Properties of spin–orbit-coupled Bose–Einstein condensates
Yongping Zhang, Maren Elizabeth Mossman, Thomas Busch, Peter Engels, Chuanwei Zhang
Properties of spin–orbit-coupled Bose–Einstein condensates
The experimental and theoretical research of spin–orbit-coupled ultracold atomic gases has advanced and expanded rapidly in recent years. Here, we review some of the progress that either was pioneered by our own work, has helped to lay the foundation, or has developed new and relevant techniques. After examining the experimental accessibility of all relevant spin–orbit coupling parameters, we discuss the fundamental properties and general applications of spin–orbit-coupled Bose–Einstein condensates (BECs) over a wide range of physical situations. For the harmonically trapped case, we show that the ground state phase transition is a Dicke-type process and that spin–orbit-coupled BECs provide a unique platform to simulate and study the Dicke model and Dicke phase transitions. For a homogeneous BEC, we discuss the collective excitations, which have been observed experimentally using Bragg spectroscopy. They feature a roton-like minimum, the softening of which provides a potential mechanism to understand the ground state phase transition. On the other hand, if the collective dynamics are excited by a sudden quenching of the spin–orbit coupling parameters, we show that the resulting collective dynamics can be related to the famous Zitterbewegung in the relativistic realm. Finally, we discuss the case of a BEC loaded into a periodic optical potential. Here, the spin–orbit coupling generates isolated flat bands within the lowest Bloch bands whereas the nonlinearity of the system leads to dynamical instabilities of these Bloch waves. The experimental verification of this instability illustrates the lack of Galilean invariance in the system.
atomic Bose–Einstein condensate / spin–orbit coupling / collective excitations / optical lattice
[1] |
A. L. Fetter, Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)
CrossRef
ADS
Google scholar
|
[2] |
Y. J. Lin, R. L. Compton, K. Jiménez-García,J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462(7273), 628 (2009)
CrossRef
ADS
Google scholar
|
[3] |
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)
CrossRef
ADS
Google scholar
|
[4] |
H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett. 111(18), 185302 (2013)
CrossRef
ADS
Google scholar
|
[5] |
M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett. 107(25), 255301 (2011)
CrossRef
ADS
Google scholar
|
[6] |
I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
CrossRef
ADS
Google scholar
|
[7] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[8] |
T. Jungwirth, J. Wunderlich, and K. Olejník, Spin Hall effect devices, Nat. Mater. 11(5), 382 (2012)
CrossRef
ADS
Google scholar
|
[9] |
Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
CrossRef
ADS
Google scholar
|
[10] |
J. Ruseckas, G. Juzeliūnas, P. Öhberg, and M. Fleischhauer, Non-Abelian gauge potentials for ultracold atoms with degenerate dark states, Phys. Rev. Lett. 95(1), 010404 (2005)
CrossRef
ADS
Google scholar
|
[11] |
S. L. Zhu, H. Fu, C. J. Wu, S. C. Zhang, and L. M. Duan, Spin Hall effects for cold atoms in a light-induced gauge potential, Phys. Rev. Lett. 97(24), 240401 (2006)
CrossRef
ADS
Google scholar
|
[12] |
X. J. Liu, X. Liu, L. C. Kwek, and C. H. Oh, Optically induced spin-Hall effect in atoms, Phys. Rev. Lett. 98(2), 026602 (2007)
CrossRef
ADS
Google scholar
|
[13] |
T. D. Stanescu, B. Anderson, and V. Galitski, Spin– orbit coupled Bose–Einstein condensates, Phys. Rev. A 78(2), 023616 (2008)
CrossRef
ADS
Google scholar
|
[14] |
J. Larson, J. P. Martikainen, A. Collin, and E. Sjöqvist, Spin–orbit-coupled Bose–Einstein condensate in a tilted optical lattice, Phys. Rev. A 82(4), 043620 (2010)
CrossRef
ADS
Google scholar
|
[15] |
M. Merkl, A. Jacob, F. E. Zimmer, P. Öhberg, and L. Santos, Chiral confinement in quasirelativistic Bose–Einstein condensates, Phys. Rev. Lett. 104(7), 073603 (2010)
CrossRef
ADS
Google scholar
|
[16] |
R. A. Williams, L. J. LeBlanc, K. Jiménez-García, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Synthetic partial waves in ultracold atomic collisions, Science 335(6066), 314 (2012)
CrossRef
ADS
Google scholar
|
[17] |
L. J. LeBlanc, M. C. Beeler, K. Jiménez-García, A. R. Perry, S. Sugawa, R. A. Williams, and I. B. Spielman, Direct observation of Zitterbewegung in a Bose–Einstein condensate, New J. Phys. 15(7), 073011 (2013)
CrossRef
ADS
Google scholar
|
[18] |
M. C. Beeler, R. A. Williams, K. Jiménez-García, L. J. LeBlanc, A. R. Perry, and I. B. Spielman, The spin Hall effect in a quantum gas, Nature 498(7453), 201 (2013)
CrossRef
ADS
Google scholar
|
[19] |
K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, C. Qu, M. Gong, C. Zhang, and I. B. Spielman, Tunable spin–orbit coupling via strong driving in ultracold-atom systems, Phys. Rev. Lett. 114(12), 125301 (2015)
CrossRef
ADS
Google scholar
|
[20] |
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109(9), 095302 (2012)
CrossRef
ADS
Google scholar
|
[21] |
C. L. Qu, C. Hamner, M. Gong, C. W. Zhang, and P. Engels, Observation of Zitterbewegung in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A 88, 021604(R) (2013)
|
[22] |
C. Hamner, C. Qu, Y. Zhang, J. J. Chang, M. Gong, C. Zhang, and P. Engels, Dicke-type phase transition in a spin–orbit-coupled Bose–Einstein condensate, Nat. Commun. 5, 4023 (2014)
CrossRef
ADS
Google scholar
|
[23] |
M. A. Khamehchi, Y. Zhang, C. Hamner, T. Busch, and P. Engels, Measurement of collective excitations in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(6), 063624 (2014)
CrossRef
ADS
Google scholar
|
[24] |
C. Hamner, Y. Zhang, M. A. Khamehchi, M. J. Davis, and P. Engels, Spin–orbit-coupled Bose–Einstein condensates in a one-dimensional optical lattice, Phys. Rev. Lett. 114(7), 070401 (2015)
CrossRef
ADS
Google scholar
|
[25] |
A. J. Olson, S. J. Wang, R. J. Niffenegger, C. H. Li, C. H. Greene, and Y. P. Chen, Tunable Landau–Zener transitions in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(1), 013616 (2014)
CrossRef
ADS
Google scholar
|
[26] |
A. J. Olson, Chuan-Hsun Li, David B. Blasing, R. J. Niffenegger, and Yong P. Chen, Engineering an atominterferometer with modulated light-induced 3 spin– orbit coupling, arXiv: 1502.04722 (2015)
|
[27] |
J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett. 109(11), 115301 (2012)
CrossRef
ADS
Google scholar
|
[28] |
S. C. Ji, J. Y. Zhang, L. Zhang, Z. D. Du, W. Zheng, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas, Nat. Phys. 10(4), 314 (2014)
CrossRef
ADS
Google scholar
|
[29] |
S. C. Ji, L. Zhang, X. T. Xu, Z. Wu, Y. Deng, S. Chen, and J. W. Pan, Softening of roton and phonon modes in a Bose-Einstein condensate with spin–orbit coupling, Phys. Rev. Lett. 114(10), 105301 (2015)
CrossRef
ADS
Google scholar
|
[30] |
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates, arXiv: 1511.08170 (2015)
|
[31] |
Z. K. Fu, P. J. Wang, S. J. Chai, L. H. Huang, and J. Zhang, Bose–Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers, Phys. Rev. A 84, 043609 (2011)
CrossRef
ADS
Google scholar
|
[32] |
P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)
CrossRef
ADS
Google scholar
|
[33] |
Z. Fu, L. Huang, Z. Meng, P. Wang, X. J. Liu, H. Pu, H. Hu, and J. Zhang, Radio-frequency spectroscopy of a strongly interacting spin–orbit-coupled Fermi gas, Phys. Rev. A 87(5), 053619 (2013)
CrossRef
ADS
Google scholar
|
[34] |
Z. Fu, L. Huang, Z. Meng, P. Wang, L. Zhang, S. Zhang, H. Zhai, P. Zhang, and J. Zhang, Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases, Nat. Phys. 10(2), 110 (2013)
CrossRef
ADS
Google scholar
|
[35] |
L. Huang, Z. Meng, P. Wang, P. Peng, S.L. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of a two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys. (2016), arXiv: 1506.02861
|
[36] |
Z. Meng, L. Huang, P. Peng, D. Li, L. Chen, Y. Xu, C. Zhang, P. Wang, and J. Zhang, Experimental observation of topological band gap opening in ultracold Fermi gases with two-dimensional spin–orbit coupling, arXiv: 1511.08492 (2015)
|
[37] |
X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.F. Xu, L. You, and R. Wang, Tunable spin–orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep. 6, 18983 (2016), arXiv: 1502.07091
|
[38] |
Y. Xu and C. Zhang, Topological Fulde–Ferrell superfluids of a spin–orbit coupled Fermi gas, Int. J. Mod. Phys. B 29(01), 1530001 (2015)
CrossRef
ADS
Google scholar
|
[39] |
Y. Li, G. I. Martone, and S. Stringari, Bose-Einstein condensation with spin–orbit coupling, Annual Review of Cold Atoms and Molecules 3, 201 (2015)
|
[40] |
C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin–orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)
CrossRef
ADS
Google scholar
|
[41] |
T. L. Ho and S. Zhang, Bose–Einstein condensates with spin–orbit interaction, Phys. Rev. Lett. 107(15), 150403 (2011)
CrossRef
ADS
Google scholar
|
[42] |
C. J. Wu, I. Mondragon-Shem, and X. F. Zhou, Unconventional Bose–Einstein condensations from spin–orbit coupling, Chin. Phys. Lett. 28(9), 097102 (2011)
CrossRef
ADS
Google scholar
|
[43] |
Y. Li, L. P. Pitaevskii, and S. Stringari, Quantum tricriticality and phase transitions in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 108(22), 225301 (2012)
CrossRef
ADS
Google scholar
|
[44] |
Q. Zhu, C. Zhang, and B. Wu, Exotic superfluidity in spin–orbit coupled Bose–Einstein condensates, Europhys. Lett. 100(5), 50003 (2012)
CrossRef
ADS
Google scholar
|
[45] |
L. Wen, Q. Sun, H. Q. Wang, A. C. Ji, and W. M. Liu, Ground state of spin-1 Bose–Einstein condensates with spin–orbit coupling in a Zeeman field, Phys. Rev. A 86, 043602 (2012)
CrossRef
ADS
Google scholar
|
[46] |
X. L. Cui and Q. Zhou, Enhancement of condensate depletion due to spin–orbit coupling, Phys. Rev. A 87, 031604(R) (2013)
|
[47] |
Y. Li, G. I. Martone, L. P. Pitaevskii, and S. Stringari, Superstripes and the excitation spectrum of a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 110(23), 235302 (2013)
CrossRef
ADS
Google scholar
|
[48] |
G. I. Martone, Y. Li, and S. Stringari, Approach for making visible and stable stripes in a spin–orbit-coupled Bose–Einstein superfluid, Phys. Rev. A 90, 041604(R) (2014)
|
[49] |
Z. Lan and P. Öhberg, Raman-dressed spin-1 spin–orbitcoupled quantum gas, Phys. Rev. A 89, 023630 (2014)
CrossRef
ADS
Google scholar
|
[50] |
S. Sinha, R. Nath, and L. Santos, Trapped twodimensional condensates with synthetic spin–orbit coupling, Phys. Rev. Lett. 107(27), 270401 (2011)
CrossRef
ADS
Google scholar
|
[51] |
H. Hu, B. Ramachandhran, H. Pu, and X. J. Liu, Spin– orbit coupled weakly interacting Bose–Einstein condensates in harmonic traps, Phys. Rev. Lett. 108(1), 010402 (2012)
CrossRef
ADS
Google scholar
|
[52] |
Y. Zhang, L. Mao, and C. Zhang, Mean-field dynamics of spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 108(3), 035302 (2012)
CrossRef
ADS
Google scholar
|
[53] |
S. Gautam and S. K. Adhikari, Phase separation in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(4), 043619 (2014)
CrossRef
ADS
Google scholar
|
[54] |
O. V. Marchukov, A. G. Volosniev, D. V. Fedorov, A. S. Jensen, and N. T. Zinner, Statistical properties of spectra in harmonically trapped spin–orbit coupled systems, J. Phys. At. Mol. Opt. Phys. 47(19), 195303 (2014)
CrossRef
ADS
Google scholar
|
[55] |
W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi, Bose–Hubbard models with synthetic spin–orbit coupling: Mott insulators, spin textures, and superfluidity, Phys. Rev. Lett. 109(8), 085302 (2012)
CrossRef
ADS
Google scholar
|
[56] |
Z. Cai, X. Zhou, and C. Wu, Magnetic phases of bosons with synthetic spin–orbit coupling in optical lattices, Phys. Rev. A 85, 061605(R) (2012)
|
[57] |
M. J. Edmonds, J. Otterbach, R. G. Unanyan, M. Fleischhauer, M. Titov, and P. Öhberg, From Anderson to anomalous localization in cold atomic gases with effective spin–orbit coupling, New J. Phys. 14(7), 073056 (2012)
CrossRef
ADS
Google scholar
|
[58] |
G. B. Zhu, Q. Sun, Y. Y. Zhang, K. S. Chan, W. M. Liu, and A. C. Ji, Spin-based effects and transport properties of a spin–orbit-coupled hexagonal optical lattice, Phys. Rev. A 88(2), 023608 (2013)
CrossRef
ADS
Google scholar
|
[59] |
L. Zhou, H. Pu, and W. Zhang, Anderson localization of cold atomic gases with effective spin–orbit interaction in a quasiperiodic optical lattice, Phys. Rev. A 87(2), 023625 (2013)
CrossRef
ADS
Google scholar
|
[60] |
Y. Qian, M. Gong, V. W. Scarola, and C. Zhang, Spin– orbit driven transitions between Mott insulators and finite momentum superfluids of bosons in optical lattices, arXiv: 1312.4011 (2013)
|
[61] |
Y. V. Kartashov, V. V. Konotop, and F. K. Abdullaev, Gap solitons in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 111(6), 060402 (2013)
CrossRef
ADS
Google scholar
|
[62] |
H. Sakaguchi and B. Li, Vortex lattice solutions to the Gross–Pitaevskii equation with spin–orbit coupling in optical lattices, Phys. Rev. A 87(1), 015602 (2013)
CrossRef
ADS
Google scholar
|
[63] |
V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Fundamental, multipole, and half-vortex gap solitons in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 112(18), 180403 (2014)
CrossRef
ADS
Google scholar
|
[64] |
S. Zhang, W. S. Cole, A. Paramekanti, and N. Trivedi, Spin–orbit coupling in optical lattices, Annual Review of Cold Atoms and Molecules 3, 135 (2015)
CrossRef
ADS
Google scholar
|
[65] |
D. Toniolo and J. Linder, Superfluidity breakdown and multiple roton gaps in spin–orbit-coupled Bose–Einstein condensates in an optical lattice, Phys. Rev. A 89, 061605(R) (2014)
|
[66] |
J. Zhao, S. Hu, J. Chang, P. Zhang, and X. Wang, Ferromagnetism in a two-component Bose–Hubbard model with synthetic spin–orbit coupling, Phys. Rev. A 89(4), 043611 (2014)
CrossRef
ADS
Google scholar
|
[67] |
Z. Xu, W. S. Cole, and S. Zhang, Mott-superfluid transition for spin–orbit-coupled bosons in one-dimensional optical lattices, Phys. Rev. A 89, 051604(R) (2014)
|
[68] |
Y. Cheng, G. Tang, and S. K. Adhikari, Localization of a spin–orbit-coupled Bose–Einstein condensate in a bichromatic optical lattice, Phys. Rev. A 89(6), 063602 (2014)
CrossRef
ADS
Google scholar
|
[69] |
M. Piraud, Z. Cai, I. P. McCulloch, and U. Schollwöck, Quantum magnetism of bosons with synthetic gauge fields in one-dimensional optical lattices: A density-matrix renormalization-group study, Phys. Rev. A 89(6), 063618 (2014)
CrossRef
ADS
Google scholar
|
[70] |
W. Han, G. Juzeliūnas, W. Zhang, and W. M. Liu, Supersolid with nontrivial topological spin textures in spin–orbit-coupled Bose gases, Phys. Rev. A 91(1), 013607 (2015)
CrossRef
ADS
Google scholar
|
[71] |
W. Li, L. Chen, Z. Chen, Y. Hu, Z. Zhang, and Z. Liang, Probing the flat band of optically trapped spin–orbitalcoupled Bose gases using Bragg spectroscopy, Phys. Rev. A 91(2), 023629 (2015)
CrossRef
ADS
Google scholar
|
[72] |
Y. Zhang, Y. Xu, and T. Busch, Gap solitons in spin– orbit-coupled Bose–Einstein condensates in optical lattices, Phys. Rev. A 91(4), 043629 (2015)
CrossRef
ADS
Google scholar
|
[73] |
D. W. Zhang, L. B. Fu, Z. D. Wang, and S. L. Zhu, Josephson dynamics of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential, Phys. Rev. A 85(4), 043609 (2012)
CrossRef
ADS
Google scholar
|
[74] |
M. A. Garcia-March, G. Mazzarella, L. Dell’Anna, B. Juliá-Díaz, L. Salasnich, and A. Polls, Josephson physics of spin–orbit-coupled elongated Bose–Einstein condensates, Phys. Rev. A 89(6), 063607 (2014)
CrossRef
ADS
Google scholar
|
[75] |
R. Citro and A. Naddeo, Spin–orbit coupled Bose– Einstein condensates in a double well, Eur. Phys. J. Spec. Top. 224(3), 503 (2015)
CrossRef
ADS
Google scholar
|
[76] |
X. Q. Xu and J. H. Han, Spin–orbit coupled Bose– Einstein condensate under rotation, Phys. Rev. Lett. 107(20), 200401 (2011)
CrossRef
ADS
Google scholar
|
[77] |
J. RadićT. A. Sedrakyan, I. B. Spielman, and V. Galitski, Vortices in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063604 (2011)
CrossRef
ADS
Google scholar
|
[78] |
X. F. Zhou, J. Zhou, and C. Wu, Vortex structures of rotating spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063624 (2011)
CrossRef
ADS
Google scholar
|
[79] |
B. Ramachandhran, B. Opanchuk, X.J. Liu, H. Pu, P. D. Drummond, and H. Hu, Half-quantum vortex state in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 85(2), 023606 (2012)
CrossRef
ADS
Google scholar
|
[80] |
Y. X. Du, H. Yan, D. W. Zhang, C. J. Shan, and S. L. Zhu, Proposal for a rotation-sensing interferometer with spin–orbit-coupled atoms, Phys. Rev. A 85(4), 043619 (2012)
CrossRef
ADS
Google scholar
|
[81] |
C.-F. Liu, H. Fan, Y.-C. Zhang, D.-S. Wang, and W.-M. Liu, Circular-hyperbolic skyrmion in rotating pseudo-spin-1/2 Bose–Einstein condensates with spin– orbit coupling, Phys. Rev. A 86, 053616 (2012)
CrossRef
ADS
Google scholar
|
[82] |
L. Dong, L. Zhou, B. Wu, B. Ramachandhran, and H. Pu, Cavity-assisted dynamical spin–orbit coupling in cold atoms, Phys. Rev. A 89, 011602(R) (2014)
|
[83] |
F. Mivehvar and D. L. Feder, Synthetic spin–orbit interactions and magnetic fields in ring-cavity QED, Phys. Rev. A 89(1), 013803 (2014)
CrossRef
ADS
Google scholar
|
[84] |
Y. Deng, J. Cheng, H. Jing, and S. Yi, Bose–Einstein condensates with cavity-mediated spin–orbit coupling, Phys. Rev. Lett. 112(14), 143007 (2014)
CrossRef
ADS
Google scholar
|
[85] |
B. Padhi and S. Ghosh, Spin–orbit-coupled Bose– Einstein condensates in a cavity: Route to magnetic phases through cavity transmission, Phys. Rev. A 90(2), 023627 (2014)
CrossRef
ADS
Google scholar
|
[86] |
F. Mivehvar and D. L. Feder, Enhanced stripe phases in spin–orbit-coupled Bose–Einstein condensates in ring cavities, Phys. Rev. A 92(2), 023611 (2015)
CrossRef
ADS
Google scholar
|
[87] |
Y. Deng, J. Cheng, H. Jing, C. P. Sun, and S. Yi, Spin– orbit-coupled dipolar Bose–Einstein condensates, Phys. Rev. Lett. 108(12), 125301 (2012)
CrossRef
ADS
Google scholar
|
[88] |
R. M. Wilson, B. M. Anderson, and C. W. Clark, Meron ground state of Rashba spin–orbit-coupled dipolar bosons, Phys. Rev. Lett. 111(18), 185303 (2013)
CrossRef
ADS
Google scholar
|
[89] |
S. Gopalakrishnan, I. Martin, and E. A. Demler, Quantum quasicrystals of spin–orbit-coupled dipolar bosons, Phys. Rev. Lett. 111(18), 185304 (2013)
CrossRef
ADS
Google scholar
|
[90] |
H. T. Ng, Topological phases in spin–orbit-coupled dipolar lattice bosons, Phys. Rev. A 90(5), 053625 (2014)
CrossRef
ADS
Google scholar
|
[91] |
Y. Yousefi, E. Ö. Karabulut, F. Malet, J. Cremon, and S. M. Reimann, Wigner-localized states in spin–orbitcoupled bosonic ultracold atoms with dipolar interaction, Eur. Phys. J. Spec. Top. 224(3), 545 (2015)
CrossRef
ADS
Google scholar
|
[92] |
Y. Xu, Y. Zhang, and C. Zhang, Bright solitons in a twodimensional spin–orbit-coupled dipolar Bose–Einstein condensate, Phys. Rev. A 92(1), 013633 (2015)
CrossRef
ADS
Google scholar
|
[93] |
M. Gong, S. Tewari, and C. Zhang, BCS–BEC crossover and topological phase transition in 3D spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 107, 195303 (2011)
CrossRef
ADS
Google scholar
|
[94] |
H. Hu, L. Jiang, X. J. Liu, and H. Pu, Probing anisotropic superfluidity in atomic Fermi gases with Rashba spin–orbit coupling, Phys. Rev. Lett. 107(19), 195304 (2011)
CrossRef
ADS
Google scholar
|
[95] |
Z. Q. Yu and H. Zhai, Spin–orbit coupled Fermi gases across a Feshbach resonance, Phys. Rev. Lett. 107(19), 195305 (2011)
CrossRef
ADS
Google scholar
|
[96] |
J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)
CrossRef
ADS
Google scholar
|
[97] |
V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)
CrossRef
ADS
Google scholar
|
[98] |
X. Zhou, Y. Li, Z. Cai, and C. Wu, Unconventional states of bosons with the synthetic spin–orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134001 (2013)
CrossRef
ADS
Google scholar
|
[99] |
N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)
CrossRef
ADS
Google scholar
|
[100] |
H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)
CrossRef
ADS
Google scholar
|
[101] |
P. J. Wang and J. Zhang, Spin-orbit coupling in Bose– Einstein condensate and degenerate Fermi gases, Front. Phys. 9(5), 598 (2014)
CrossRef
ADS
Google scholar
|
[102] |
J. Zhang, H. Hu, X. J. Liu, and H. Pu, Fermi gases with synthetic spin–orbit coupling, Annual Review of Cold Atoms and Molecules 2, 81 (2014)
CrossRef
ADS
Google scholar
|
[103] |
Y. Zhang, G. Chen, and C. Zhang, Tunable spin–orbit coupling and quantum phase transition in a trapped Bose–Einstein condensate, Sci. Rep. 3, 1937 (2013)
CrossRef
ADS
Google scholar
|
[104] |
Y. Zhang and C. Zhang, Bose–Einstein condensates in spin–orbit-coupled optical lattices: Flat bands and superfluidity, Phys. Rev. A 87(2), 023611 (2013)
CrossRef
ADS
Google scholar
|
[105] |
R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93(1), 99 (1954)
CrossRef
ADS
Google scholar
|
[106] |
C. Emary, and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67(6), 066203 (2003)
CrossRef
ADS
Google scholar
|
[107] |
M. Gross and S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission, Phys. Rep. 93(5), 301 (1982)
CrossRef
ADS
Google scholar
|
[108] |
K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature 464(7293), 1301 (2010)
CrossRef
ADS
Google scholar
|
[109] |
Y. Li, G. Martone, and S. Stringari, Sum rules, dipole oscillation and spin polarizability of a spin–orbit coupled quantum gas, Europhys. Lett. 99(5), 56008 (2012)
CrossRef
ADS
Google scholar
|
[110] |
S. Stringari, Collective excitations of a trapped Bosecondensed gas, Phys. Rev. Lett. 77(12), 2360 (1996)
CrossRef
ADS
Google scholar
|
[111] |
D. Guéry-Odelin and S. Stringari, Scissors mode and superfluidity of a trapped Bose–Einstein condensed gas, Phys. Rev. Lett. 83(22), 4452 (1999)
CrossRef
ADS
Google scholar
|
[112] |
O. M. Maragò, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J. Foot, Observation of the Scissors mode and evidence for superfluidity of a trapped Bose–Einstein condensed gas, Phys. Rev. Lett. 84(10), 2056 (2000)
CrossRef
ADS
Google scholar
|
[113] |
J. Lian, L. Yu, J. Q. Liang, G. Chen, and S. Jia, Orbitinduced spin squeezing in a spin–orbit coupled Bose– Einstein condensate, Sci. Rep. 3, 3166 (2013)
CrossRef
ADS
Google scholar
|
[114] |
Y. Huang and Z. D. Hu, Spin and field squeezing in a spin–orbit coupled Bose–Einstein condensate, Sci. Rep. 5, 8006 (2015)
CrossRef
ADS
Google scholar
|
[115] |
W. Zheng, Z. Q. Yu, X. Cui, and H. Zhai, Properties of Bose gases with the Raman-induced spin–orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134007 (2013)
CrossRef
ADS
Google scholar
|
[116] |
J. Higbie and D. M. Stamper-Kurn, Periodically dressed Bose–Einstein condensate: A superfluid with an anisotropic and variable critical velocity, Phys. Rev. Lett. 88(9), 090401 (2002)
CrossRef
ADS
Google scholar
|
[117] |
G. I. Martone, Y. Li, L. P. Pitaevskii, and S. Stringari, Anisotropic dynamics of a spin–orbit-coupled Bose– Einstein condensate, Phys. Rev. A 86(6), 063621 (2012)
CrossRef
ADS
Google scholar
|
[118] |
L. D. Landau, The theory of superfluidity of Helium II, J. Phys. (USSR) 5, 71 (1941)
CrossRef
ADS
Google scholar
|
[119] |
H. Palevsky, K. Otnes, and K. E. Larsson, Excitation of rotons in Helium II by cold neutrons, Phys. Rev. 112(1), 11 (1958)
CrossRef
ADS
Google scholar
|
[120] |
J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr, Excitations in liquid Helium: Neutron scattering measurements, Phys. Rev. 113(6), 1379 (1959)
|
[121] |
D. G. Henshaw and A. D. B. Woods, Modes of atomic motions in liquid helium by inelastic scattering of neutrons, Phys. Rev. 121(5), 1266 (1961)
CrossRef
ADS
Google scholar
|
[122] |
L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Roton–Maxon spectrum and stability of trapped dipolar Bose–Einstein condensates, Phys. Rev. Lett. 90(25), 250403 (2003)
CrossRef
ADS
Google scholar
|
[123] |
D. H. J. O’Dell, S. Giovanazzi, and G. Kurizki, Rotons in gaseous Bose–Einstein condensates irradiated by a laser, Phys. Rev. Lett. 90(11), 110402 (2003)
CrossRef
ADS
Google scholar
|
[124] |
P. B. Blakie, D. Baillie, and R. N. Bisset, Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate, Phys. Rev. A 86(2), 021604 (2012)
CrossRef
ADS
Google scholar
|
[125] |
M. Jona-Lasinio, K. Lakomy, and L. Santos, Time-offlight roton spectroscopy in dipolar Bose–Einstein condensates, Phys. Rev. A 88(2), 025603 (2013)
CrossRef
ADS
Google scholar
|
[126] |
Y. Pomeau and S. Rica, Model of superflow with rotons, Phys. Rev. Lett. 71(2), 247 (1993)
CrossRef
ADS
Google scholar
|
[127] |
Y. Pomeau and S. Rica, Dynamics of a model of supersolid, Phys. Rev. Lett. 72(15), 2426 (1994)
CrossRef
ADS
Google scholar
|
[128] |
R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose–Einstein condensate, Rev. Mod. Phys. 77(1), 187 (2005)
CrossRef
ADS
Google scholar
|
[129] |
J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper- Kurn, D. E. Pritchard, and W. Ketterle, Bragg spectroscopy of a Bose–Einstein condensate, Phys. Rev. Lett. 82(23), 4569 (1999)
CrossRef
ADS
Google scholar
|
[130] |
D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard, and W. Ketterle, Excitation of phonons in a Bose–Einstein condensate by light scattering, Phys. Rev. Lett. 83(15), 2876 (1999)
CrossRef
ADS
Google scholar
|
[131] |
J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Excitation spectrum of a Bose–Einstein condensate, Phys. Rev. Lett. 88(12), 120407 (2002)
CrossRef
ADS
Google scholar
|
[132] |
J. Steinhauer, N. Katz, R. Ozeri, N. Davidson, C. Tozzo, and F. Dalfovo, Bragg spectroscopy of the Multibranch–Bogoliubov spectrum of elongated Bose–Einstein condensates, Phys. Rev. Lett. 90(6), 060404 (2003)
CrossRef
ADS
Google scholar
|
[133] |
S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman, D. S. Jin, and E. A. Cornell, Bragg spectroscopy of a strongly interacting Rb85 Bose–Einstein condensate, Phys. Rev. Lett. 101, 135301 (2008)
CrossRef
ADS
Google scholar
|
[134] |
X. Du, S. Wan, E. Yesilada, C. Ryu, D. J. Heinzen, Z. Liang, and B. Wu, Bragg spectroscopy of a superfluid Bose–Hubbard gas, New J. Phys. 12(8), 083025 (2010)
CrossRef
ADS
Google scholar
|
[135] |
N. Fabbri, D. Clément, L. Fallani, C. Fort, M. Modugno, K. M. R. van der Stam, and M. Inguscio, Excitations of Bose–Einstein condensates in a one-dimensional periodic potential, Phys. Rev. A 79(4), 043623 (2009)
CrossRef
ADS
Google scholar
|
[136] |
D. Clément, N. Fabbri, L. Fallani, C. Fort, and M. Inguscio, Exploring correlated 1D Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering, Phys. Rev. Lett. 102, 155301 (2009)
CrossRef
ADS
Google scholar
|
[137] |
P. T. Ernst, S. Götze, J. S. Krauser, K. Pyka, D. S. Lühmann, D. Pfannkuche, and K. Sengstock, Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy, Nat. Phys. 6(1), 56 (2010)
CrossRef
ADS
Google scholar
|
[138] |
G. Bismut, B. Laburthe-Tolra, E. Maréchal, P. Pedri, O. Gorceix, and L. Vernac, Anisotropic excitation spectrum of a dipolar quantum Bose gas, Phys. Rev. Lett. 109(15), 155302 (2012)
CrossRef
ADS
Google scholar
|
[139] |
L. C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, Roton-Maxon excitation spectrum of Bose condensates in a shaken optical lattice, Phys. Rev. Lett. 114(5), 055301 (2015)
CrossRef
ADS
Google scholar
|
[140] |
Z. Chen and H. Zhai, Collective-mode dynamics in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A 86, 041604(R) (2012)
|
[141] |
V. Achilleos, D. J. Frantzeskakis, and P. G. Kevrekidis, Beating dark–dark solitons and Zitterbewegung in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 89(3), 033636 (2014)
CrossRef
ADS
Google scholar
|
[142] |
Sh. Mardonov, M. Palmero, M. Modugno, E. Ya. Sherman, and J. G. Muga, Interference of spin–orbitcoupled Bose–Einstein condensates, Europhys. Lett. 106(6), 60004 (2014)
CrossRef
ADS
Google scholar
|
[143] |
Y. Li, C. Qu, Y. Zhang, and C. Zhang, Dynamical spindensity waves in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 92(1), 013635 (2015)
CrossRef
ADS
Google scholar
|
[144] |
Sh. Mardonov, E. Ya. Sherman, J. G. Muga, H. W. Wang, Y. Ban, and X. Chen, Collapse of spin–orbitcoupled Bose–Einstein condensates, Phys. Rev. A 91(4), 043604 (2015)
CrossRef
ADS
Google scholar
|
[145] |
S. Cao, C. J. Shan, D. W. Zhang, X. Qin, and J. Xu, Dynamical generation of dark solitons in spin–orbitcoupled Bose–Einstein condensates, J. Opt. Soc. Am. B 32(2), 201 (2015)
CrossRef
ADS
Google scholar
|
[146] |
E. Schrödinger, Über die kräftefreie Bewegung in der relativistischen Quantenmechanik, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930)
|
[147] |
W. Zawadzki and T. M. Rusin, Zitterbewegung (trembling motion) of electrons in semiconductors: A review, J. Phys.: Condens. Matter 23(14), 143201 (2011)
CrossRef
ADS
Google scholar
|
[148] |
R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, Quantum simulation of the Dirac equation, Nature 463(7277), 68 (2010)
CrossRef
ADS
Google scholar
|
[149] |
F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, Classical simulation of relativistic Zitterbewegung in photonic lattices, Phys. Rev. Lett. 105, 143902 (2010)
CrossRef
ADS
Google scholar
|
[150] |
J. Schliemann, D. Loss, and R. M. Westervelt, Zitterbewegung of electronic wave packets in III-V zincblende semiconductor quantum wells, Phys. Rev. Lett. 94, 206801 (2005)
CrossRef
ADS
Google scholar
|
[151] |
J. Vaishnav and C. Clark, Observing Zitterbewegung with ultracold atoms, Phys. Rev. Lett. 100(15), 153002 (2008)
CrossRef
ADS
Google scholar
|
[152] |
Y. J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto, and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys. 7(7), 531 (2011)
CrossRef
ADS
Google scholar
|
[153] |
Y.-C. Zhang, S.-W. Song, C.-F. Liu, and W.-M. Liu, Zitterbewegung effect in spin–orbit-coupled spin-1 ultracold atoms, Phys. Rev. A 87, 023612 (2013)
CrossRef
ADS
Google scholar
|
[154] |
O. Morsch and M. Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006)
CrossRef
ADS
Google scholar
|
[155] |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef
ADS
Google scholar
|
[156] |
Q. Zhu and B. Wu, Superfluidity of Bose–Einstein condensates in ultracold atomic gases, Chin. Phys. B 24(5), 050507 (2015)
CrossRef
ADS
Google scholar
|
[157] |
F. Lin, C. Zhang, and V. W. Scarola, Emergent kinetics and fractionalized charge in 1D spin–orbit coupled Flatband optical lattices, Phys. Rev. Lett. 112, 110404 (2014)
CrossRef
ADS
Google scholar
|
[158] |
Biao Wu and Qian Niu, Landau and dynamical instabilities of the superflow of Bose–Einstein condensates in optical lattices, Phys. Rev. A 64, 061603(R) (2001)
|
[159] |
A. Smerzi, A. Trombettoni, P. G. Kevrekidis, and A. R. Bishop, Dynamical superfluid–insulator transition in a chain of weakly coupled Bose–Einstein condensates, Phys. Rev. Lett. 89(17), 170402 (2002)
CrossRef
ADS
Google scholar
|
[160] |
M. Machholm, C. J. Pethick, and H. Smith, Band structure, elementary excitations, and stability of a Bose– Einstein condensate in a periodic potential, Phys. Rev. A 67(5), 053613 (2003)
CrossRef
ADS
Google scholar
|
[161] |
M. Modugno, C. Tozzo, and F. Dalfovo, Role of transverse excitations in the instability of Bose–Einstein condensates moving in optical lattices, Phys. Rev. A 70(4), 043625 (2004)
CrossRef
ADS
Google scholar
|
[162] |
A. J. Ferris, M. J. Davis, R. W. Geursen, P. B. Blakie, and A. C. Wilson, Dynamical instabilities of Bose– Einstein condensates at the band edge in one dimensional optical lattices, Phys. Rev. A 77, 012712 (2008)
CrossRef
ADS
Google scholar
|
[163] |
S. Hooley and K. A. Benedict, Dynamical instabilities in a two-component Bose–Einstein condensate in a one dimensional optical lattice, Phys. Rev. A 75, 033621 (2007)
CrossRef
ADS
Google scholar
|
[164] |
J. Ruostekoski and Z. Dutton, Dynamical and energetic instabilities in multicomponent Bose–Einstein condensates in optical lattices, Phys. Rev. A 76(6), 063607 (2007)
CrossRef
ADS
Google scholar
|
[165] |
G. Barontini and M. Modugno, Instabilities of a matter wave in a matter grating, Phys. Rev. A 80(6), 063613 (2009)
CrossRef
ADS
Google scholar
|
[166] |
S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, Superfluid and dissipative dynamics of a Bose–Einstein condensate in a periodic optical potential, Phys. Rev. Lett. 86(20), 4447 (2001)
CrossRef
ADS
Google scholar
|
[167] |
L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Observation of dynamical instability for a Bose–Einstein condensate in a moving 1D optical lattice, Phys. Rev. Lett. 93, 140406 (2004)
CrossRef
ADS
Google scholar
|
[168] |
J. Mun, P. Medley, G. K. Campbell, L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Phase diagram for a Bose–Einstein condensate moving in an optical lattice, Phys. Rev. Lett. 99(15), 150604 (2007)
CrossRef
ADS
Google scholar
|
[169] |
T. Ozawa, L. P. Pitaevskii, and S. Stringari, Supercurrent and dynamical instability of spin–orbit-coupled ultracold Bose gases, Phys. Rev. A 87(6), 063610 (2013)
CrossRef
ADS
Google scholar
|
[170] |
P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, Large momentum beam splitter using Bloch oscillations, Phys. Rev. Lett. 102(24), 240402 (2009)
CrossRef
ADS
Google scholar
|
[171] |
Z. Chen and Z. Liang, Ground-state phase diagram of a spin–orbit-coupled bosonic superfluid in an optical lattice, Phys. Rev. A 93(1), 013601 (2016)
CrossRef
ADS
Google scholar
|
[172] |
G. Juzeliūnas, J. Ruseckas, and J. Dalibard, Generalized Rashba–Dresselhaus spin–orbit coupling for cold atoms, Phys. Rev. A 81(5), 053403 (2010)
CrossRef
ADS
Google scholar
|
[173] |
D. L. Campbell, G. Juzeliūnas, and I. B. Spielman, Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms, Phys. Rev. A 84(2), 025602 (2011)
CrossRef
ADS
Google scholar
|
[174] |
B. M. Anderson, G. Juzeliūnas, V. M. Galitski, and I. B. Spielman, Synthetic 3D spin–orbit coupling, Phys. Rev. Lett. 108, 235301 (2012)
CrossRef
ADS
Google scholar
|
[175] |
Z. F. Xu, L. You, and M. Ueda, Atomic spin–orbit coupling synthesized with magnetic-field-gradient pulses, Phys. Rev. A 87(6), 063634 (2013)
CrossRef
ADS
Google scholar
|
[176] |
B. M. Anderson, I. B. Spielman, and G. Juzeliūnas, Magnetically generated spin–orbit coupling for ultracold atoms, Phys. Rev. Lett. 111, 125301 (2013)
CrossRef
ADS
Google scholar
|
[177] |
G. Juzeliūnas, J. Ruseckas, M. Lindberg, L. Santos, and P. Öhberg, Quasirelativistic behavior of cold atoms in light fields, Phys. Rev. A 77, 011802(R) (2008)
|
[178] |
Chuanwei Zhang, Spin–orbit coupling and perpendicular Zeeman field for fermionic cold atoms: Observation of the intrinsic anomalous Hall effect, Phys. Rev. A 82, 021607(R) (2010)
|
/
〈 | 〉 |