bacon, 1990, Chap. 15.5
|
[64] |
E. C. Cuansing, H. Li, and J. S. Wang, Role of the on-site pinning potential in establishing quasi-steady-state conditions of heat transport in finite quantum systems, Phys. Rev. E, 2012, 86(3): 031132
CrossRef
ADS
Google scholar
|
[65] |
J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green’s function method for thermal transport in junctions, Phys. Rev. E, 2007, 75(6): 061128
CrossRef
ADS
Google scholar
|
[66] |
J. Wang and J. S. Wang, Mode-dependent energy transmission across nanotube junctions calculated with a lattice dynamics approach, Phys. Rev. B, 2006, 74(5): 054303
CrossRef
ADS
Google scholar
|
[67] |
L. Zhang, P. Keblinski, J. S. Wang, and B. Li, Interfacial thermal transport in atomic junctions, Phys. Rev. B, 2011, 83(6): 064303
CrossRef
ADS
Google scholar
|
[68] |
M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett., 1986, 57(14): 1761
CrossRef
ADS
Google scholar
|
[69] |
M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Develop., 1988, 32(3): 317
CrossRef
ADS
Google scholar
|
[70] |
M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B, 1988, 38(14): 9375
CrossRef
ADS
Google scholar
|
[71] |
Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep., 2000, 336(1−2): 1
CrossRef
ADS
Google scholar
|
[72] |
L. Zhang, J.-S. Wang, and B. Li, Ballistic thermal rectification in nanoscale three-terminal junctions, Phys. Rev. B, 2010, 81(10): 100301(R)
CrossRef
ADS
Google scholar
|
[73] |
Z. X. Xie, K. M. Li, L. M. Tang, C. N. Pan, and K. Q. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions, Appl. Phys. Lett., 2012, 100(18): 183110
CrossRef
ADS
Google scholar
|
[74] |
A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 801
CrossRef
ADS
Google scholar
|
[75] |
D. Roy, Crossover from ballistic to diffusive thermal transport in quantum Langevin dynamics study of a harmonic chain connected to self-consistent reservoirs, Phys. Rev. E, 2008, 77(6): 062102
CrossRef
ADS
Google scholar
|
[76] |
M. Bandyopadhyay and D. Segal, Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations, Phys. Rev. E, 2011, 84(1): 011151
CrossRef
ADS
Google scholar
|
[77] |
L. Zhang, J. S. Wang, and B. Li, Phonon Hall effect in fourterminal nano-junctions, New J. Phys., 2009, 11(11): 113038
CrossRef
ADS
Google scholar
|
[78] |
H. Li, B. K. Agarwalla, and J. S. Wang, Generalized Caroli formula for the transmission coefficient with lead-lead coupling, Phys. Rev. E, 2012, 86(1): 011141
CrossRef
ADS
Google scholar
|
[79] |
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys., 2009, 81(4): 1665
CrossRef
ADS
Google scholar
|
[80] |
M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys., 2011, 83(3): 771
CrossRef
ADS
Google scholar
|
[81] |
U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., 2012, 75(12): 126001
CrossRef
ADS
Google scholar
|
[82] |
M. L. Roukes, Yoctocalorimetry: Phonon counting in nanostructures, Physica B, 1999, 263: 1
CrossRef
ADS
Google scholar
|
[83] |
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep., 2009, 478(1−3): 1
CrossRef
ADS
Google scholar
|
[84] |
H. Li, B. K. Agarwalla, and J. S. Wang, Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling, Phys. Rev. B, 2012, 86(16): 165425
CrossRef
ADS
Google scholar
|
[85] |
J. S. Wang, B. K. Agarwalla, and H. Li, Transient behavior of full counting statistics in thermal transport, Phys. Rev. B, 2011, 84(15): 153412
CrossRef
ADS
Google scholar
|
[86] |
A. O. Gogolin and A. Komnik, Towards full counting statistics for the Anderson impurity model, Phys. Rev. B, 2006, 73(19): 195301
CrossRef
ADS
Google scholar
|
[87] |
H. Li, B. K. Agarwalla, B. Li, and J. S. Wang, Cumulants of heat transfer in nonlinear quantum systems, arXiv: 1210.2798, 2012
|
[88] |
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett., 1993, 58: 230
|
[89] |
L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys., 1996, 37(10): 4845
CrossRef
ADS
Google scholar
|
[90] |
K. Saito and A. Dhar, Fluctuation theorem in quantum heat conduction, Phys. Rev. Lett., 2007, 99(18): 180601
CrossRef
ADS
Google scholar
|
[91] |
G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., 1995, 74(14): 2694
CrossRef
ADS
Google scholar
|
[92] |
A. Kundu, S. Sabhapandit, and A. Dhar, Large deviations of heat flow in harmonic chains, J. Stat. Mech., 2011, 2011(03): P03007
CrossRef
ADS
Google scholar
|
[93] |
K. Saito and A. Dhar, Generating function formula of heat transfer in harmonic networks, Phys. Rev. E, 2011, 83(4 Pt 1): 041121
CrossRef
ADS
Google scholar
|
[94] |
E. C. Cuansing and J. S. Wang, Transient behavior of heat transport in a thermal switch, Phys. Rev. B, 2010, 81(5): 052302
CrossRef
ADS
Google scholar
|
[95] |
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976
|
[96] |
J. W. Jiang, J. S. Wang, and B. Li, Thermal contraction in silicon nanowires at low temperatures, Nanoscale, 2010, 2(12): 2864
CrossRef
ADS
Google scholar
|
[97] |
J. W. Jiang and J. S. Wang, Thermal expansion in multiple layers of graphene, arXiv: 1108.5820, 2011
|
[98] |
A. A. Maradudin and A. E. Fein, Scattering of neutrons by an anharmonic crystal, Phys. Rev., 1962, 128(6): 2589
CrossRef
ADS
Google scholar
|
[99] |
Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phonon-phonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B, 2008, 78(22): 224303
CrossRef
ADS
Google scholar
|
[100] |
N. Mingo, Anharmonic phonon flow through molecular-sized junctions, Phys. Rev. B, 2006, 74(12): 125402
CrossRef
ADS
Google scholar
|
[101] |
M. Luisier, Atomistic modeling of anharmonic phononphonon scattering in nanowires, Phys. Rev. B, 2012, 86(24): 245407
CrossRef
ADS
Google scholar
|
[102] |
J. T. Lü and J. S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B, 2007, 76(16): 165418
CrossRef
ADS
Google scholar
|
[103] |
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107
CrossRef
ADS
Google scholar
|
[104] |
L. A. Wu and D. Segal, Quantum heat transfer: A Born-Oppenheimer method, Phys. Rev. E, 2011, 83(5): 051114
CrossRef
ADS
Google scholar
|
[105] |
L. Lindsay, D. A. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules, Phys. Rev. B, 2009, 80(12): 125407
CrossRef
ADS
Google scholar
|
[106] |
L. Zhang, J. Thingna, D. He, J.-S. Wang, and B. Li, Nonlinearity enchanced interfacial thermal conducntance and rectification, 2013 (in preparation)
|
[107] |
D. He, S. Buyukdagli, and B. Hu, Thermal conductivity of anharmonic lattices: effective phonons and quantum corrections, Phys. Rev. E, 2008, 78(6): 061103
CrossRef
ADS
Google scholar
|
[108] |
J. Thingna, Steady-state transport properties of anharmonic systems, Ph.D. thesis, National University Singapore, 2013
|
[109] |
A. Dhar, K. Saito, and P. Hänggi, Nonequilibrium densitymatrix description of steady-state quantum transport, Phys. Rev. E, 2012, 85(1): 011126
CrossRef
ADS
Google scholar
|
[110] |
H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
|
[111] |
K. Saito, Strong evidence of normal heat conduction in a one-dimensional quantum system, Europhys. Lett., 2003, 61(1): 34
CrossRef
ADS
Google scholar
|
[112] |
D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett., 2005, 94(3): 034301
CrossRef
ADS
Google scholar
|
[113] |
D. Segal, Heat flow in nonlinear molecular junctions: Master equation analysis, Phys. Rev. B, 2006, 73(20): 205415
CrossRef
ADS
Google scholar
|
[114] |
W. Pauli, in: Festschrift zum 60. Geburtstage A. Sommerfeld, Hirzel, Leipzig, 1928
|
[115] |
A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A, 1983, 121(3): 587
CrossRef
ADS
Google scholar
|
[116] |
A. G. Redfield, On the theory of relaxation processes, IBM J. Res. Develop., 1957, 1(1): 19
CrossRef
ADS
Google scholar
|
[117] |
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 1976, 48(2): 119
CrossRef
ADS
Google scholar
|
[118] |
T. Mori and S. Miyashita, Dynamics of the density matrix in contact with a thermal bath and the quantum master equation, J. Phys. Soc. Jpn., 2008, 77(12): 124005
CrossRef
ADS
Google scholar
|
[119] |
C. H. Fleming and N. I. Cummings, Accuracy of perturbative master equations, Phys. Rev. E, 2011, 83(3): 031117
CrossRef
ADS
Google scholar
|
[120] |
J. Thingna, J. S. Wang, and P. Hänggi, Generalized Gibbs state with modified Redfield solution: exact agreement up to second order, J. Chem. Phys., 2012, 136(19): 194110
CrossRef
ADS
Google scholar
|
[121] |
B. B. Laird, J. Budimir, and J. L. Skinner, Quantummechanical derivation of the Bloch equations: Beyond the weak-coupling limit, J. Chem. Phys., 1991, 94(6): 4391
CrossRef
ADS
Google scholar
|
[122] |
S. Jang, J. Cao, and R. J. Silbey, Fourth-order quantum master equation and its Markovian bath limit, J. Chem. Phys., 2002, 116(7): 2705
CrossRef
ADS
Google scholar
|
[123] |
S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys., 1958, 20(6): 948
CrossRef
ADS
Google scholar
|
[124] |
R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys., 1960, 33(5): 1338
CrossRef
ADS
Google scholar
|
[125] |
F. Shibata, Y. Takahashi, and N. Hashitsume, A generalized stochastic Liouville equation, non-Markovian versus memoryless master equations, J. Stat. Phys., 1977, 17(4): 171
CrossRef
ADS
Google scholar
|
[126] |
G. Nan, Q. Shi, and Z. Shuai, Nonperturbative timeconvolutionless quantum master equation from the path integral approach, J. Chem. Phys., 2009, 130(13): 134106
CrossRef
ADS
Google scholar
|
[127] |
J. Thingna, J. L. García-Palacios, and J. S. Wang, Steadystate thermal transport in anharmonic systems: Application to molecular junctions, Phys. Rev. B, 2012, 85(19): 195452
CrossRef
ADS
Google scholar
|
[128] |
L. A. Wu, C. X. Yu, and D. Segal, Nonlinear quantum heat transfer in hybrid structures: Sufficient conditions for thermal rectification, Phys. Rev. E, 2009, 80(4): 041103
CrossRef
ADS
Google scholar
|
[129] |
J. Thingna and J.-S. Wang, 2013 (in preparation)
|
/
〈 | 〉 |