The rise of two-dimensional MoS2 for catalysis

Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会)

PDF(56346 KB)
PDF(56346 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138118. DOI: 10.1007/s11467-018-0812-0
REVIEW ARTICLE
REVIEW ARTICLE

The rise of two-dimensional MoS2 for catalysis

Author information +
History +

Abstract

Two-dimensional (2D) MoS2 is used as a catalyst or support and has received increased research interest because of its superior structural and electronic properties compared with those of bulk structures. In this article, we illustrate the active sites of 2D MoS2 and various strategies for enhancing its intrinsic catalytic activity. The recent advances in the use of 2D MoS2-based materials for applications such as thermocatalysis, electrocatalysis, and photocatalysis are discussed. We also discuss the future opportunities and challenges for 2D MoS2-based materials, in both fundamental research and industrial applications.

Keywords

catalysis / 2D materials / MoS2 / non-precious metal / electronic properties

Cite this article

Download citation ▾
Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis. Front. Phys., 2018, 13(4): 138118 https://doi.org/10.1007/s11467-018-0812-0

References

[1]
J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1(1), 37 (2009)
CrossRef ADS Google scholar
[2]
S. Bag, A. F. Gaudette, M. E. Bussell, and M. G. Kanatzidis, Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts, Nat. Chem. 1(3), 217 (2009)
CrossRef ADS Google scholar
[3]
S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation, Science 344(6187), 1005 (2014)
CrossRef ADS Google scholar
[4]
H. Zhang, Ultrathin two-dimensional nanomaterials, ACS Nano 9(10), 9451 (2015)
CrossRef ADS Google scholar
[5]
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
CrossRef ADS Google scholar
[6]
G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. J. Cha, et al., Recent advances in two-dimensional materials beyond graphene, ACS Nano 9(12), 11509 (2015)
CrossRef ADS Google scholar
[7]
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef ADS Google scholar
[8]
P. Miró, M. Audiffred, and T. Heine, An atlas of twodimensional materials, Chem. Soc. Rev. 43(18), 6537 (2014)
CrossRef ADS Google scholar
[9]
R. Zhao, B. Grisafe, R. K. Ghosh, S. Holoviak, B. Wang, K. Wang, and J. Robinson, Two-dimensional tantalum disulfide: Controlling structure and properties via synthesis, 2D Mater. 5(2), 025001 (2018)
[10]
X. Guo, G. Yang, J. Zhang, and X. Xu, Structural, mechanical and electronic properties of in-plane 1T/2H phase interface of MoS2 heterostructures, AIP Adv. 5(9), 097174 (2015)
CrossRef ADS Google scholar
[11]
M. Xu, T. Liang, M. Shi, and H. Chen, Graphenelike two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)
CrossRef ADS Google scholar
[12]
Y. Yin, J. C. Han, Y. M. Zhang, X. H. Zhang, P. Xu, Q. Yuan, L. Samad, X. J. Wang, Y. Wang, Z. H. Zhang, P. Zhang, X. Z. Cao, B. Song, and S. Jin, Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets, J. Am. Chem. Soc. 138(25), 7965 (2016)
CrossRef ADS Google scholar
[13]
V. P. Santos, B. van der Linden, A. Chojecki, G. Budroni, S. Corthals, H. Shibata, G. R. Meima, F. Kapteijn, M. Makkee, and J. Gascon, Mechanistic insight into the synthesis of higher alcohols from syngas: the role of K promotion on MoS2 catalysts, ACS Catal. 3(7), 1634 (2013)
CrossRef ADS Google scholar
[14]
Y. Q. Yang, C. T. Tye, and K. J. Smith, Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols, Catal. Commun. 9(6), 1364 (2008)
CrossRef ADS Google scholar
[15]
B. Yoosuk, D. Tumnantong, and P. Prasassarakich, Unsupported MoS2 and CoMoS2 catalysts for hydrodeoxygenation of phenol, Chem. Eng. Sci. 79, 1 (2012)
CrossRef ADS Google scholar
[16]
J. Zhu, Y. Wei, W. Chen, Z. Zhao, and A. Thomas, Graphitic carbon nitride as a metal-free catalyst for NO decomposition, Chem. Commun. 46(37), 6965 (2010)
CrossRef ADS Google scholar
[17]
Y. Romero, F. Richard, and S. Brunet, Hydrodeoxygenation of 2-ethylphenol as a model compound of biocrude over sulfided Mobased catalysts: Promoting effect and reaction mechanism, Appl. Catal. B 98(3–4), 213 (2010)
CrossRef ADS Google scholar
[18]
D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
CrossRef ADS Google scholar
[19]
L. Yuwen, F. Xu, B. Xue, Z. Luo, Q. Zhang, B. Bao, S. Su, L. Weng, W. Huang, and L. Wang, General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation, Nanoscale 6(11), 5762 (2014)
CrossRef ADS Google scholar
[20]
H. Huang, X. Feng, C. C. Du, S. Y. Wu, and W. B. Song, Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis, J. Mater. Chem. A 3(31), 16050 (2015)
CrossRef ADS Google scholar
[21]
M. Asadi, B. Kumar, C. Liu, P. Phillips, P. Yasaei, A. Behranginia, P. Zapol, R. F. Klie, L. A. Curtiss, and A. Salehi-Khojin, Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries, ACS Nano 10(2), 2167 (2016)
CrossRef ADS Google scholar
[22]
H. Vrubel, D. Merki, and X. L. Hu, Hydrogen evolution catalyzed by MoS3 and MoS2 particles, Energy Environ. Sci. 5(3), 6136 (2012)
CrossRef ADS Google scholar
[23]
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,Adv. Mater. 25(40), 5807 (2013)
CrossRef ADS Google scholar
[24]
X. Zong, J. Han, G. Ma, H. Yan, G. Wu, and C. Li, Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation, J. Phys. Chem. C 115(24), 12202 (2011)
CrossRef ADS Google scholar
[25]
Y. Liang, Y. Li, H. Wang, and H. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis, J. Am. Chem. Soc. 135(6), 2013 (2013)
CrossRef ADS Google scholar
[26]
L. Liao, J. Zhu, X. Bian, L. Zhu, M. D. Scanlon, H. H. Girault, and B. Liu, MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution, Adv. Funct. Mater. 23(42), 5326 (2013)
CrossRef ADS Google scholar
[27]
P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, New quantum spin Hall insulator in two-dimensional MoS2 with periodically distributed pores, Nanoscale 8(9), 4915 (2016)
CrossRef ADS Google scholar
[28]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[29]
Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, J. Am. Chem. Soc. 134(22), 9082 (2012)
CrossRef ADS Google scholar
[30]
J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, and T. F. Jaramillo, Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity, ACS Catal. 2(9), 1916 (2012)
CrossRef ADS Google scholar
[31]
Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, K. H. Wei, and L. J. Li, Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams, Adv. Mater. 25(5), 756 (2013)
CrossRef ADS Google scholar
[32]
A. B. Laursen, P. C. K. Vesborg, and I. Chorkendorff, A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability, Chem. Commun. 49(43), 4965 (2013)
CrossRef ADS Google scholar
[33]
R. J. H. Voorhoeve and J. C. M. Stuiver, The mechanism of the hydrogenation of cyclohexene and benzene on nickel-tungsten sulfide catalysts, J. Catal. 23(2), 243 (1971)
CrossRef ADS Google scholar
[34]
G. Hagenbach, P. Courty, and B. Delmon, Physicochemical investigations and catalytic activity measurements on crystallized molydbenum sulfide-cobalt sulfide mixed catalysts, J. Catal. 31(2), 264 (1973)
CrossRef ADS Google scholar
[35]
J. V. Lauritsen, M. Nyberg, J. K. Nørskov, B. S. Clausen, H. Topsøe, E. Lægsgaard, and F. Besenbacher, Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy, J. Catal. 224(1), 94 (2004)
CrossRef ADS Google scholar
[36]
M. Daage and R. R. Chianelli, Structure-function relations in molybdenum sulfide catalysts: The “rim-edge” model, J. Catal. 149(2), 414 (1994)
CrossRef ADS Google scholar
[37]
Y. Iwata, Y. Araki, K. Honna, Y. Miki, K. Sato, and H. Shimada, Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils, Catal. Today 65(2–4), 335 (2001)
CrossRef ADS Google scholar
[38]
H. Shimada, Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance, Catal. Today 86(1–4), 17 (2003)
CrossRef ADS Google scholar
[39]
X. Zhang and Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: Design, assembly and transfer strategies, Chem. Soc. Rev. 42(21), 8187 (2013)
CrossRef ADS Google scholar
[40]
Q. Fu, L. Yang, W. Wang, A. Han, J. Huang, P. Du, Z. Fan, J. Zhang, and B. Xiang, Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1−x)Se2x with a tunable band gap, Adv. Mater. 27(32), 4732 (2015)
CrossRef ADS Google scholar
[41]
J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, and Y. Xie, Layer-by-layer b-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance, Nano Energy 2(1), 65 (2013)
CrossRef ADS Google scholar
[42]
B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127(15), 5308 (2005)
CrossRef ADS Google scholar
[43]
T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 317(5834), 100 (2007)
CrossRef ADS Google scholar
[44]
J. Deng, H. B. Li, J. P. Xiao, Y. C. Tu, D. H. Deng, H. Yang, and X. H. Bao, Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping, Energy Environ. Sci. 8(5), 1594 (2015)
CrossRef ADS Google scholar
[45]
H. Li, L. Wang, Y. Dai, Z. Pu, Z. Lao, Y. Chen, M. Wang, X. Zheng, J. Zhu, W. Zhang, R. Si, C. Ma, and J. Zeng, Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation, Nat. Nanotechnol. 13(5), 411 (2018)
CrossRef ADS Google scholar
[46]
H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(3), 364 (2016)
CrossRef ADS Google scholar
[47]
C. Tsai, H. Li, S. Park, J. Park, H. S. Han, J. K. Norskov, X. Zheng, and F. Abild-Pedersen, Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution, Nat. Commun. 8, 15113 (2017)
CrossRef ADS Google scholar
[48]
R. Prins, V. H. J. De Beer, and G. A. Somorjai, Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts, Catal. Rev. 31(1–2), 1 (1989)
CrossRef ADS Google scholar
[49]
G. L. Liu, A. W. Robertson, M. M. J. Li, W. C. Kuo, M. T. Darby, M. H. Muhieddine, Y. C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner, and S. C. E. Tsang, MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction, Nat. Chem. 9(8), 810 (2017)
CrossRef ADS Google scholar
[50]
C. F. Zhang, H. G. Li, J. M. Lu, X. C. Zhang, K. E. MacArthur, M. Heggen, and F. Wang, Promoting lignin depolymerization and restraining the condensation via an oxidation-hydrogenation strategy, ACS Catal. 7(5), 3419 (2017)
CrossRef ADS Google scholar
[51]
V. S. Dorokhov, E. A. Permyakov, P. A. Nikulshin, V. V. Maximov, and V. M. Kogan, Experimental and computational study of syngas and ethanol conversion mechanisms over K-modified transition metal sulfide catalysts, J. Catal. 344, 841 (2016)
CrossRef ADS Google scholar
[52]
H. Tao, Y. Gao, N. Talreja, F. Guo, J. Texter, C. Yan, and Z. Sun, Two-dimensional nanosheets for electrocatalysis in energy generation and conversion, J. Mater. Chem. A 5(16), 7257 (2017)
CrossRef ADS Google scholar
[53]
J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, and X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting, Adv. Mater. 28(2), 215 (2016)
CrossRef ADS Google scholar
[54]
J. Deng, H. B. Li, S. H. Wang, D. Ding, M. S. Chen, C. Liu, Z. Q. Tian, K. S. Novoselov, C. Ma, D. H. Deng, and X. H. Bao, Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production, Nat. Commun. 8, 14430 (2017)
CrossRef ADS Google scholar
[55]
J. Zhang, Y. Liu, C. Sun, P. Xi, S. Peng, D. Gao, and D. Xue, Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping, ACS Energ. Lett 3(4), 779 (2018)
CrossRef ADS Google scholar
[56]
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution, J. Am. Chem. Soc. 135(47), 17881 (2013)
CrossRef ADS Google scholar
[57]
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
CrossRef ADS Google scholar
[58]
H. Zhang, Y. Tian, J. Zhao, Q. Cai, and Z. Chen, Small dopants make big differences: Enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N- and P-doping, Electrochim. Acta 225, 543 (2017)
CrossRef ADS Google scholar
[59]
K. Zhao, W. Gu, L. Zhao, C. Zhang, W. Peng, and Y. Xian, MoS2/nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction, Electrochim. Acta 169, 142 (2015)
CrossRef ADS Google scholar
[60]
M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade, and A. Salehi-Khojin, Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun. 5(1), 4470 (2014)
CrossRef ADS Google scholar
[61]
P. Abbasi, M. Asadi, C. Liu, S. Sharifi-Asl, B. Sayahpour, A. Behranginia, P. Zapol, R. Shahbazian-Yassar, L. A. Curtiss, and A. Salehi-Khojin, Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide, ACS Nano 11(1), 453 (2017)
CrossRef ADS Google scholar
[62]
M. Asadi, B. Sayahpour, P. Abbasi, A. T. Ngo, K. Karis, J. R. Jokisaari, C. Liu, B. Narayanan, M. Gerard, P. Yasaei, X. Hu, A. Mukherjee, K. C. Lau, R. S. Assary, F. Khalili-Araghi, R. F. Klie, L. A. Curtiss, and A. Salehi-Khojin, A lithium-oxygen battery with a long cycle life in an air-like atmosphere, Nature 555(7697), 502 (2018)
CrossRef ADS Google scholar
[63]
J. Balach, T. Jaumann, and L. Giebeler, Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li-S cells and Si-Li2S full cells in carbonatebased electrolyte, Energ. Storage Mater 8, 209 (2017)
CrossRef ADS Google scholar
[64]
Z. Li, S. Deng, R. Xu, L. Wei, X. Su, and M. Wu, Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: Synthetic effect between 2D components, Electrochim. Acta 252, 200 (2017)
CrossRef ADS Google scholar
[65]
S. R. Meyers and M. W. Grinstaff, Biocompatible and bioactive surface modifications for prolonged in vivo efficacy, Chem. Rev. 112(3), 1615 (2012)
CrossRef ADS Google scholar
[66]
Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, and Y. Xie, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting, Angew. Chem. Int. Ed. 51(35), 8727 (2012)
CrossRef ADS Google scholar
[67]
A. J. Esswein and D. G. Nocera, Hydrogen production by molecular photocatalysis, Chem. Rev. 107(10), 4022 (2007)
CrossRef ADS Google scholar
[68]
F. E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42(6), 2294 (2013)
CrossRef ADS Google scholar
[69]
F. A. Frame and F. E. Osterloh, CdSe-MoS2: A quantum size-confined photocatalyst for hydrogen evolution from water under visible light, J. Phys. Chem. C 114(23), 10628 (2010)
CrossRef ADS Google scholar
[70]
Y. Yan, B. Y. Xia, X. M. Ge, Z. L. Liu, J. Y. Wang, and X. Wang, Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution, ACS Appl. Mater. Interfaces 5(24), 12794 (2013)
CrossRef ADS Google scholar
[71]
T. Jia, A. Kolpin, C. Ma, R. C. T. Chan, W. M. Kwok, and S. C. E. Tsang, A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water, Chem. Commun. 50(10), 1185 (2014)
CrossRef ADS Google scholar
[72]
K. Pramoda, U. Gupta, I. Ahmad, R. Kumar, and C. N. R. Rao, Assemblies of covalently cross-linked nanosheetsof MoS2 and of MoS2-RGO: Synthesis and novel properties, J. Mater. Chem. A 4(23), 8989 (2016)
CrossRef ADS Google scholar
[73]
U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, and C. N. Rao, Highly effective visible-lightinduced H(2) generation by single-layer 1T-MoS(2) and a nanocomposite of few-layer 2H-MoS(2) with heavily nitrogenated graphene, Angew. Chem. Int. Ed. 52(49), 13057 (2013)
CrossRef ADS Google scholar
[74]
S. Bai, L. Wang, X. Chen, J. Du, and Y. Xiong, Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals, Nano Res. 8(1), 175 (2015)
CrossRef ADS Google scholar
[75]
M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, and B. Xiang, MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities, Chem. Commun. 50(97), 15447 (2014)
CrossRef ADS Google scholar
[76]
W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities, Small 9(1), 140 (2013)
CrossRef ADS Google scholar
[77]
Y. J. Yuan, F. Wang, B. Hu, H. W. Lu, Z. T. Yu, and Z. G. Zou, Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheetcoated ZnO heterostructure photocatalyst, Dalton T. 44(24), 10997 (2015)
CrossRef ADS Google scholar
[78]
S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability, Small 12(41), 5692 (2016)
CrossRef ADS Google scholar
[79]
B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao, Y. Chen, and B. Gao, Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts, J. Mater. Chem. A 2(11), 3819 (2014)
CrossRef ADS Google scholar
[80]
X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, and C. Li, Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation, J. Phys. Chem. C 114(4), 1963 (2010)
CrossRef ADS Google scholar
[81]
X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130(23), 7176 (2008)
CrossRef ADS Google scholar
[82]
J. Zhang, Z. Zhu, and X. Feng, Construction of twodimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution, Chemistry 20(34), 10632 (2014)
CrossRef ADS Google scholar
[83]
J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C. T. Au, and S. F. Yin, CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution, ChemSusChem 9(6), 624 (2016)
CrossRef ADS Google scholar
[84]
D. P. Kumar, S. Hong, D. A. Reddy, and T. K. Kim, Noble metal-free ultrathin MoS2 nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation, J. Mater. Chem. A 4(47), 18551 (2016)
CrossRef ADS Google scholar
[85]
Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, and I. Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis, Angew. Chem. Int. Ed. 52(13), 3621 (2013)
CrossRef ADS Google scholar
[86]
L. Ge, C. Han, X. Xiao, and L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity, Int. J. Hydrogen Energy 38(17), 6960 (2013)
CrossRef ADS Google scholar
[87]
X. Jin, X. Fan, J. Tian, R. Cheng, M. Li, and L. Zhang, MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance, RSC Advances 6(58), 52611 (2016)
CrossRef ADS Google scholar
[88]
L. Karimiech, Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity, Pol. J. Chem. Technol. 19, 56 (2017)
[89]
X. Hu, H. Zhao, J. Tian, J. Gao, Y. Li, and H. Cui, Synthesis of few-layer MoS2 nanosheets-coated TiO2 nanosheets on graphite fibers for enhanced photocatalytic properties, Sol. Energy Mater. Sol. Cells 172, 108 (2017)
CrossRef ADS Google scholar
[90]
W. Dai, J. Yu, Y. Deng, X. Hu, T. Wang, and X. Luo, Facile synthesis of MoS2/Bi2WO6 nanocomposites for enhanced CO2 photoreduction activity under visible light irradiation, Appl. Surf. Sci. 403, 230 (2017)
CrossRef ADS Google scholar
[91]
J. Di, J. Xia, M. Ji, L. Xu, S. Yin, Z. Chen, and H. Li, Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process, J. Mater. Chem. A 4(14), 5051 (2016)
CrossRef ADS Google scholar
[92]
L. Shi, W. Ding, S. Yang, Z. He, and S. Liu, Rationally designed MoS2/protonated g-C3N4 nanosheet composites as photocatalysts with an excellent synergistic effect toward photocatalytic degradation of organic pollutants, J. Hazard. Mater. 347, 431 (2018)
CrossRef ADS Google scholar
[93]
S. Sun, X. Li, W. Wang, L. Zhang, and X. Sun, Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2, Appl. Catal. B 200, 323 (2017)
CrossRef ADS Google scholar
[94]
Y. Wu, B. Yuan, M. Li, W. H. Zhang, Y. Liu, and C. Li, Well-defined BiOCl colloidal ultrathin nanosheets: Synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines, Chem. Sci. 6(3), 1873 (2015)
CrossRef ADS Google scholar
[95]
L. S. Byskov, J. K. Nørskov, B. S. Clausen, and H. Topsøe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts, J. Catal. 187(1), 109 (1999)
CrossRef ADS Google scholar
[96]
H. Zhao, G. Yang, X. Gao, C. H. Pang, S. W. Kingman, and T. Wu, Hg0 capture over CoMoS/g-Al2O3 with MoS2 nanosheets at low temperatures, Environ. Sci. Technol. 50(2), 1056 (2016)
CrossRef ADS Google scholar
[97]
D. Wang, Z. Wang, L. Wang, L. Hu, and J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale 7(42), 17649 (2015)
CrossRef ADS Google scholar
[98]
A. Midya, A. Ghorai, S. Mukherjee, R. Maiti, and S. K. Ray, Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications, J. Mater. Chem. A 4(12), 4534 (2016)
CrossRef ADS Google scholar
[99]
C. Liu, D. Kong, P. C. Hsu, H. Yuan, H.W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm, and Y. Cui, Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light, Nat. Nanotechnol. 11(12), 1098 (2016)
CrossRef ADS Google scholar
[100]
W. Li, Y. Yang, J. K. Weber, G. Zhang, and R. Zhou, Tunable, strain-controlled nanoporous MoS2 filter for water desalination, ACS Nano 10(2), 1829 (2016)
CrossRef ADS Google scholar
[101]
K. Ai, C. Ruan, M. Shen, and L. Lu, MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems, Adv. Funct. Mater. 26(30), 5542 (2016)
CrossRef ADS Google scholar
[102]
S. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng, and Y. Wang, Visible light-driven C-H activation and C-C coupling of methanol into ethylene glycol, Nat. Commun. 9(1), 1181 (2018)
CrossRef ADS Google scholar
[103]
Z. Li, D. Zhang, J. Ma, D. Wang, and C. Xie, Fabrication of MoS2 microflowers for hydrogenation of nitrobenzene, Mater. Lett. 213, 350 (2018)
CrossRef ADS Google scholar
[104]
X. L. Wang, Z. Zhao, Z. T. Chen, J. M. Li, A. J. Duan, C. M. Xu, and J. Y. Fan, Effect of synthesis temperature on structure-activity-relationship over NiMo/g-Al2O3 catalysts for the hydrodesulfurization of DBT and 4, 6-DMDBT, Fuel Process. Technol. 161, 52 (2017)
CrossRef ADS Google scholar
[105]
P. Zheng, A. Duan, K. Chi, L. Zhao, C. Zhang, C. Xu, and J. Fan, Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS2 edges: A DFT study, Chem. Eng. Sci. 164, 292 (2017)
CrossRef ADS Google scholar
[106]
W. Wang, S. Tan, K. Wu, G. Zhu, Y. Liu, L. Tan, and Y. Yang, Hydrodeoxygenation of p-cresol as a model compound for bio-oil on MoS2: Effects of water and benzothiophene on the activity and structure of catalyst, Fuel 214, 480 (2018)
CrossRef ADS Google scholar
[107]
M. Grilc, G. Veryasov, B. Likozar, A. Jesih, and J. Levec, Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts, Appl. Catal. B 163, 467 (2015)
CrossRef ADS Google scholar
[108]
H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, and Y. Cui, Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution, Nano Res. 8(2), 566 (2015)
CrossRef ADS Google scholar
[109]
J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, and I. Chorkendorff, Hydrogen evolution on nanoparticulate transition metal sulfides, Faraday Discuss. 140, 219 (2009)
CrossRef ADS Google scholar
[110]
G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, Defects engineeredmonolayer MoS2 for improved hydrogen evolution reaction, Nano Lett. 16(2), 1097 (2016)
CrossRef ADS Google scholar
[111]
L. Tao, X. Duan, C. Wang, X. Duan, and S. Wang, Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction, Chem. Commun. 51(35), 7470 (2015)
CrossRef ADS Google scholar
[112]
S. Shin, Z. Jin, D. H. Kwon, R. Bose, and Y. S. Min, High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition, Langmuir 31(3), 1196 (2015)
CrossRef ADS Google scholar
[113]
D. Merki, S. Fierro, H. Vrubel, and X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water, Chem. Sci. 2(7), 1262 (2011)
CrossRef ADS Google scholar
[114]
J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11(11), 963 (2012)
CrossRef ADS Google scholar
[115]
D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett. 13(3), 1341 (2013)
CrossRef ADS Google scholar
[116]
J. P. Shi, D. L. Ma, G. F. Han, Y. Zhang, Q. Q. Ji, T. Gao, J. Y. Sun, X. J. Song, C. Li, Y. S. Zhang, X. Y. Lang, Y. F. Zhang, and Z. F. Liu, Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction, ACS Nano 8(10), 10196 (2014)
CrossRef ADS Google scholar
[117]
L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang, X. Cui, Z. Fan, K. Liu, and B. Xiang, Single-crystal atomiclayered molybdenum disulfide nanobelts with high surface activity, ACS Nano 9(6), 6478 (2015)
CrossRef ADS Google scholar
[118]
X. Sun, J. Huo, Y. Yang, L. Xu, and S. Wang, The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction, J. Energ. Chem 26(6), 1136 (2017)
CrossRef ADS Google scholar
[119]
M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc. 135(28), 10274 (2013)
CrossRef ADS Google scholar
[120]
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef ADS Google scholar
[121]
L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, and S. Chen, Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction, Nanoscale 7(12), 5203 (2015)
CrossRef ADS Google scholar
[122]
Y. Yan, X. Ge, Z. Liu, J. Y. Wang, J. M. Leea, and X. Wang, Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction., Nanoscale 5(17), 7768 (2013)
CrossRef ADS Google scholar
[123]
R. D. Nikam, A. Y. Lu, P. A. Sonawane, R. Kumar, K. Yadav, L. J. Li, and Y. T. Chen, Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction, ACS Appl. Mater. Interfaces 7(41), 23328 (2015)
CrossRef ADS Google scholar
[124]
D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, Molybdenum sulfide/Ndoped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction, Nano Lett. 14(3), 1228 (2014)
CrossRef ADS Google scholar
[125]
Y. Huang, Y. E. Miao, L. Zhang, W. W. Tjiu, J. Panb, and T. Liu, Synthesis of few-layered MoS2 nanosheetcoated electrospun SnO2 nanotube heterostructures for enhanced hydrogen evolution reaction, Nanoscale 6(18), 10673 (2014)
CrossRef ADS Google scholar
[126]
P. Ge, M. D. Scanlon, P. Peljo, X. Bian, H. Vubrel, A. O’Neill, J. N. Coleman, M. Cantoni, X. Hu, K. Kontturi, B. Liu, and H. H. Girault, Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems, Chem. Commun. 48(52), 6484 (2012)
CrossRef ADS Google scholar
[127]
M. R. Gao, J. X. Liang, Y. R. Zheng, Y. F. Xu, J. Jiang, Q. Gao, J. Li, and S. H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation, Nat. Commun. 6(1), 5982 (2015)
CrossRef ADS Google scholar
[128]
Z. H. Deng, L. Li, W. Ding, K. Xiong, and Z. D. Wei, Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction, Chem. Commun. 51(10), 1893 (2015)
CrossRef ADS Google scholar
[129]
Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, and T. F. Jaramillo, Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials, Nano Lett. 11(10), 4168 (2011)
CrossRef ADS Google scholar
[130]
Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu, and Y. Li, Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction, ACS Catal. 5(4), 2213 (2015)
CrossRef ADS Google scholar
[131]
L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang, J. Zhang, and B. Xiang, Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity, Nanoscale 7(23), 10490 (2015)
CrossRef ADS Google scholar
[132]
L. Yang, W. Wang, Q. Fu, J. Zhang, and B. Xiang, MoS2(1−x)Se2x nanobelts for enhanced hydrogen evolution, Electrochim. Acta 185, 236 (2015)
CrossRef ADS Google scholar
[133]
R. Ye, P. del Angel-Vicente, Y. Liu, M. J. Arellano-Jimenez, Z. Peng, T. Wang, Y. Li, B. I. Yakobson, S. H. Wei, M. J. Yacaman, and J. M. Tour, High-performance hydrogen evolution from MoS2(1−x)Px solid solution, Adv. Mater. 28(7), 1427 (2016)
CrossRef ADS Google scholar
[134]
X. Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. Lou, and U. Paik, Formation of Ni-Co-MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution, Adv. Mater. 28(40), 9006 (2016)
CrossRef ADS Google scholar
[135]
C. Tang, L. Zhong, B. Zhang, H. F. Wang, and Q. Zhang, 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis, Adv. Mater. 30(5), 1705110 (2018)
CrossRef ADS Google scholar
[136]
J. Zhao, J. Zhao, and Q. Cai, Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis, Phys. Chem. Chem. Phys. 20(14), 9248 (2018)
CrossRef ADS Google scholar
[137]
L. Yang, D. Zhong, J. Zhang, Z. Yan, S. Ge, P. Du, J. Jiang, D. Sun, X. Wu, Z. Fan, S. A. Dayeh, and B. Xiang, Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution, ACS Nano 8(7), 6979 (2014)
CrossRef ADS Google scholar
[138]
U. Gupta and C. N. R. Rao, Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides, Nano Energy 41, 49 (2017)
CrossRef ADS Google scholar
[139]
Q. Xiang, J. Yu, and M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc. 134(15), 6575 (2012)
CrossRef ADS Google scholar
[140]
D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, and X. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction, Angew. Chem. Int. Ed. 52(1), 371 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(56346 KB)

Accesses

Citations

Detail

Sections
Recommended

/