Physical properties and device applications of graphene oxide
Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao
Physical properties and device applications of graphene oxide
Graphene oxide (GO), the functionalized graphene with oxygenated groups (mainly epoxy and hydroxyl), has attracted resurgent interests in the past decade owing to its large surface area, superior physical and chemical properties, and easy composition with other materials via surface functional groups. Usually, GO is used as an important raw material for mass production of graphene via reduction. However, under different conditions, the coverage, types, and arrangements of oxygen-containing groups in GO can be varied, which give rise to excellent and controllable physical properties, such as tunable electronic and mechanical properties depending closely on oxidation degree, suppressed thermal conductivity, optical transparency and fluorescence, and nonlinear optical properties. Based on these outstanding properties, many electronic, optical, optoelectronic, and thermoelectric devices with high performance can be achieved on the basis of GO. Here we present a comprehensive review on recent progress of GO, focusing on the atomic structures, fundamental physical properties, and related device applications, including transparent and flexible conductors, field-effect transistors, electrical and optical sensors, fluorescence quenchers, optical limiters and absorbers, surface enhanced Raman scattering detectors, solar cells, light-emitting diodes, and thermal rectifiers.
graphene oxide / mechanics / electronics / thermal properties / nonlinear optics
[1] |
J. Zhao, L. Liu, and F. Li, Graphene Oxide: Physics and Applications, Springer, 2015
CrossRef
ADS
Google scholar
|
[2] |
S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4(4), 217 (2009)
CrossRef
ADS
Google scholar
|
[3] |
C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: A synthetic chemistry viewpoint, Chem. Soc. Rev. 43(1), 291 (2014)
CrossRef
ADS
Google scholar
|
[4] |
L. Dong, J. Yang, M. Chhowalla, and K. P. Loh, Synthesis and reduction of large sized graphene oxide sheets, Chem. Soc. Rev. 46(23), 7306 (2017)
CrossRef
ADS
Google scholar
|
[5] |
B. C. Brodie, On the atomic weight of graphite, Philos. Trans. R. Soc. Lond. B Biol. Sci. 149, 249 (1859)
CrossRef
ADS
Google scholar
|
[6] |
D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1), 228 (2010)
CrossRef
ADS
Google scholar
|
[7] |
C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater. 19(16), 2577 (2009)
CrossRef
ADS
Google scholar
|
[8] |
G. Eda and M. Chhowalla, Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics, Adv. Mater. 22(22), 2392 (2010)
CrossRef
ADS
Google scholar
|
[9] |
D. Chen, H. Feng, and J. Li, Graphene oxide: Preparation, functionalization, and electrochemical applications, Chem. Rev. 112(11), 6027 (2012)
CrossRef
ADS
Google scholar
|
[10] |
S. Sajjad, S. A. Khan Leghari, and A. Iqbal, Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications, ACS Appl. Mater. Interfaces 9(50), 43393 (2017)
CrossRef
ADS
Google scholar
|
[11] |
L. Liu, J. Zhang, J. Zhao, and F. Liu, Mechanical properties of graphene oxides, Nanoscale 4(19), 5910 (2012)
CrossRef
ADS
Google scholar
|
[12] |
C. Wang, Q. Peng, J. Wu, X. He, L. Tong, Q. Luo, J. Li, S. Moody, H. Liu, R. Wang, S. Du, and Y. Li, Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading, Carbon 80, 279 (2014)
CrossRef
ADS
Google scholar
|
[13] |
Y. Gao, L. Q. Liu, S. Z. Zu, K. Peng, D. Zhou, B. H. Han, and Z. Zhang, The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers, ACS Nano 5(3), 2134 (2011)
CrossRef
ADS
Google scholar
|
[14] |
P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux, A. Colin, S. H. Aboutalebi, G. Wallace, and C. Zakri, Superflexibility of graphene oxide, Proc. Natl. Acad. Sci. USA 113(40), 11088 (2016)
CrossRef
ADS
Google scholar
|
[15] |
G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3(5), 270 (2008)
CrossRef
ADS
Google scholar
|
[16] |
J. A. Yan, L. Xian, and M. Y. Chou, Structural and electronic properties of oxidized graphene, Phys. Rev. Lett. 103(8), 086802 (2009)
CrossRef
ADS
Google scholar
|
[17] |
L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, Amorphous structural models for graphene oxides, Carbon 50(4), 1690 (2012)
CrossRef
ADS
Google scholar
|
[18] |
K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem. 2(12), 1015 (2010)
CrossRef
ADS
Google scholar
|
[19] |
H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2(3), 463 (2008)
CrossRef
ADS
Google scholar
|
[20] |
L. Cao, M. J. Meziani, S. Sahu, and Y. P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials, Acc. Chem. Res. 46(1), 171 (2013)
CrossRef
ADS
Google scholar
|
[21] |
H. Tian, D. Xie, Y. Yang, T. L. Ren, G. Zhang, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, A novel solid-state thermal rectifier based on reduced graphene oxide, Sci. Rep. 2(1), 523 (2012)
CrossRef
ADS
Google scholar
|
[22] |
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
CrossRef
ADS
Google scholar
|
[23] |
D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite, Appl. Phys. Lett. 94(20), 203103 (2009)
CrossRef
ADS
Google scholar
|
[24] |
H. Zhang, A. F. Fonseca, and K. Cho, Tailoring thermal transport property of graphene through oxygen functionalization, J. Phys. Chem. C 118(3), 1436 (2014)
CrossRef
ADS
Google scholar
|
[25] |
X. Huang, X. Qi, F.Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)
CrossRef
ADS
Google scholar
|
[26] |
D. R. Dreyer, A. D. Todd, and C. W. Bielawski, Harnessing the chemistry of graphene oxide, Chem. Soc. Rev. 43(15), 5288 (2014)
CrossRef
ADS
Google scholar
|
[27] |
W. S. Hung, Y. H. Chiao, A. Sengupta, Y. W. Lin, S. R. Wickramasinghe, C. C. Hu, H. A. Tsai, K. R. Lee, and J. Y. Lai, Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance, Carbon 142, 337 (2019)
CrossRef
ADS
Google scholar
|
[28] |
M. Muschi and C. Serre, Progress and challenges of graphene oxide/metal-organic composites, Coord. Chem. Rev. 387, 262 (2019)
CrossRef
ADS
Google scholar
|
[29] |
J. Du, S. Pei, L. Ma, and H. M. Cheng, 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices, Adv. Mater. 26(13), 1958 (2014)
CrossRef
ADS
Google scholar
|
[30] |
Q. Zheng, Z. Li, J. Yang, and J. K. Kim, Graphene oxidebased transparent conductive films, Prog. Mater. Sci. 64, 200 (2014)
CrossRef
ADS
Google scholar
|
[31] |
Q. He, S. Wu, Z. Yin, and H. Zhang, Graphene-based electronic sensors, Chem. Sci. 3(6), 1764 (2012)
CrossRef
ADS
Google scholar
|
[32] |
T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26(12), 4637 (2011)
CrossRef
ADS
Google scholar
|
[33] |
K. Toda, R. Furue, and S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review, Anal. Chim. Acta 878, 43 (2015)
CrossRef
ADS
Google scholar
|
[34] |
S. J. Rowley-Neale, E. P. Randviir, A. S. Abo Dena, and C. E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms, Appl. Mater. Today 10, 218 (2018)
CrossRef
ADS
Google scholar
|
[35] |
P. Zheng and N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: A review, Chem. Asian J. 12(18), 2343 (2017)
CrossRef
ADS
Google scholar
|
[36] |
E. Morales-Narvaez and A. Merkoci, Graphene oxide as an optical biosensing platform: A progress report, Adv. Mater. 31(6), e1805043 (2019)
CrossRef
ADS
Google scholar
|
[37] |
Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Graphene and graphene oxide: Biofunctionalization and applications in biotechnology, Trends Biotechnol. 29(5), 205 (2011)
CrossRef
ADS
Google scholar
|
[38] |
S. S. Nanda, G. C. Papaefthymiou, and D. K. Yi, Functionalization of Graphene Oxide and its Biomedical Applications, Crit. Rev. Solid State Mater. Sci. 40(5), 291 (2015)
CrossRef
ADS
Google scholar
|
[39] |
H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, and X. Mi, Fluorescent biosensors enabled by graphene and graphene oxide, Biosens. Bioelectron. 89, 96 (2017)
CrossRef
ADS
Google scholar
|
[40] |
D. P. Singh, C. E. Herrera, B. Singh, S. Singh, R. K. Singh, and R. Kumar, Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications, Mater. Sci. Eng. C 86, 173 (2018)
CrossRef
ADS
Google scholar
|
[41] |
X. Wan, Y. Huang, and Y. Chen, Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale, Acc. Chem. Res. 45(4), 598 (2012)
CrossRef
ADS
Google scholar
|
[42] |
E. Kymakis, C. Petridis, T. D. Anthopoulos, and E. Stratakis, Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics, IEEE J. Sel. Top. Quantum Electron. 20(1), 106 (2014)
CrossRef
ADS
Google scholar
|
[43] |
A. T. Dideikin and A. Y. Vul, Graphene oxide and derivatives: The place in graphene family, Front. Phys. 6, 149 (2019)
CrossRef
ADS
Google scholar
|
[44] |
S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon 50(9), 3210 (2012)
CrossRef
ADS
Google scholar
|
[45] |
S. Mao, H. Pu, and J. Chen, Graphene oxide and its reduction: Modeling and experimental progress, RSC Adv. 2(7), 2643 (2012)
CrossRef
ADS
Google scholar
|
[46] |
T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale 5(1), 52 (2013)
CrossRef
ADS
Google scholar
|
[47] |
S. Thakur and N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: A review, Carbon 94, 224 (2015)
CrossRef
ADS
Google scholar
|
[48] |
L. P. Chen, R. Yang, Y. L. Yan, C. J. Fan, M. M. Shi, and Y. H. Xu, The control of reduction degree of graphene oxide, Prog. Chem. 30(12), 1930 (2018)
|
[49] |
X. Gao, D. E. Jiang, Y. Zhao, S. Nagase, S. Zhang, and Z. Chen, Theoretical insights into the structures of graphene oxide and its chemical conversions between graphene, J. Comput. Theor. Nanosci. 8(12), 2406 (2011)
CrossRef
ADS
Google scholar
|
[50] |
S. Eigler and A. Hirsch, Chemistry with graphene and graphene oxide-challenges for synthetic chemists, Angew. Chem. Int. Ed. 53(30), 7720 (2014)
CrossRef
ADS
Google scholar
|
[51] |
S. Zhou and A. Bongiorno, Density functional theory modeling of multilayer “epitaxial” graphene oxide, Acc. Chem. Res. 47(11), 3331 (2014)
CrossRef
ADS
Google scholar
|
[52] |
C. Galande, W. Gao, A. Mathkar, A. M. Dattelbaum, T. N. Narayanan, A. D. Mohite, and P. M. Ajayan, Science and engineering of graphene oxide, Part. Part. Syst. Charact. 31(6), 619 (2014)
CrossRef
ADS
Google scholar
|
[53] |
F. Perrozzi, S. Prezioso, and L. Ottaviano, Graphene oxide: From fundamentals to applications, J. Phys.: Condens. Matter 27(1), 013002 (2015)
CrossRef
ADS
Google scholar
|
[54] |
W. H. Zhang, D. Yin, N. Lu, Z. Y. Li, and J. L. Yang, Computational spectroscopy for structure characterization of nanomaterials a case study of graphene oxide, Chem. J. Chin. Univ. 36(11), 2081 (2015)
|
[55] |
R. Trusovas, G. Račiukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, Recent advances in laser utilization in the chemical modification of graphene oxide and its applications, Adv. Opt. Mater. 4(1), 37 (2016)
CrossRef
ADS
Google scholar
|
[56] |
J. Kim, L. J. Cote, and J. Huang, Two dimensional soft material: New faces of graphene oxide, Acc. Chem. Res. 45(8), 1356 (2012)
CrossRef
ADS
Google scholar
|
[57] |
Q. Xiang, J. Yu, and M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41(2), 782 (2012)
CrossRef
ADS
Google scholar
|
[58] |
C. Su and K. P. Loh, Carbocatalysts: Graphene oxide and its derivatives, Acc. Chem. Res. 46(10), 2275 (2013)
CrossRef
ADS
Google scholar
|
[59] |
D. Haag and H. H. Kung, Metal free graphene based catalysts: A review, Top. Catal. 57(6–9), 762 (2014)
CrossRef
ADS
Google scholar
|
[60] |
A. Tayel, A. Ramadan, and O. El Seoud, Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: Synthesis, characterization and photocatalytic applications for water decontamination, Catalysts 8(11), 491 (2018)
CrossRef
ADS
Google scholar
|
[61] |
R. K. Upadhyay, N. Soin, and S. S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review, RSC Adv. 4(8), 3823 (2014)
CrossRef
ADS
Google scholar
|
[62] |
A. Kausar, I. Rafique, Z. Anwar, and B. Muhammad, Perspectives of epoxy/graphene oxide composite: significant features and technical applications, Polym. Plast. Technol. Eng. 55(7), 704 (2016)
CrossRef
ADS
Google scholar
|
[63] |
V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications, Chem. Rev. 116(9), 5464 (2016)
CrossRef
ADS
Google scholar
|
[64] |
H. Ahmad, M. Fan, and D. Hui, Graphene oxide incorporated functional materials: A review, Compos. Part B Eng. 145, 270 (2018)
CrossRef
ADS
Google scholar
|
[65] |
M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4(3), 668 (2011)
CrossRef
ADS
Google scholar
|
[66] |
G. Kucinskis, G. Bajars, and J. Kleperis, Graphene in lithium ion battery cathode materials: A review, J. Power Sources 240, 66 (2013)
CrossRef
ADS
Google scholar
|
[67] |
J. Liu, M. Durstock, and L. Dai, Graphene oxide derivatives as hole- and electron-extraction layers for highperformance polymer solar cells, Energy Environ. Sci. 7(4), 1297 (2014)
CrossRef
ADS
Google scholar
|
[68] |
F. Li, X. Jiang, J. Zhao, and S. Zhang, Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy 16, 488 (2015)
CrossRef
ADS
Google scholar
|
[69] |
A. Eftekhari, Y. M. Shulga, S. A. Baskakov, and G. L. Gutsev, Graphene oxide membranes for electrochemical energy storage and conversion, Int. J. Hydrogen Energy 43(4), 2307 (2018)
CrossRef
ADS
Google scholar
|
[70] |
W. H. Antink, Y. Choi, K. Seong, J. M. Kim, and Y. Piao, Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices, Adv. Mater. Interfaces 5(5), 1701212 (2018)
CrossRef
ADS
Google scholar
|
[71] |
K. R. Ratinac, W. Yang, S. P. Ringer, and F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene, Environ. Sci. Technol. 44(4), 1167 (2010)
CrossRef
ADS
Google scholar
|
[72] |
X. Wang, Q. Fan, Z. Chen, Q. Wang, J. Li, A. Hobiny, A. Alsaedi, and X. Wang, Surface modification of graphene oxides by plasma techniques and their application for environmental pollution cleanup, Chem. Rec. 16(1), 295 (2016)
CrossRef
ADS
Google scholar
|
[73] |
M. Sun and J. Li, Graphene oxide membranes: Functional structures, preparation and environmental applications, Nano Today 20, 121 (2018)
CrossRef
ADS
Google scholar
|
[74] |
Y. Wang, C. Pan, W. Chu, K. A. Vipin, and L. Sun, Environmental remediation applications of carbon nanotubes and graphene oxide: Adsorption and catalysis, Nanomaterials (Basel) 9(3), 439 (2019)
CrossRef
ADS
Google scholar
|
[75] |
Q. Xu, H. Xu, J. Chen, Y. Lv, C. Dong, and T. S. Sreeprasad, Graphene and graphene oxide: Advanced membranes for gas separation and water purification, Inorg. Chem. Front. 2(5), 417 (2015)
CrossRef
ADS
Google scholar
|
[76] |
Y. Wei, Y. Zhang, X. Gao, Z. Ma, X. Wang, and C. Gao, Multilayered graphene oxide membranes for water treatment: A review, Carbon 139, 964 (2018)
CrossRef
ADS
Google scholar
|
[77] |
B. C. Thompson, E. Murray, and G. G. Wallace, Graphite oxide to graphene. Biomaterials to bionics, Adv. Mater. 27(46), 7563 (2015)
CrossRef
ADS
Google scholar
|
[78] |
A. B. Seabra, A. J. Paula, R. de Lima, O. L. Alves, and N. Durán, Nanotoxicity of graphene and graphene oxide, Chem. Res. Toxicol. 27(2), 159 (2014)
CrossRef
ADS
Google scholar
|
[79] |
S. Y. Wu, S. S. A. An, and J. Hulme, Current applications of graphene oxide in nanomedicine, Int. J. Nanomedicine 10, 9 (2015)
CrossRef
ADS
Google scholar
|
[80] |
X. P. He and H. Tian, Photoluminescence architectures for disease diagnosis: From graphene to thin-layer transition metal dichalcogenides and oxides, Small 12(2), 144 (2016)
CrossRef
ADS
Google scholar
|
[81] |
H. Zheng, R. Ma, M. Gao, X. Tian, Y. Q. Li, L. Zeng, and R. Li, Antibacterial applications of graphene oxides: Structure-activity relationships, molecular initiating events and biosafety, Sci. Bull. 63(2), 133 (2018)
CrossRef
ADS
Google scholar
|
[82] |
Y. Zhou, X. Jing, and Y. Chen, Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine, J. Mater. Chem. B 5(32), 6451 (2017)
CrossRef
ADS
Google scholar
|
[83] |
K. Muazim and Z. Hussain, Graphene oxide — A platform towards theranostics, Mater. Sci. Eng. C 76, 1274 (2017)
CrossRef
ADS
Google scholar
|
[84] |
S. Taniselass, M. K. Md Arshad, and S. C. B. Gopinath, Current state of green reduction strategies: Solutionprocessed reduced graphene oxide for healthcare biodetection, Mater. Sci. Eng. C 96, 904 (2019)
CrossRef
ADS
Google scholar
|
[85] |
V. Palmieri, G. Perini, M. De Spirito, and M. Papi, Graphene oxide touches blood: in vivointeractions of bio-coronated 2D materials, Nanoscale Horiz. 4(2), 273 (2019)
CrossRef
ADS
Google scholar
|
[86] |
D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L. J. Cote, H. D. Jang, and J. Huang, Energetic graphene oxide: Challenges and opportunities, Nano Today 7(2), 137 (2012)
CrossRef
ADS
Google scholar
|
[87] |
R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, The mechanics of graphene nanocomposites: A review, Compos. Sci. Technol. 72(12), 1459 (2012)
CrossRef
ADS
Google scholar
|
[88] |
J. K. Wassei and R. B. Kaner, Graphene, a promising transparent conductor, Mater. Today 13(3), 52 (2010)
CrossRef
ADS
Google scholar
|
[89] |
C. Tan, Z. Liu, W. Huang, and H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials, Chem. Soc. Rev. 44(9), 2615 (2015)
CrossRef
ADS
Google scholar
|
[90] |
L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges. 31(2), 1481 (1898)
CrossRef
ADS
Google scholar
|
[91] |
W. S. Jr Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6), 1339 (1958)
CrossRef
ADS
Google scholar
|
[92] |
M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater. 19(18), 4396 (2007)
CrossRef
ADS
Google scholar
|
[93] |
W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, and R. S. Ruoff, Synthesis and solid-state NMR structural characterization of 13Clabeled graphite oxide, Science 321(5897), 1815 (2008)
CrossRef
ADS
Google scholar
|
[94] |
K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater. 22(40), 4467 (2010)
CrossRef
ADS
Google scholar
|
[95] |
D. W. Boukhvalov and M. I. Katsnelson, Modeling of graphite oxide, J. Am. Chem. Soc. 130(32), 10697 (2008)
CrossRef
ADS
Google scholar
|
[96] |
R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, Density functional theory study of graphite oxide for different oxidation levels, Phys. Rev. B 79(12), 125435 (2009)
CrossRef
ADS
Google scholar
|
[97] |
S. Zhang, J. Zhou, Q. Wang, and P. Jena, Structure, stability, and property modulations of stoichiometric graphene oxide, J. Phys. Chem. C 117(2), 1064 (2013)
CrossRef
ADS
Google scholar
|
[98] |
J. A. Yan and M. Y. Chou, Oxidation functional groups on graphene: Structural and electronic properties, Phys. Rev. B 82(12), 125403 (2010)
CrossRef
ADS
Google scholar
|
[99] |
H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B 82(3), 035416 (2010)
CrossRef
ADS
Google scholar
|
[100] |
L. Wang, Y. Y. Sun, K. Lee, D. West, Z. F. Chen, J. J. Zhao, and S. B. Zhang, Stability of graphene oxide phases from first-principles calculations, Phys. Rev. B 82(16), 161406 (2010)
CrossRef
ADS
Google scholar
|
[101] |
L. Wang, K. Lee, Y. Y. Sun, M. Lucking, Z. F. Chen, J. J. Zhao, and S. B. B. Zhang, Graphene oxide as an ideal substrate for hydrogen storage, ACS Nano 3(10), 2995 (2009)
CrossRef
ADS
Google scholar
|
[102] |
M. T. Nguyen, R. Erni, and D. Passerone, Twodimensional nucleation and growth mechanism explaining graphene oxide structures, Phys. Rev. B 86(11), 115406 (2012)
CrossRef
ADS
Google scholar
|
[103] |
B. Huang, H. Xiang, Q. Xu, and S. H. Wei, Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides, Phys. Rev. Lett. 110(8), 085501 (2013)
CrossRef
ADS
Google scholar
|
[104] |
D. B. Lawson and E. J. Beregszaszy, Incremental oxidation of the surface of monolayer and bilayer graphene: A computational study, Physica E 68, 164 (2015)
CrossRef
ADS
Google scholar
|
[105] |
M. Topsakal and S. Ciraci, Domain formation on oxidized graphene, Phys. Rev. B 86(20), 205402 (2012)
CrossRef
ADS
Google scholar
|
[106] |
S. Zhou and A. Bongiorno, Origin of the chemical and kinetic stability of graphene oxide, Sci. Rep. 3(1), 2484 (2013)
CrossRef
ADS
Google scholar
|
[107] |
Ž. Šljivančanin, A. S. Milošević, Z. S. Popović, and F. R. Vukajlović, Binding of atomic oxygen on graphene from small epoxy clusters to a fully oxidized surface, Carbon 54, 482 (2013)
CrossRef
ADS
Google scholar
|
[108] |
C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, Atomic structure of reduced graphene oxide, Nano Lett. 10(4), 1144 (2010)
CrossRef
ADS
Google scholar
|
[109] |
D. Pandey, R. Reifenberger, and R. Piner, Scanning probe microscopy study of exfoliated oxidized graphene sheets, Surf. Sci. 602(9), 1607 (2008)
CrossRef
ADS
Google scholar
|
[110] |
J. Yang, G. Shi, Y. Tu, and H. Fang, High correlation between oxidation loci on graphene oxide, Angew. Chem. Int. Ed. 53(38), 10190 (2014)
CrossRef
ADS
Google scholar
|
[111] |
H. Luo, G. Auchterlonie, and J. Zou, A thermodynamic structural model of graphene oxide, J. Appl. Phys. 122(14), 145101 (2017)
CrossRef
ADS
Google scholar
|
[112] |
C. J. Kim, W. Khan, and S. Y. Park, Structural evolution of graphite oxide during heat treatment, Chem. Phys. Lett. 511(1–3), 110 (2011)
CrossRef
ADS
Google scholar
|
[113] |
S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno, and E. Riedo, Roomtemperature metastability of multilayer graphene oxide films, Nat. Mater. 11(6), 544 (2012)
CrossRef
ADS
Google scholar
|
[114] |
J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Imaging and dynamics of light atoms and molecules on graphene, Nature 454(7202), 319 (2008)
CrossRef
ADS
Google scholar
|
[115] |
A. M. Suarez, L. R. Radovic, E. Bar-Ziv, and J. O. Sofo, Gate-voltage control of oxygen diffusion on graphene, Phys. Rev. Lett. 106(14), 146802 (2011)
CrossRef
ADS
Google scholar
|
[116] |
Y. Wang, Y. Shen, X. Zhang, Y. Zhang, and J. Hu, Humidity induced charge migration on single layer graphene oxide sheets, Appl. Phys. Lett. 105(23), 233107 (2014)
CrossRef
ADS
Google scholar
|
[117] |
J. T. Paci, T. Belytschko, and G. C. Schatz, Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide, J. Phys. Chem. C 111(49), 18099 (2007)
CrossRef
ADS
Google scholar
|
[118] |
A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies, J. Phys. Chem. C 115(34), 17009 (2011)
CrossRef
ADS
Google scholar
|
[119] |
X. Gao, J. Jang, and S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design, J. Phys. Chem. C 114(2), 832 (2010)
CrossRef
ADS
Google scholar
|
[120] |
A. F. Fonseca, H. Zhang, and K. Cho, Formation energy of graphene oxide structures: A molecular dynamics study on distortion and thermal effects, Carbon 84, 365 (2015)
CrossRef
ADS
Google scholar
|
[121] |
N. Lu, D. Yin, Z. Li, and J. Yang, Structure of graphene oxide: Thermodynamics versus kinetics, J. Phys. Chem. C 115(24), 11991 (2011)
CrossRef
ADS
Google scholar
|
[122] |
O. C. Compton, B. Jain, D. A. Dikin, A. Abouimrane, K. Amine, and S. T. Nguyen, Chemically active reduced graphene oxide with tunable C/O ratios, ACS Nano 5(6), 4380 (2011)
CrossRef
ADS
Google scholar
|
[123] |
N. Ghaderi and M. Peressi, First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide, J. Phys. Chem. C 114(49), 21625 (2010)
CrossRef
ADS
Google scholar
|
[124] |
A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem. 2(7), 581 (2010)
CrossRef
ADS
Google scholar
|
[125] |
A. Bagri, R. Grantab, N. V. Medhekar, and V. B. Shenoy, Stability and formation mechanisms of carbonyl- and hydroxyl-decorated holes in graphene oxide, J. Phys. Chem. C 114(28), 12053 (2010)
CrossRef
ADS
Google scholar
|
[126] |
R. M. Abolfath and K. Cho, Computational studies for reduced graphene oxide in hydrogen-rich environment, J. Phys. Chem. A 116(7), 1820 (2012)
CrossRef
ADS
Google scholar
|
[127] |
R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, and S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide, J. Am. Chem. Soc. 133(43), 17315 (2011)
CrossRef
ADS
Google scholar
|
[128] |
P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, Scalable enhancement of graphene oxide properties by thermally driven phase transformation, Nat. Chem. 6(2), 151 (2014)
CrossRef
ADS
Google scholar
|
[129] |
M. S. Fuhrer, C. N. Lau, and A. H. MacDonald, Graphene: Materially better carbon, MRS Bull. 35(4), 289 (2010)
CrossRef
ADS
Google scholar
|
[130] |
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
CrossRef
ADS
Google scholar
|
[131] |
Q. Zheng, Y. Geng, S. Wang, Z. Li, and J. K. Kim, Effects of functional groups on the mechanical and wrinkling properties of graphene sheets, Carbon 48(15), 4315 (2010)
CrossRef
ADS
Google scholar
|
[132] |
Z. Novotny, M. T. Nguyen, F. P. Netzer, V. A. Glezakou, R. Rousseau, and Z. Dohnalek, Formation of supported graphene oxide: Evidence for enolate species, J. Am. Chem. Soc. 140(15), 5102 (2018)
CrossRef
ADS
Google scholar
|
[133] |
M. Cano, U. Khan, T. Sainsbury, A. O’Neill, Z. Wang, I. T. McGovern, W. K. Maser, A. M. Benito, and J. N. Coleman, Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains, Carbon 52, 363 (2013)
CrossRef
ADS
Google scholar
|
[134] |
N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties, ACS Nano 4(4), 2300 (2010)
CrossRef
ADS
Google scholar
|
[135] |
S. Park, J. W. Suk, J. An, J. Oh, S. Lee, W. Lee, J. R. Potts, J. H. Byun, and R. S. Ruoff, The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers, Carbon 50(12), 4573 (2012)
CrossRef
ADS
Google scholar
|
[136] |
J. Liu, C. Chen, C. He, J. Zhao, X. Yang, and H. Wang, Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels, ACS Nano 6(9), 8194 (2012)
CrossRef
ADS
Google scholar
|
[137] |
D. D. Kulkarni, I. Choi, S. S. Singamaneni, and V. V. Tsukruk, Graphene oxide–polyelectrolyte nanomembranes, ACS Nano 4(8), 4667 (2010)
CrossRef
ADS
Google scholar
|
[138] |
C. Cao, M. Daly, C. V. Singh, Y. Sun, and T. Filleter, High strength measurement of monolayer graphene oxide, Carbon 81, 497 (2015)
CrossRef
ADS
Google scholar
|
[139] |
X. Wei, L. Mao, R. A. Soler-Crespo, J. T. Paci, J. Huang, S. T. Nguyen, and H. D. Espinosa, Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism, Nat. Commun. 6(1), 8029 (2015)
CrossRef
ADS
Google scholar
|
[140] |
R. A. Soler-Crespo, W. Gao, P. Xiao, X. Wei, J. T. Paci, G. Henkelman, and H. D. Espinosa, Engineering the mechanical properties of monolayer graphene oxide at the atomic level, J. Phys. Chem. Lett. 7(14), 2702 (2016)
CrossRef
ADS
Google scholar
|
[141] |
A. Zandiatashbar, E. Ban, and R. C. Picu, Stiffness and strength of oxygen-functionalized graphene with vacancies, J. Appl. Phys. 116(18), 184308 (2014)
CrossRef
ADS
Google scholar
|
[142] |
Q. Peng, L. Han, J. Lian, X. Wen, S. Liu, Z. Chen, N. Koratkar, and S. De, Mechanical degradation of graphene by epoxidation: insights from first-principles calculations, Phys. Chem. Chem. Phys. 17(29), 19484 (2015)
CrossRef
ADS
Google scholar
|
[143] |
C. Gómez-Navarro, M. Burghard, and K. Kern, Elastic properties of chemically derived single graphene sheets, Nano Lett. 8(7), 2045 (2008)
CrossRef
ADS
Google scholar
|
[144] |
J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, Mechanical properties of monolayer graphene oxide, ACS Nano 4(11), 6557 (2010)
CrossRef
ADS
Google scholar
|
[145] |
T. Cui, S. Mukherjee, C. Cao, P. M. Sudeep, J. Tam, P. M. Ajayan, C. V. Singh, Y. Sun, and T. Filleter, Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide, Carbon 136, 168 (2018)
CrossRef
ADS
Google scholar
|
[146] |
Q. Peng and S. De, Mechanical properties and instabilities of ordered graphene oxide C6O monolayers, RSC Adv. 3(46), 24337 (2013)
CrossRef
ADS
Google scholar
|
[147] |
D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)
CrossRef
ADS
Google scholar
|
[148] |
C. N. Yeh, K. Raidongia, J. Shao, Q. H. Yang, and J. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7(2), 166 (2015)
CrossRef
ADS
Google scholar
|
[149] |
O. C. Compton, S. W. Cranford, K. W. Putz, Z. An, L. C. Brinson, M. J. Buehler, and S. T. Nguyen, Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding, ACS Nano 6(3), 2008 (2012)
CrossRef
ADS
Google scholar
|
[150] |
R. J. Jiménez Riobóo, E. Climent-Pascual, X. Díez-Betriu, F. Jiménez-Villacorta, C. Prieto, and A. de Andrés, Elastic constants of graphene oxide few-layer films: Correlations with interlayer stacking and bonding, J. Mater. Chem. C 3(19), 4868 (2015)
CrossRef
ADS
Google scholar
|
[151] |
R. A. Soler-Crespo, W. Gao, L. Mao, H. T. Nguyen, M. R. Roenbeck, J. T. Paci, J. Huang, S. T. Nguyen, and H. D. Espinosa, The role of water in mediating interfacial adhesion and shear strength in graphene oxide, ACS Nano 12(6), 6089 (2018)
CrossRef
ADS
Google scholar
|
[152] |
H. P. Cong, P. Wang, and S. H. Yu, Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels, Small 10(3), 448 (2014)
CrossRef
ADS
Google scholar
|
[153] |
Q. Cheng, M. Wu, M. Li, L. Jiang, and Z. Tang, Ultratough artificial nacre based on conjugated cross-linked graphene oxide, Angew. Chem. Int. Ed. 52(13), 3750 (2013)
CrossRef
ADS
Google scholar
|
[154] |
S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, Graphene oxide papers modified by divalent ions — enhancing mechanical properties via chemical cross-linking, ACS Nano 2(3), 572 (2008)
CrossRef
ADS
Google scholar
|
[155] |
Y. Tian, Y. Cao, Y. Wang, W. Yang, and J. Feng, Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of musselinspired polymers, Adv. Mater. 25(21), 2980 (2013)
CrossRef
ADS
Google scholar
|
[156] |
A. Kumar and C. Zhou, The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win? ACS Nano 4(1), 11 (2010)
CrossRef
ADS
Google scholar
|
[157] |
Y. Gao, S. Kim, S. Zhou, H. C. Chiu, D. Nelias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in twodimensional materials, Nat. Mater. 14(7), 714 (2015)
CrossRef
ADS
Google scholar
|
[158] |
W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine, Carbon 65, 296 (2013)
CrossRef
ADS
Google scholar
|
[159] |
S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, and S. O. Kim, Threedimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films, Angew. Chem. Int. Ed. 49(52), 10084 (2010)
CrossRef
ADS
Google scholar
|
[160] |
H. C. Schniepp, K. N. Kudin, J. L. Li, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, Bending properties of single functionalized graphene sheets probed by atomic force microscopy, ACS Nano 2(12), 2577 (2008)
CrossRef
ADS
Google scholar
|
[161] |
R. Huang, M. Huang, X. Li, F. An, N. Koratkar, and Z. Z. Yu, Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices, Adv. Mater. 30(21), 1707025 (2018)
CrossRef
ADS
Google scholar
|
[162] |
G. J. Silverberg and C. D. Vecitis, Wrinkling and periodic folding of graphene oxide monolayers by langmuirblodgett compression, Langmuir 33(38), 9880 (2017)
CrossRef
ADS
Google scholar
|
[163] |
F. Tardani, W. Neri, C. Zakri, H. Kellay, A. Colin, and P. Poulin, Shear rheology control of wrinkles and patterns in graphene oxide films, Langmuir 34(9), 2996 (2018)
CrossRef
ADS
Google scholar
|
[164] |
A. Incze, A. Pasturel, and P. Peyla, Mechanical properties of graphite oxides: Ab initiosimulations and continuum theory, Phys. Rev. B 70(21), 212103 (2004)
CrossRef
ADS
Google scholar
|
[165] |
X. Wang, L. L. Lu, Z. L. Yu, X. W. Xu, Y. R. Zheng, and S. H. Yu, Scalable template synthesis of resorcinol–formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties, Angew. Chem. 127(8), 2427 (2015)
CrossRef
ADS
Google scholar
|
[166] |
X. Cheng, V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, J. Koyanagi, L. Wu, and R. Wang, Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties, Compos. Part A Appl. Sci. Manuf. 82, 100 (2016)
CrossRef
ADS
Google scholar
|
[167] |
G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, Insulator to semimetal transition in graphene oxide, J. Phys. Chem. C 113(35), 15768 (2009)
CrossRef
ADS
Google scholar
|
[168] |
T. Tsuchiya, K. Terabe, and M. Aono, In situ and nonvolatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor, Adv. Mater. 26(7), 1087 (2014)
CrossRef
ADS
Google scholar
|
[169] |
A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, Bandgap opening in oxygen plasma-treated graphene, Nanotechnology 21(43), 435203 (2010)
CrossRef
ADS
Google scholar
|
[170] |
A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela Mohana Reddy, and P. M. Ajayan, Controlled, stepwise reduction and band gap manipulation of graphene oxide, J. Phys. Chem. Lett. 3(8), 986 (2012)
CrossRef
ADS
Google scholar
|
[171] |
C. H. Chuang, Y. F. Wang, Y. C. Shao, Y. C. Yeh, D. Y. Wang, C. W. Chen, J. W. Chiou, S. C. Ray, W. F. Pong, L. Zhang, J. F. Zhu, and J. H. Guo, The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides, Sci. Rep. 4(1), 4525 (2015)
CrossRef
ADS
Google scholar
|
[172] |
A. Hunt, D. A. Dikin, E. Z. Kurmaev, Y. H. Lee, N. V. Luan, G. S. Chang, and A. Moewes, Modulation of the band gap of graphene oxide: The role of AA-stacking, Carbon 66, 539 (2014)
CrossRef
ADS
Google scholar
|
[173] |
A. Hunt, E. Z. Kurmaev, and A. Moewes, Band gap engineering of graphene oxide by chemical modification, Carbon 75, 366 (2014)
CrossRef
ADS
Google scholar
|
[174] |
L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, Bandgap tailoring and synchronous microdevices patterning of graphene oxides, J. Phys. Chem. C 116(5), 3594 (2012)
CrossRef
ADS
Google scholar
|
[175] |
H. Huang, Z. Li, J. She, and W. Wang, Oxygen density dependent band gap of reduced graphene oxide, J. Appl. Phys. 111(5), 054317 (2012)
CrossRef
ADS
Google scholar
|
[176] |
Z. Kan, C. Nelson, and M. Khatun, Quantum conductance of zigzag graphene oxide nanoribbons, J. Appl. Phys. 115(15), 153704 (2014)
CrossRef
ADS
Google scholar
|
[177] |
J. Ito, J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet, J. Appl. Phys. 103(11), 113712 (2008)
CrossRef
ADS
Google scholar
|
[178] |
K. Y. Lian, Y. F. Ji, X. F. Li, M. X. Jin, D. J. Ding, and Y. Luo, Big bandgap in highly reduced graphene oxides, J. Phys. Chem. C 117(12), 6049 (2013)
CrossRef
ADS
Google scholar
|
[179] |
T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Impurities on graphene: Midgap states and migration barriers, Phys. Rev. B 80(8), 085428 (2009)
CrossRef
ADS
Google scholar
|
[180] |
I. S. Esqueda, C. D. Cress, Y. Cao, Y. Che, M. Fritze, and C. Zhou, The impact of defect scattering on the quasiballistic transport of nanoscale conductors, J. Appl. Phys. 117(8), 084319 (2015)
CrossRef
ADS
Google scholar
|
[181] |
T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett. 105(5), 056802 (2010)
CrossRef
ADS
Google scholar
|
[182] |
N. Leconte, A. Lherbier, F. Varchon, P. Ordejon, S. Roche, and J. C. Charlier, Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization, Phys. Rev. B 84(23), 235420 (2011)
CrossRef
ADS
Google scholar
|
[183] |
M. I. Katsnelson, F. Guinea, and A. K. Geim, Scattering of electrons in graphene by clusters of impurities, Phys. Rev. B 79(19), 195426 (2009)
CrossRef
ADS
Google scholar
|
[184] |
J. Zhao, S. Pei, W. Ren, L. Gao, and H. M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4(9), 5245 (2010)
CrossRef
ADS
Google scholar
|
[185] |
D. M. Sun, C. Liu, W. C. Ren, and H. M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors, Small 9(8), 1188 (2013)
CrossRef
ADS
Google scholar
|
[186] |
N. S. Green and M. L. Norton, Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review, Anal. Chim. Acta 853, 127 (2015)
CrossRef
ADS
Google scholar
|
[187] |
W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braet, Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114 (2010)
CrossRef
ADS
Google scholar
|
[188] |
Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis 22(10), 1027 (2010)
CrossRef
ADS
Google scholar
|
[189] |
C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett. 7(11), 3499 (2007)
CrossRef
ADS
Google scholar
|
[190] |
A. B. Kaiser and V. Skakalova, Electronic conduction in polymers, carbon nanotubes and graphene, Chem. Soc. Rev. 40(7), 3786 (2011)
CrossRef
ADS
Google scholar
|
[191] |
Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, E. Hitz, Y. Yao, J. Dai, J. Wan, V. A. Danner, T. Li, and L. Hu, Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors, Nano Lett. 16(6), 3616 (2016)
CrossRef
ADS
Google scholar
|
[192] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[193] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef
ADS
Google scholar
|
[194] |
A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
CrossRef
ADS
Google scholar
|
[195] |
V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J. L. Brédas, Charge transport in organic semiconductors, Chem. Rev. 107(4), 926 (2007)
CrossRef
ADS
Google scholar
|
[196] |
V. López, R. S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, and K. Kern, Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers, Adv. Mater. 21(46), 4683 (2009)
CrossRef
ADS
Google scholar
|
[197] |
H. Klauk, Organic thin-film transistors, Chem. Soc. Rev. 39(7), 2643 (2010)
CrossRef
ADS
Google scholar
|
[198] |
I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures, Nano Lett. 8(12), 4283 (2008)
CrossRef
ADS
Google scholar
|
[199] |
Z. Xu, Y. Bando, L. Liu, W. Wang, X. Bai, and D. Golberg, Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM, ACS Nano 5(6), 4401 (2011)
CrossRef
ADS
Google scholar
|
[200] |
J. T. Han, B. J. Kim, B. G. Kim, J. S. Kim, B. H. Jeong, S. Y. Jeong, H. J. Jeong, J. H. Cho, and G. W. Lee, Enhanced electrical properties of reduced graphene oxide multilayer films by in-situ insertion of a TiO2 layer, ACS Nano 5(11), 8884 (2011)
CrossRef
ADS
Google scholar
|
[201] |
A. B. Kaiser, C. Gómez-Navarro, R. S. Sundaram, M. Burghard, and K. Kern, Electrical conduction mechanism in chemically derived graphene monolayers, Nano Lett. 9(5), 1787 (2009)
CrossRef
ADS
Google scholar
|
[202] |
M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
CrossRef
ADS
Google scholar
|
[203] |
R. G. Gordon, Criteria for choosing transparent conductors, MRS Bull. 25(8), 52 (2000)
CrossRef
ADS
Google scholar
|
[204] |
Y. Zhu, W. Cai, R. D. Piner, A. Velamakanni, and R. S. Ruoff, Transparent self-assembled films of reduced graphene oxide platelets, Appl. Phys. Lett. 95(10), 103104 (2009)
CrossRef
ADS
Google scholar
|
[205] |
G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, and M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide, Appl. Phys. Lett. 92(23), 233305 (2008)
CrossRef
ADS
Google scholar
|
[206] |
M. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, and J. D. Nam, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD), ACS Appl. Mater. Interfaces 6(3), 1747 (2014)
CrossRef
ADS
Google scholar
|
[207] |
X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y. W. Mai, and J. K. Kim, Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets, ACS Nano 6(12), 10708 (2012)
CrossRef
ADS
Google scholar
|
[208] |
S. Y. Jeong, S. H. Kim, J. T. Han, H. J. Jeong, S. Yang, and G. W. Lee, High-performance transparent conductive films using rheologically derived reduced graphene oxide, ACS Nano 5(2), 870 (2011)
CrossRef
ADS
Google scholar
|
[209] |
K. H. Shin, Y. Jang, B. S. Kim, J. Jang, and S. H. Kim, Highly conductive reduced graphene oxide produced via pressure-assisted reduction at mild temperature for flexible and transparent electrodes, Chem. Commun. 49(43), 4887 (2013)
CrossRef
ADS
Google scholar
|
[210] |
S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon 48(15), 4466 (2010)
CrossRef
ADS
Google scholar
|
[211] |
C. X. Cong, T. Yu, Z. H. Ni, L. Liu, Z. X. Shen, and W. Huang, Fabrication of graphene nanodisk arrays using nanosphere lithography, J. Phys. Chem. C 113(16), 6529 (2009)
CrossRef
ADS
Google scholar
|
[212] |
Q. B. Zheng, M. M. Gudarzi, S. J. Wang, Y. Geng, Z. Li, and J. K. Kim, Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments, Carbon 49(9), 2905 (2011)
CrossRef
ADS
Google scholar
|
[213] |
U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks, J. Am. Chem. Soc. 127(14), 5125 (2005)
CrossRef
ADS
Google scholar
|
[214] |
J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y. H. Kim, M. H. Song, S. Yoo, and S. O. Kim, Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer lightemitting diodes, ACS Nano 6(1), 159 (2012)
CrossRef
ADS
Google scholar
|
[215] |
J. Mu, C. Hou, G. Wang, X. Wang, Q. Zhang, Y. Li, H. Wang, and M. Zhu, An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors, Adv. Mater. 28(43), 9491 (2016)
CrossRef
ADS
Google scholar
|
[216] |
S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, Graphene–silica composite thin films as transparent conductors, Nano Lett. 7(7), 1888 (2007)
CrossRef
ADS
Google scholar
|
[217] |
V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors, Nano Lett. 9(5), 1949 (2009)
CrossRef
ADS
Google scholar
|
[218] |
Q. Zheng, B. Zhang, X. Lin, X. Shen, N. Yousefi, Z. D. Huang, Z. Li, and J. K. Kim, Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir–Blodgett assembly, J. Mater. Chem. 22(48), 25072 (2012)
CrossRef
ADS
Google scholar
|
[219] |
C. F. Guo and Z. Ren, Flexible transparent conductors based on metal nanowire networks, Mater. Today 18(3), 143 (2015)
CrossRef
ADS
Google scholar
|
[220] |
Y. S. Yun, D. H. Kim, B. Kim, H. H. Park, and H. J. Jin, Transparent conducting films based on graphene oxide/ silver nanowire hybrids with high flexibility, Synth. Met. 162(15–16), 1364 (2012)
CrossRef
ADS
Google scholar
|
[221] |
S. H. Domingues, I. N. Kholmanov, T. Kim, J. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications, Carbon 63, 454 (2013)
CrossRef
ADS
Google scholar
|
[222] |
P. Meenakshi, R. Karthick, M. Selvaraj, and S. Ramu, Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode, Sol. Energy Mater. Sol. Cells 128, 264 (2014)
CrossRef
ADS
Google scholar
|
[223] |
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes, ACS Nano 7(2), 1811 (2013)
CrossRef
ADS
Google scholar
|
[224] |
R. Karthick, M. Brindha, M. Selvaraj, and S. Ramu, Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film, J. Colloid Interface Sci. 406, 69 (2013)
CrossRef
ADS
Google scholar
|
[225] |
S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials, Annu. Rev. Mater. Res. 45(1), 63 (2015)
CrossRef
ADS
Google scholar
|
[226] |
Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, and H. Zhang, Transparent, flexible, all-reduced graphene oxide thin film transistors, ACS Nano 5(6), 5038 (2011)
CrossRef
ADS
Google scholar
|
[227] |
J. Liu, Z. Yin, X. Cao, F. Zhao, L. Wang, W. Huang, and H. Zhang, Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices, Adv. Mater. 25(2), 233 (2013)
CrossRef
ADS
Google scholar
|
[228] |
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)
CrossRef
ADS
Google scholar
|
[229] |
M. Diba, D. W. H. Fam, A. R. Boccaccini, and M. S. P. Shaffer, Electrophoretic deposition of graphene-related materials: A review of the fundamentals, Prog. Mater. Sci. 82, 83 (2016)
CrossRef
ADS
Google scholar
|
[230] |
Y. Chen, X. Zhang, P. Yu, and Y. Ma, Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers, Chem. Commun. 30(30), 4527 (2009)
CrossRef
ADS
Google scholar
|
[231] |
Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano 4(9), 5263 (2010)
CrossRef
ADS
Google scholar
|
[232] |
T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices, Carbon 81, 232 (2015)
CrossRef
ADS
Google scholar
|
[233] |
C. J. Wan, Y. H. Liu, P. Feng, W. Wang, L. Q. Zhu, Z. P. Liu, Y. Shi, and Q. Wan, Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates, Adv. Mater. 28(28), 5878 (2016)
CrossRef
ADS
Google scholar
|
[234] |
M. Soni, P. Kumar, J. Pandey, S. K. Sharma, and A. Soni, Scalable and site specific functionalization of reduced graphene oxide for circuit elements and flexible electronics, Carbon 128, 172 (2018)
CrossRef
ADS
Google scholar
|
[235] |
L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano 4(5), 2865 (2010)
CrossRef
ADS
Google scholar
|
[236] |
H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Graphene oxide thin films for flexible nonvolatile memory applications, Nano Lett. 10(11), 4381 (2010)
CrossRef
ADS
Google scholar
|
[237] |
H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, Z. Zheng, and A. Transparent, Flexible, low-temperature, and solution-processible graphene composite electrode, Adv. Funct. Mater. 20(17), 2893 (2010)
CrossRef
ADS
Google scholar
|
[238] |
L. E. Scriven, Physics and applications of DIP coating and spin coating, Proc. MRS 121, 717 (1988)
CrossRef
ADS
Google scholar
|
[239] |
X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8(1), 323 (2008)
CrossRef
ADS
Google scholar
|
[240] |
X. Dong, C. Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L. J. Li, Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties, Phys. Chem. Chem. Phys. 12(9), 2164 (2010)
CrossRef
ADS
Google scholar
|
[241] |
D. W. Lee, T. K. Hong, D. Kang, J. Lee, M. Heo, J. Y. Kim, B. S. Kim, and H. S. Shin, Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides, J. Mater. Chem. 21(10), 3438 (2011)
CrossRef
ADS
Google scholar
|
[242] |
S. T. Hsiao, C. C. M. Ma, W. H. Liao, Y. S. Wang, S. M. Li, Y. C. Huang, R. B. Yang, and W. F. Liang, Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance, ACS Appl. Mater. Interfaces 6(13), 10667 (2014)
CrossRef
ADS
Google scholar
|
[243] |
X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol. 3(9), 538 (2008)
CrossRef
ADS
Google scholar
|
[244] |
L. J. Cote, F. Kim, and J. Huang, Langmuir–Blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc. 131(3), 1043 (2009)
CrossRef
ADS
Google scholar
|
[245] |
Q. Zheng, W. H. Ip, X. Lin, N. Yousefi, K. K. Yeung, Z. Li, and J. K. Kim, Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir–Blodgett assembly, ACS Nano 5(7), 6039 (2011)
CrossRef
ADS
Google scholar
|
[246] |
D. Konios, C. Petridis, G. Kakavelakis, M. Sygletou, K. Savva, E. Stratakis, and E. Kymakis, Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices, Adv. Funct. Mater. 25(15), 2213 (2015)
CrossRef
ADS
Google scholar
|
[247] |
Y. Xu, W. Hong, H. Bai, C. Li, and G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon 47(15), 3538 (2009)
CrossRef
ADS
Google scholar
|
[248] |
L. Xu, S. Jiang, B. Li, W. Hou, G. Li, M. A. Memon, Y. Huang, and J. Geng, Graphene oxide: A versatile agent for polyimide foams with improved foaming capability and enhanced flexibility, Chem. Mater. 27(12), 4358 (2015)
CrossRef
ADS
Google scholar
|
[249] |
H. Im and J. Kim, Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite, Carbon 50(15), 5429 (2012)
CrossRef
ADS
Google scholar
|
[250] |
Y. Xue, L. Zhu, H. Chen, J. Qu, and L. Dai, Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors, Carbon 92, 305 (2015)
CrossRef
ADS
Google scholar
|
[251] |
M. Rogala, I. Wlasny, P. Dabrowski, P. J. Kowalczyk, A. Busiakiewicz, W. Kozlowski, L. Lipinska, J. Jagiello, M. Aksienionek, W. Strupinski, A. Krajewska, Z. Sieradzki, I. Krucinska, M. Puchalski, E. Skrzetuska, and Z. Klusek, Graphene oxide overprints for flexible and transparent electronics, Appl. Phys. Lett. 106(4), 041901 (2015)
CrossRef
ADS
Google scholar
|
[252] |
I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun. 1(1), 73 (2010)
CrossRef
ADS
Google scholar
|
[253] |
J. Ning, J. Wang, X. Li, T. Qiu, B. Luo, L. Hao, M. Liang, B. Wang, and L. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films,J. Mater. Chem. A 2(28), 10969 (2014)
CrossRef
ADS
Google scholar
|
[254] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[255] |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef
ADS
Google scholar
|
[256] |
H. Yamaguchi, K. Murakami, G. Eda, T. Fujita, P. Guan, W. Wang, C. Gong, J. Boisse, S. Miller, M. Acik, K. Cho, Y. J. Chabal, M. Chen, F. Wakaya, M. Takai, and M. Chhowalla, Field emission from atomically thin edges of reduced graphene oxide, ACS Nano 5(6), 4945 (2011)
CrossRef
ADS
Google scholar
|
[257] |
V. Reddy, K. K. C. Satish Babu, S. R. Torati, Y. J. Eom, T. Q. Trung, N. E. Lee, and C. Kim, Scalable production of water-dispersible reduced graphene oxide and its integration in a field effect transistor, J. Ind. Eng. Chem. 63, 19 (2018)
CrossRef
ADS
Google scholar
|
[258] |
H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films, Adv. Mater. 22(43), 4872 (2010)
CrossRef
ADS
Google scholar
|
[259] |
C. Yu, X. Chang, J. Liu, L. Ding, J. Peng, and Y. Fang, Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates, ACS Appl. Mater. Interfaces 7(20), 10718 (2015)
CrossRef
ADS
Google scholar
|
[260] |
M. Jin, H. K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, Graphene oxide thin film field effect transistors without reduction, J. Phys. D Appl. Phys. 42(13), 135109 (2009)
CrossRef
ADS
Google scholar
|
[261] |
İ. Karteri, Ş. Karataş, A. A. Al-Ghamdi, and F. Yakuphanoğlu, The electrical characteristics of thin film transistors with graphene oxide and organic insulators, Synth. Met. 199, 241 (2015)
CrossRef
ADS
Google scholar
|
[262] |
J. Chang, G. Zhou, X. Gao, S. Mao, S. Cui, L. E. Ocola, C. Yuan, and J. Chen, Real-time detection of mercury ions in water using a reduced graphene oxide/DNA fieldeffect transistor with assistance of a passivation layer, Sens. Biosensing Res. 5, 97 (2015)
CrossRef
ADS
Google scholar
|
[263] |
J. W. Park, C. Lee, and J. Jang, High-performance fieldeffect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer, Sens. Actuators B Chem. 208, 532 (2015)
CrossRef
ADS
Google scholar
|
[264] |
D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis, Nanotechnology 21(16), 165202 (2010)
CrossRef
ADS
Google scholar
|
[265] |
X. Cai, N. Sakai, T. C. Ozawa, A. Funatsu, R. Ma, Y. Ebina, and T. Sasaki, Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance, ACS Appl. Mater. Interfaces 7(21), 11436 (2015)
CrossRef
ADS
Google scholar
|
[266] |
N. D. K. Tu, J. Choi, C. R. Park, and H. Kim, Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature, Chem. Mater. 27(21), 7362 (2015)
CrossRef
ADS
Google scholar
|
[267] |
R. C. Wang and Y. M. Chang, Switch of p–n electricity of reduced-graphene-oxide-flake stacked films enabling room-temperature gas sensing from ultrasensitive to insensitive, Carbon 91, 416 (2015)
CrossRef
ADS
Google scholar
|
[268] |
A. Bhaumik and J. Narayan, Conversion of p to n-type reduced graphene oxide by laser annealing at room temperature and pressure, J. Appl. Phys. 121(12), 125303 (2017)
CrossRef
ADS
Google scholar
|
[269] |
S. Some, P. Bhunia, E. Hwang, K. Lee, Y. Yoon, S. Seo, and H. Lee, Can commonly used hydrazine produce ntype graphene? Chemistry 18(25), 7665 (2012)
CrossRef
ADS
Google scholar
|
[270] |
X. Li, T. Tang, M. Li, and X. He, Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors, Appl. Phys. Lett. 106(1), 013110 (2015)
CrossRef
ADS
Google scholar
|
[271] |
F. Khan, S. H. Baek, and J. H. Kim, One-step and controllable bipolar doping of reduced graphene oxide using TMAH as reducing agent and doping source for field effect transistors, Carbon 100, 608 (2016)
CrossRef
ADS
Google scholar
|
[272] |
L. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S. M. Lee, and H. Lee, Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature, Chem. Commun. 50(10), 1224 (2014)
CrossRef
ADS
Google scholar
|
[273] |
Y. Zhou, S. T. Han, P. Sonar, X. Ma, J. Chen, Z. Zheng, and V. A. Roy, Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids, Sci. Rep. 5(1), 9446 (2015)
CrossRef
ADS
Google scholar
|
[274] |
V. A. Smirnov, A. D. Mokrushin, V. P. Vasiliev, N. N. Denisov, and K. N. Denisova, Mixed proton and electron conduction in graphene oxide films: field effect in a transistor based on graphene oxide, Appl. Phys. A 122(5), 513 (2016)
CrossRef
ADS
Google scholar
|
[275] |
G. Eda and M. Chhowalla, Graphene-based composite thin films for electronics, Nano Lett. 9(2), 814 (2009)
CrossRef
ADS
Google scholar
|
[276] |
S. Lim, B. Kang, D. Kwak, W. H. Lee, J. A. Lim, and K. Cho, Inkjet-printed reduced graphene oxide/poly (vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors, J. Phys. Chem. C 116(13), 7520 (2012)
CrossRef
ADS
Google scholar
|
[277] |
K. S. Vasu, B. Chakraborty, S. Sampath, and A. K. Sood, Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis, Solid State Commun. 150(29–30), 1295 (2010)
CrossRef
ADS
Google scholar
|
[278] |
N. Rathi, S. Rathi, I. Lee, J. Wang, M. Kang, D. Lim, M. A. Khan, Y. Lee, and G. H. Kim, Reduction of persistent photoconductivity in a few-layer MoS2 field-effect transistor by graphene oxide functionalization, RSC Adv. 6(28), 23961 (2016)
CrossRef
ADS
Google scholar
|
[279] |
T. Kobayashi, N. Kimura, J. Chi, S. Hirata, and D. Hobara, Channel-length-dependent field-effect mobility and carrier concentration of reduced graphene oxide thin-film transistors, Small 6(11), 1210 (2010)
CrossRef
ADS
Google scholar
|
[280] |
A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Poly(9-vinylcarbazole)–graphene oxide composite field-effect transistors with enhanced mobility, Org. Electron. 16, 186 (2015)
CrossRef
ADS
Google scholar
|
[281] |
İ. Karteri, Ş. Karataş, and F. Yakuphanoglu, Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators, J. Mater. Sci. Mater. Electron. 27(5), 5284 (2016)
CrossRef
ADS
Google scholar
|
[282] |
J. Ito, J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet, J. Appl. Phys. 103(11), 113712 (2008)
CrossRef
ADS
Google scholar
|
[283] |
B. J. Kim, M. S. Kang, V. H. Pham, T. V. Cuong, E. J. Kim, J. S. Chung, S. H. Hur, and J. H. Cho, Lowvoltage solution-processed graphene transistors based on chemically and solvothermally reduced graphene oxide, J. Mater. Chem. 21(34), 13068 (2011)
CrossRef
ADS
Google scholar
|
[284] |
G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, and M. Chhowalla, Graphene oxide gate dielectric for graphene-based monolithic field effect transistors, Appl. Phys. Lett. 102(13), 133108 (2013)
CrossRef
ADS
Google scholar
|
[285] |
T. W. Kim, Y. Gao, O. Acton, H. L. Yip, H. Ma, H. Chen, and A. K. Y. Jen, Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications, Appl. Phys. Lett. 97(2), 023310 (2010)
CrossRef
ADS
Google scholar
|
[286] |
Y. Park, D. Gupta, C. Lee, and Y. Hong, Role of tunneling layer in graphene-oxide based organic nonvolatile memory transistors, Org. Electron. 13(12), 2887 (2012)
CrossRef
ADS
Google scholar
|
[287] |
X. Chen, S. Zhang, K. Wu, Z. Xu, H. Li, Y. Meng, X. Ma, L. Liu, and L. Li, Improving the charge injection in organic transistors by covalently linked graphene oxide/ metal electrodes, Adv. Electron. Mater. 2(4), 1500409 (2016)
CrossRef
ADS
Google scholar
|
[288] |
Z. Xu, X. Chen, S. Zhang, K. Wu, H. Li, Y. Meng, and L. Li, Minimizing electrode edge in organic transistors with ultrathin reduced graphene oxide for improving charge injection efficiency, Phys. Chem. Chem. Phys. 18(19), 13209 (2016)
CrossRef
ADS
Google scholar
|
[289] |
J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8(10), 3137 (2008)
CrossRef
ADS
Google scholar
|
[290] |
S. Basu, and P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors, Sens. Actuators B Chem. 173, 1 (2012)
CrossRef
ADS
Google scholar
|
[291] |
X. Yu, W. Zhang, P. Zhang, and Z. Su, Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges, Biosens. Bioelectron. 89, 72 (2017)
CrossRef
ADS
Google scholar
|
[292] |
R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A. L. Spetz, and R. Yakimova, Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection, Sens. Actuators B Chem. 155(2), 451 (2011)
CrossRef
ADS
Google scholar
|
[293] |
R. Stine, J. T. Robinson, P. E. Sheehan, and C. R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors, Adv. Mater. 22(46), 5297 (2010)
CrossRef
ADS
Google scholar
|
[294] |
B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, and G. J. Zhang, Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor, ACS Nano 8(3), 2632 (2014)
CrossRef
ADS
Google scholar
|
[295] |
X. Dong, Y. Shi, W. Huang, P. Chen, and L. J. Li, Electrical detection of DNA hybridization with singlebase specificity using transistors based on CVD-grown graphene sheets, Adv. Mater. 22(14), 1649 (2010)
CrossRef
ADS
Google scholar
|
[296] |
Z. Yin, Q. He, X. Huang, J. Zhang, S. Wu, P. Chen, G. Lu, Q. Zhang, Q. Yan, and H. Zhang, Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors, Nanoscale 4(1), 293 (2012)
CrossRef
ADS
Google scholar
|
[297] |
T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, Label-free detection of DNA hybridization using transistors based on CVD grown graphene, Biosens. Bioelectron. 41, 103 (2013)
CrossRef
ADS
Google scholar
|
[298] |
Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang, Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications, ACS Nano 4(6), 3201 (2010)
CrossRef
ADS
Google scholar
|
[299] |
S. Mao, K. Yu, G. Lu, and J. Chen, Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor, Nano Res. 4(10), 921 (2011)
CrossRef
ADS
Google scholar
|
[300] |
H. Chen, P. Chen, J. Huang, R. Selegard, M. Platt, A. Palaniappan, D. Aili, A. I. Tok, and B. Liedberg, Detection of matrilysin activity using polypeptide functionalized reduced graphene oxide field-effect transistor sensor, Anal. Chem. 88(6), 2994 (2016)
CrossRef
ADS
Google scholar
|
[301] |
G. Lu, L. E. Ocola, and J. Chen, Reduced graphene oxide for room-temperature gas sensors, Nanotechnology 20(44), 445502 (2009)
CrossRef
ADS
Google scholar
|
[302] |
O. Leenaerts, B. Partoens, and F. M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A firstprinciples study, Phys. Rev. B 77(12), 125416 (2008)
CrossRef
ADS
Google scholar
|
[303] |
G. Lu, K. Yu, L. E. Ocola, and J. Chen, Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors, Chem. Commun. 47(27), 7761 (2011)
CrossRef
ADS
Google scholar
|
[304] |
K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, Thin film transistor gas sensors incorporating highmobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide, ACS Appl. Mater. Interfaces 7(25), 14004 (2015)
CrossRef
ADS
Google scholar
|
[305] |
T. Q. Trung, N. T. Tien, D. Kim, J. H. Jung, O. J. Yoon, and N. E. Lee, High thermal responsiveness of a reduced graphene oxide field-effect transistor, Adv. Mater. 24(38), 5254 (2012)
CrossRef
ADS
Google scholar
|
[306] |
T. Q. Trung, S. Ramasundaram, and N. E. Lee, Infrared detection using transparent and flexible field-effect transistor array with solution processable nanocomposite channel of reduced graphene oxide and P(VDF-TrFE), Adv. Funct. Mater. 25(11), 1745 (2015)
CrossRef
ADS
Google scholar
|
[307] |
I. Y. Sohn, D. J. Kim, J. H. Jung, O. J. Yoon, T. N. Thanh, T. T. Quang, and N. E. Lee, pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors, Biosens. Bioelectron. 45, 70 (2013)
CrossRef
ADS
Google scholar
|
[308] |
Y. R. Li, S. Chang, C. T. Chang, W. L. Tsai, Y. K. Chiu, P. Y. Yang, and H. C. Cheng, High-sensitivity extendedgate field-effect transistors as pH sensors with oxygenmodified reduced graphene oxide films coated on different reverse-pyramid silicon structures as sensing heads, Jpn. J. Appl. Phys. 55(4S), 04EM08 (2016)
CrossRef
ADS
Google scholar
|
[309] |
E. Sharon, X. Liu, R. Freeman, O. Yehezkeli, and I. Willner, Label-free analysis of thrombin or Hg2+ ions by nucleic acid-functionalized graphene oxide matrices assembled on field-effect transistors, Electroanalysis 25(4), 851 (2013)
CrossRef
ADS
Google scholar
|
[310] |
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
CrossRef
ADS
Google scholar
|
[311] |
W. Huang, Q. X. Pei, Z. Liu, and Y. W. Zhang, Thermal onductivity of fluorinated graphene: A non-equilibrium molecular dynamics study, Chem. Phys. Lett. 552, 97 (2012)
CrossRef
ADS
Google scholar
|
[312] |
Q. X. Pei, Z. D. Sha, and Y. W. Zhang, A theoretical analysis of the thermal conductivity of hydrogenated graphene, Carbon 49(14), 4752 (2011)
CrossRef
ADS
Google scholar
|
[313] |
Z. X. Xie, L. M. Tang, C. N. Pan, K. M. Li, K. Q. Chen, and W. Duan, Enhancement of thermoelectric properties in graphene nanoribbons modulated with stub structures, Appl. Phys. Lett. 100(7), 073105 (2012)
CrossRef
ADS
Google scholar
|
[314] |
W. Park, J. Hu, L. A. Jauregui, X. Ruan, and Y. P. Chen, Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites, Appl. Phys. Lett. 104(11), 113101 (2014)
CrossRef
ADS
Google scholar
|
[315] |
G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, and F. Mauri, Thermal conductivity of graphene and graphite: Collective excitations and mean free paths, Nano Lett. 14(11), 6109 (2014)
CrossRef
ADS
Google scholar
|
[316] |
J. Choi, N. D. K. Tu, S. S. Lee, H. Lee, J. S. Kim, and H. Kim, Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties, Macromol. Res. 22(10), 1104 (2014)
CrossRef
ADS
Google scholar
|
[317] |
T. Schwamb, B. R. Burg, N. C. Schirmer, and D. Poulikakos, An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures, Nanotechnology 20(40), 405704 (2009)
CrossRef
ADS
Google scholar
|
[318] |
X. Mu, X. Wu, T. Zhang, D. B. Go, and T. Luo, Thermal transport in graphene oxide–from ballistic extreme to amorphous limit, Sci. Rep. 4(1), 3909 (2015)
CrossRef
ADS
Google scholar
|
[319] |
S. Lin and M. J. Buehler, Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry, Carbon 77, 351 (2014)
CrossRef
ADS
Google scholar
|
[320] |
Y. Y. Zhang, Q. X. Pei, X. Q. He, and Y. W. Mai, A molecular dynamics simulation study on thermal conductivity of functionalized bilayer graphene sheet, Chem. Phys. Lett. 622, 104 (2015)
CrossRef
ADS
Google scholar
|
[321] |
B. Y. Cao and Y. W. Li, A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics, J. Chem. Phys. 133(2), 024106 (2010)
CrossRef
ADS
Google scholar
|
[322] |
F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106(14), 6082 (1997)
CrossRef
ADS
Google scholar
|
[323] |
X. Shen, X. Lin, J. Jia, Z. Wang, Z. Li, and J. K. Kim, Tunable thermal conductivities of graphene oxide by functionalization and tensile loading, Carbon 80, 235 (2014)
CrossRef
ADS
Google scholar
|
[324] |
M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. Haji Hassan, M. B. Ali Bashir, and M. Mohamad, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew. Sustain. Energy Rev. 30, 337 (2014)
CrossRef
ADS
Google scholar
|
[325] |
H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy 2(2), 190 (2013)
CrossRef
ADS
Google scholar
|
[326] |
Y. Xu, Z. Li, and W. Duan, Thermal and thermoelectric properties of graphene, Small 10(11), 2182 (2014)
CrossRef
ADS
Google scholar
|
[327] |
H. Sevinçli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B 81(11), 113401 (2010)
CrossRef
ADS
Google scholar
|
[328] |
G. D. Mahan, Figure of merit for thermoelectrics, J. Appl. Phys. 65(4), 1578 (1989)
CrossRef
ADS
Google scholar
|
[329] |
J. O. Sofo and G. D. Mahan, Optimum band gap of a thermoelectric material, Phys. Rev. B 49(7), 4565 (1994)
CrossRef
ADS
Google scholar
|
[330] |
N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L. J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan, and Q. Yan, Enhanced thermopower of graphene films with oxygen plasma treatment, ACS Nano 5(4), 2749 (2011)
CrossRef
ADS
Google scholar
|
[331] |
P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett. 102(16), 166808 (2009)
CrossRef
ADS
Google scholar
|
[332] |
F. Li, K. Cai, S. Shen, and S. Chen, Preparation and thermoelectric properties of reduced graphene oxide/PEDOT: PSS composite films, Synth. Met. 197, 58 (2014)
CrossRef
ADS
Google scholar
|
[333] |
K. Zhang, Y. Zhang, and S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures, Sci. Rep. 3(1), 3448 (2013)
CrossRef
ADS
Google scholar
|
[334] |
Y. Zhao, G. S. Tang, Z. Z. Yu, and J. S. Qi, The effect of graphite oxide on the thermoelectric properties of polyaniline, Carbon 50(8), 3064 (2012)
CrossRef
ADS
Google scholar
|
[335] |
W. Zhao, Y. Wang, Z. Wu, W. Wang, K. Bi, Z. Liang, J. Yang, Y. Chen, Z. Xu, and Z. Ni, Defect-engineered heat transport in graphene: A route to high efficient thermal rectification, Sci. Rep. 5(1), 11962 (2015)
CrossRef
ADS
Google scholar
|
[336] |
S. Zhou, Y. Guo, and J. Zhao, Enhanced thermoelectric properties of graphene oxide patterned by nanoroads, Phys. Chem. Chem. Phys. 18(15), 10607 (2016)
CrossRef
ADS
Google scholar
|
[337] |
J. Kim, F. Kim, and J. Huang, Seeing graphene-based sheets, Mater. Today 13(3), 28 (2010)
CrossRef
ADS
Google scholar
|
[338] |
E. Morales-Narváez and A. Merkoci, Graphene oxide as an optical biosensing platform, Adv. Mater. 24(25), 3298 (2012)
CrossRef
ADS
Google scholar
|
[339] |
Z. Liu, X. Zhang, X. Yan, Y. Chen, and J. Tian, Nonlinear optical properties of graphene-based materials, Chin. Sci. Bull. 57(23), 2971 (2012)
CrossRef
ADS
Google scholar
|
[340] |
X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. 1(3), 203 (2008)
CrossRef
ADS
Google scholar
|
[341] |
Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, Photoluminescence and band gap modulation in graphene oxide, Appl. Phys. Lett. 94(11), 111909 (2009)
CrossRef
ADS
Google scholar
|
[342] |
G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Adv. Mater. 22(4), 505 (2010)
CrossRef
ADS
Google scholar
|
[343] |
S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, F. Bonaccorso, K. P. Bohnen, H. Löhneysen, M. M. Kappes, P. M. Ajayan, M. C. Hersam, A. C. Ferrari, and R. Krupke, Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene, Nano Lett. 10(5), 1589 (2010)
CrossRef
ADS
Google scholar
|
[344] |
D. Sharma, S. Kanchi, M. I. Sabela, and K. Bisetty, Insight into the biosensing of graphene oxide: Present and future prospects, Arab. J. Chem. 9(2), 238 (2016)
CrossRef
ADS
Google scholar
|
[345] |
C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, Graphene based sensors and biosensors, Trends Analyt. Chem. 91, 53 (2017)
CrossRef
ADS
Google scholar
|
[346] |
X. Zhao, Z. B. Liu, W. B. Yan, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide, Appl. Phys. Lett. 98(12), 121905 (2011)
CrossRef
ADS
Google scholar
|
[347] |
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
CrossRef
ADS
Google scholar
|
[348] |
G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser, Opt. Express 20(17), 19463 (2012)
CrossRef
ADS
Google scholar
|
[349] |
X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, Allnormal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber, Laser Phys. Lett. 10(7), 075108 (2013)
CrossRef
ADS
Google scholar
|
[350] |
L. Hou, Q. Lin, Y. Wang, Z. Chen, J. Sun, H. Guo, Y. Bai, H. Chen, B. Lu, and J. Bai, Femtosecond ytterbiumdoped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber, Appl. Phys. Express 11(1), 012702 (2018)
CrossRef
ADS
Google scholar
|
[351] |
Z. B. Liu, X. He, and D. N. Wang, Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution, Opt. Lett. 36(16), 3024 (2011)
CrossRef
ADS
Google scholar
|
[352] |
J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, Graphene oxide mode-locked femtosecond erbium-doped fiber lasers, Opt. Express 20(14), 15474 (2012)
CrossRef
ADS
Google scholar
|
[353] |
J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser, Opt. Express 20(21), 23653 (2012)
CrossRef
ADS
Google scholar
|
[354] |
J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers, Photon. Res. 3(4), 119 (2015)
CrossRef
ADS
Google scholar
|
[355] |
X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers, Sci. Rep. 6(1), 25266 (2016)
CrossRef
ADS
Google scholar
|
[356] |
M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, A. mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field, Appl. Phys. Express 5(11), 112702 (2012)
CrossRef
ADS
Google scholar
|
[357] |
R. Zhang, X. Li, S. Dai, J. Li, L. Cao, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, All-fiber 2 mm mode-locked thulium-doped fiber laser with the graphene oxide film, Optik (Stuttg.) 157, 1292 (2018)
CrossRef
ADS
Google scholar
|
[358] |
L. Gao, T. Zhu, K. S. Chiang, and W. Huang, Polarization switching in a mode-locked fiber laser based on reduced graphene oxide, IEEE Photonic. Tech. L. 27(24), 2535 (2015)
CrossRef
ADS
Google scholar
|
[359] |
Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers, Nanotechnology 22(45), 455203 (2011)
CrossRef
ADS
Google scholar
|
[360] |
S. W. Harun, M. B. S. Sabran, S. M. Azooz, A. Z. Zulkifli, M. A. Ismail, and H. Ahmad, Q-switching and modelocking pulse generation with graphene oxide paper-based saturable absorber, J. Eng. (Stevenage) 2015(6), 208 (2015)
CrossRef
ADS
Google scholar
|
[361] |
G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber, Appl. Phys. Lett. 101(24), 241106 (2012)
CrossRef
ADS
Google scholar
|
[362] |
C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, High-energy passively Q-switched 2 mm Tm3+-doped double-clad fiber laser using grapheneoxide-deposited fiber taper, Opt. Express 21(1), 204 (2013)
CrossRef
ADS
Google scholar
|
[363] |
H. Y. Lin, X. H. Huang, X. Liu, D. Sun, W. Z. Zhu, and Y. C. Xu, Passively Q-switched c-cut Nd:YVO4 laser using graphene-oxide as a saturable absorber, Optik (Stuttg.) 127(10), 4545 (2016)
CrossRef
ADS
Google scholar
|
[364] |
J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber, Laser Phys. Lett. 10(3), 035103 (2013)
CrossRef
ADS
Google scholar
|
[365] |
Q. Song, G. Wang, B. Zhang, W. Wang, M. Wang, Q. Zhang, G. Sun, Y. Bo, and Q. Peng, Diode-pumped passively dual-wavelength Q-switched Nd:GYSGG laser using graphene oxide as the saturable absorber, Appl. Opt. 54(10), 2688 (2015)
CrossRef
ADS
Google scholar
|
[366] |
J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation, Chin. Phys. Lett. 29(11), 114206 (2012)
CrossRef
ADS
Google scholar
|
[367] |
X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses, J. Phys. Chem. Lett. 3(6), 785 (2012)
CrossRef
ADS
Google scholar
|
[368] |
N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids, J. Phys. Chem. C 117(13), 6842 (2013)
CrossRef
ADS
Google scholar
|
[369] |
N. Liaros, K. Iliopoulos, M. M. Stylianakis, E. Koudoumas, and S. Couris, Optical limiting action of few layered graphene oxide dispersed in different solvents, Opt. Mater. 36(1), 112 (2013)
CrossRef
ADS
Google scholar
|
[370] |
S. Roy, and C. Yadav, Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films, Appl. Phys. Lett. 103(24), 241113 (2013)
CrossRef
ADS
Google scholar
|
[371] |
Z. Cheng, H. Li, H. Shi, J. Ren, Q. H. Yang, and P. Wang, Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normaldispersion Yb-doped fiber laser, Opt. Express 23(6), 7000 (2015)
CrossRef
ADS
Google scholar
|
[372] |
C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol, Sci. Rep. 5(1), 15362 (2015)
CrossRef
ADS
Google scholar
|
[373] |
A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites, Carbon 89, 130 (2015)
CrossRef
ADS
Google scholar
|
[374] |
S. R. Bongu, P. B. Bisht, T. V. Thu, and A. Sandhu, Multiple nonlinear optical response of gold decorated-reduced graphene oxide-nanocomposite for photonic applications, J. At. Mol. Condens. Nano Phys. 2(3), 207 (2015)
CrossRef
ADS
Google scholar
|
[375] |
G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, Giant broadband nonlinear optical absorption response in dispersed graphene single sheets, Nat. Photonics 5(9), 554 (2011)
CrossRef
ADS
Google scholar
|
[376] |
N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K. S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide, Nanoscale 8(5), 2908 (2016)
CrossRef
ADS
Google scholar
|
[377] |
Z. B. Liu, Y. F. Xu, X. Y. Zhang, X. L. Zhang, Y. S. Chen, and J. G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties, J. Phys. Chem. B 113(29), 9681 (2009)
CrossRef
ADS
Google scholar
|
[378] |
J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting, Carbon 49(6), 1900 (2011)
CrossRef
ADS
Google scholar
|
[379] |
M. Bala Murali Krishna, N. Venkatramaiah, R. Venkatesan, and D. Narayana Rao, Synthesis and structural, spectroscopic and nonlinear optical measurements of graphene oxide and its composites with metal and metal free porphyrins, J. Mater. Chem. 22(7), 3059 (2012)
CrossRef
ADS
Google scholar
|
[380] |
M. K. Kavitha, H. John, P. Gopinath, and R. Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties, J. Mater. Chem. C 1(23), 3669 (2013)
CrossRef
ADS
Google scholar
|
[381] |
B. Chen, C. He, W. Song, C. Zhao, Y. Gao, Z. Chen, Y. Dong, Y. Wu, and R. Li, Enhanced reverse saturable absorption of electrostatic self-assembled layer by layer films containing (8-quinolineoxy-5-sulfonic acid)phthalocyanine cobalt and graphene oxide, RSC Adv. 5(68), 55150 (2015)
CrossRef
ADS
Google scholar
|
[382] |
E. Garmire, Overview of nonlinear optics, in: Nonlinear Optics, N. Kamanina (Ed.), 2012, INTECH Open Access Publisher: Croatia, pp 1–50
CrossRef
ADS
Google scholar
|
[383] |
Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes, Appl. Phys. Lett. 94(2), 021902 (2009)
CrossRef
ADS
Google scholar
|
[384] |
Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, Ultrafast dynamics and nonlinear optical responses from sp2- and sp3-hybridized domains in graphene oxide, J. Phys. Chem. Lett. 2(16), 1972 (2011)
CrossRef
ADS
Google scholar
|
[385] |
H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction, Opt. Express 22(16), 19375 (2014)
CrossRef
ADS
Google scholar
|
[386] |
S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction, J. Appl. Phys. 120(1), 013101 (2016)
CrossRef
ADS
Google scholar
|
[387] |
S. Guang, S. Yin, H. Xu, W. Zhu, Y. Gao, and Y. Song, Synthesis and properties of long conjugated organic optical limiting materials with different p-electron conjugation bridge structure, Dyes Pigments 73(3), 285 (2007)
CrossRef
ADS
Google scholar
|
[388] |
M. Feng, H. Zhan, and Y. Chen, Nonlinear optical and optical limiting properties of graphene families, Appl. Phys. Lett. 96(3), 033107 (2010)
CrossRef
ADS
Google scholar
|
[389] |
J. Balapanuru, J. X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q. H. Xu, and K. P. Loh, A graphene oxide-organic dye ionic complex with DNAsensing and optical-limiting properties, Angew. Chem. Int. Ed. 49(37), 6549 (2010)
CrossRef
ADS
Google scholar
|
[390] |
H. I. Elim, J. Ouyang, S. H. Goh, and W. Ji, Opticallimiting-based materials of mono-functional, multifunctional and supramolecular C60-containing polymers, Thin Solid Films 477(1–2), 63 (2005)
CrossRef
ADS
Google scholar
|
[391] |
X. L. Zhang, X. Zhao, Z. B. Liu, S. Shi, W. Y. Zhou, J. G. Tian, Y. F. Xu, and Y. S. Chen, Nonlinear optical and optical limiting properties of graphene oxide–Fe3O4hybrid material, J. Opt. 13(7), 075202 (2011)
CrossRef
ADS
Google scholar
|
[392] |
T. He, W. Wei, L. Ma, R. Chen, S. Wu, H. Zhang, Y. Yang, J. Ma, L. Huang, G. G. Gurzadyan, and H. Sun, Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF4:Yb3+/Er3+ nanoparticles, Small 8(14), 2163 (2012)
CrossRef
ADS
Google scholar
|
[393] |
T. Remyamol, H. John, and P. Gopinath, Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline, Carbon 59, 308 (2013)
CrossRef
ADS
Google scholar
|
[394] |
W. Song, C. He, W. Zhang, Y. Gao, Y. Yang, Y. Wu, Z. Chen, X. Li, and Y. Dong, Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine, Carbon 77, 1020 (2014)
CrossRef
ADS
Google scholar
|
[395] |
C. Zheng, W. Li, X. Xiao, X. Ye, and W. Chen, Synthesis and optical limiting properties of graphene oxide/ bimetallic nanoparticles, Optik (Stuttg.) 127(4), 1792 (2016)
CrossRef
ADS
Google scholar
|
[396] |
S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique, RSC Adv. 6(13), 10319 (2016)
CrossRef
ADS
Google scholar
|
[397] |
D. M. A. S. Dissanayake, M. P. Cifuentes, and M. G. Humphrey, Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes, Coord. Chem. Rev. 375, 489 (2018)
CrossRef
ADS
Google scholar
|
[398] |
M. N. Muralidharan, S. Mathew, A. Seema, P. Radhakrishnan, and T. Kurian, Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites, Mater. Chem. Phys. 171, 367 (2016)
CrossRef
ADS
Google scholar
|
[399] |
X. Zheng, M. Feng, and H. Zhan, Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials, J. Mater. Chem. C 1(41), 6759 (2013)
CrossRef
ADS
Google scholar
|
[400] |
L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, S. P. Lau, Y. H. Tsang, J. Yao, and D. Xu, Fabrication of covalently functionalized graphene oxide incorporated solidstate hybrid silica gel glasses and their improved nonlinear optical response, J. Phys. Chem. C 117(44), 23108 (2013)
CrossRef
ADS
Google scholar
|
[401] |
J. Wang, M. Feng, and H. Zhan, Preparation, characterization, and nonlinear optical properties of graphene oxide-carboxymethyl cellulose composite films, Opt. Laser Technol. 57, 84 (2014)
CrossRef
ADS
Google scholar
|
[402] |
X. F. Jiang, L. Polavarapu, H. Zhu, R. Ma, and Q. H. Xu, Flexible, robust and highly efficient broadband nonlinear optical materials based on graphene oxide impregnated polymer sheets, Photon. Res. 3(3), A87 (2015)
CrossRef
ADS
Google scholar
|
[403] |
S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region, Appl. Phys. Lett. 107(5), 051104 (2015)
CrossRef
ADS
Google scholar
|
[404] |
N. Liaros, E. Koudoumas, and S. Couris, Broadband near infrared optical power limiting of few layered graphene oxides, Appl. Phys. Lett. 104(19), 191112 (2014)
CrossRef
ADS
Google scholar
|
[405] |
W. K. C. Yung, G. Li, H. M. Liem, H. S. Choy, and Z. Cai, Eye-friendly reduced graphene oxide circuits with nonlinear optical transparency on flexible poly(ethylene terephthalate) substrates, J. Mater. Chem. C 3(43), 11294 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |