Topological insulator: Spintronics and quantum computations

Mengyun He, Huimin Sun, Qing Lin He

PDF(2060 KB)
PDF(2060 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43401. DOI: 10.1007/s11467-019-0893-4
Review article
Review article

Topological insulator: Spintronics and quantum computations

Author information +
History +

Abstract

Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

Keywords

topological insulator / Majorana fermion / topological spintronics / topological superconductor

Cite this article

Download citation ▾
Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401 https://doi.org/10.1007/s11467-019-0893-4

References

[1]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[2]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[3]
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef ADS Google scholar
[4]
P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Topological surface states protected from backscattering by chiral spin texture, Nature 460(7259), 1106 (2009)
CrossRef ADS Google scholar
[5]
T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Experimental demonstration of topological surface states protected by time-reversal symmetry, Phys. Rev. Lett. 103(26), 266803 (2009)
CrossRef ADS Google scholar
[6]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[7]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[8]
J. E. Moore, The birth of topological insulators, Nature 464(7286), 194 (2010)
CrossRef ADS Google scholar
[9]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef ADS Google scholar
[10]
M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)
CrossRef ADS Google scholar
[11]
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
CrossRef ADS Google scholar
[12]
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
CrossRef ADS Google scholar
[13]
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
CrossRef ADS Google scholar
[14]
L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)
CrossRef ADS Google scholar
[15]
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)
CrossRef ADS Google scholar
[16]
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef ADS Google scholar
[17]
D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of unconventional quantum spin textures in topological insulators, Science 323(5916), 919 (2009)
CrossRef ADS Google scholar
[18]
Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science 325(5937), 178 (2009)
CrossRef ADS Google scholar
[19]
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime,Nature 460(7259), 1101 (2009)
CrossRef ADS Google scholar
[20]
A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E. A. Kim, N. Samarth, and D. C. Ralph, Spin-transfer torque generated by a topological insulator, Nature 511(7510), 449 (2014)
CrossRef ADS Google scholar
[21]
Y. Fan and K. L. Wang, Spintronics based on topological insulators, Spin 06(02), 1640001 (2016)
CrossRef ADS Google scholar
[22]
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
CrossRef ADS Google scholar
[23]
J. Wu, J. Liu, and X. J. Liu, Topological spin texture in a quantum anomalous Hall insulator, Phys. Rev. Lett. 113(13), 136403 (2014)
CrossRef ADS Google scholar
[24]
L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
CrossRef ADS Google scholar
[25]
J. Wang and S. C. Zhang, Topological states of condensed matter, Nat. Mater. 16(11), 1062 (2017)
CrossRef ADS Google scholar
[26]
B. Lian, X. Q. Sun, A. Vaezi, X. L. Qi, and S. C. Zhang, Topological quantum computation based on chiral Majorana fermions, Proc. Natl. Acad. Sci. USA 115(43), 10938 (2018)
CrossRef ADS Google scholar
[27]
P. Deorani, J. Son, K. Banerjee, N. Koirala, M. Brahlek, S. Oh, and H. Yang, Observation of inverse spin Hall effect in bismuth selenide,Phys. Rev. B 90(9), 094403 (2014)
CrossRef ADS Google scholar
[28]
H. C. Han, Y. S. Chen, M. D. Davydova, P. N. Petrov, P. N. Skirdkov, J. G. Lin, J. C. Wu, J. C. A. Huang, K. A. Zvezdin, and A. K. Zvezdin, Spin pumping and probe in permalloy dots-topological insulator bilayers, Appl. Phys. Lett. 111(18), 182411 (2017)
CrossRef ADS Google scholar
[29]
A. A. Baker, A. I. Figueroa, L. J. Collins-McIntyre, G. van der Laan, and T. Hesjedal, Spin pumping in ferromagnet-topological insulator-ferromagnet heterostructures, Sci. Rep. 5(1), 7907 (2015)
CrossRef ADS Google scholar
[30]
J. C. Rojas-Sánchez, S. Oyarzun, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, M. Jamet, Y. Ohtsubo, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, N. Reyren, J. M. George, and A. Fert, Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films, Phys. Rev. Lett. 116(9), 096602 (2016)
CrossRef ADS Google scholar
[31]
C. N. Wu, Y. H. Lin, Y. T. Fanchiang, H. Y. Hung, H. Y. Lin, P. H. Lin, J. G. Lin, S. F. Lee, M. Hong, J. Kwo, Strongly enhanced spin current in topological insulator/ferromagnetic metal heterostructures by spin pumping, J. Appl. Phys. 117(17), 17D148(2015)
CrossRef ADS Google scholar
[32]
Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L. T. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R. N. Schwartz, Y. Tserkovnyak, and K. L. Wang, Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure, Nat. Mater. 13(7), 699 (2014)
CrossRef ADS Google scholar
[33]
Y. Fan, X. Kou, P. Upadhyaya, Q. Shao, L. Pan,M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L. T. Chang, M. Akyol, G. Yu, T. Nie, K. L. Wong, J. Liu, Y. Wang, Y. Tserkovnyak, and K. L. Wang, Electric-field control of spin–orbit torque in a magnetically doped topological insulator, Nat. Nanotechnol. 11(4), 352 (2016)
CrossRef ADS Google scholar
[34]
Z. Jiang, C. Z. Chang, M. R. Masir, C. Tang, Y. Xu, J. S. Moodera, A. H. MacDonald, and J. Shi, Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states, Nat. Commun. 7(1), 11458 (2016)
CrossRef ADS Google scholar
[35]
Y. Q. Huang, Y. X. Song, S. M. Wang, I. A. Buyanova, and W. M. Chen, Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator, Nat. Commun. 8, 15401 (2017)
CrossRef ADS Google scholar
[36]
L. Liu, A. Richardella, I. Garate, Y. Zhu, N. Samarth, and C. T. Chen, Spin-polarized tunneling study of spinmomentum locking in topological insulators, Phys. Rev. B 91(23), 235437 (2015)
CrossRef ADS Google scholar
[37]
Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, and E. Saitoh, Spin-electricity conversion induced by spin injection into topological insulators,Phys. Rev. Lett. 113(19), 196601 (2014)
CrossRef ADS Google scholar
[38]
Y. Lv, J. Kally, D. Zhang, J. S. Lee, M. Jamali, N. Samarth, and J. P. Wang, Unidirectional spin-Hall and Rashba–Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures, Nat. Commun. 9(1), 111 (2018)
CrossRef ADS Google scholar
[39]
K. Yasuda, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Large unidirectional magnetoresistance in a magnetic topological insulator, Phys. Rev. Lett. 117(12), 127202 (2016)
CrossRef ADS Google scholar
[40]
Q. L. He, X. Kou, A. J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S. M. Disseler, B. J. Kirby, W. II Ratcliff, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J. A. Borchers, and K. L. Wang, Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures, Nat. Mater. 16(1), 94 (2017)
CrossRef ADS Google scholar
[41]
Q. L. He, G. Yin, L. Yu, A. J. Grutter, L. Pan, C. Z. Chen, X. Che, G. Yu, B. Zhang, Q. Shao, A. L. Stern, B. Casas, J. Xia, X. Han, B. J. Kirby, R. K. Lake, K. T. Law, and K. L. Wang, Topological transitions induced by antiferromagnetism in a thin-film topological insulator, Phys. Rev. Lett. 121(9), 096802 (2018)
CrossRef ADS Google scholar
[42]
K. Yasuda, R. Wakatsuki, T. Morimoto, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, M. Ezawa, M. Kawasaki, N. Nagaosa, and Y. Tokura, Geometric Hall effects in topological insulator heterostructures, Nat. Phys. 12(6), 555 (2016)
CrossRef ADS Google scholar
[43]
C. Liu, Y.Zang, W. Ruan, Y. Gong, K. He, X. Ma, Q. K. Xue, and Y. Wang, Dimensional crossover-induced topological Hall effect in a magnetic topological insulator, Phys. Rev. Lett. 119(17), 176809 (2017)
CrossRef ADS Google scholar
[44]
Q. L. He, G. Yin, A. J. Grutter, L. Pan, X. Che, G. Yu, D. A. Gilbert, S. M. Disseler, Y. Liu, P. Shafer, B. Zhang, Y. Wu, B. J. Kirby, E. Arenholz, R. K. Lake, X. Han, and K. L. Wang, Exchange-biasing topological charges by antiferromagnetism, Nat. Commun. 9(1), 2767 (2018)
CrossRef ADS Google scholar
[45]
F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
CrossRef ADS Google scholar
[46]
J. Nilsson, A. R. Akhmerov, and C. W. Beenakker, Splitting of a Cooper pair by a pair of Majorana bound states, Phys. Rev. Lett. 101(12), 120403 (2008)
CrossRef ADS Google scholar
[47]
M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
CrossRef ADS Google scholar
[48]
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
CrossRef ADS Google scholar
[49]
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi 44(10S), 131 (2001)
CrossRef ADS Google scholar
[50]
J. C. Teo and C. L. Kane, Majorana fermions and non-Abelian statistics in three dimensions, Phys. Rev. Lett. 104(4), 046401 (2010)
CrossRef ADS Google scholar
[51]
J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)
CrossRef ADS Google scholar
[52]
H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L.Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Majorana zero mode detected with spin selective andreev reflection in the vortex of a topological superconductor, Phys. Rev. Lett. 116(25), 257003 (2016)
CrossRef ADS Google scholar
[53]
F. Yang, Y. Ding, F. Qu, J. Shen, J. Chen, Z. Wei, Z. Ji, G. Liu, J. Fan, C. Yang, T. Xiang, and L. Lu, Proximity effect at superconducting Sn-Bi2Se3 interface, Phys. Rev. B 85, 104508 (2012)
CrossRef ADS Google scholar
[54]
G. Koren, T. Kirzhner, Y. Kalcheim, and O. Millo, Signature of proximity-induced px+ipy triplet pairing in the doped topological insulator Bi2Se3 by the s-wave superconductor NbN, Europhys. Lett. (EPL) 103(6), 67010 (2013)
CrossRef ADS Google scholar
[55]
J. Wang, C. Z. Chang, H. Li, K. He, D. Zhang, M. Singh, X.C. Ma, N. Samarth, M. Xie, Q.K. Xue, and M. H. W. Chan,Interplay between topological insulators and superconductors, Phys. Rev. B 85, 045415 (2012)
CrossRef ADS Google scholar
[56]
S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Topological Superconductivity in CuxBi2Se3, Phys. Rev. Lett. 107(21), 217001 (2011)
CrossRef ADS Google scholar
[57]
S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu, and Y. Ando, Odd-parity pairing and topological superconductivity in a strongly spin–orbit coupled semiconductor, Phys. Rev. Lett. 109(21), 217004 (2012)
CrossRef ADS Google scholar
[58]
Q. L. He, H. Liu, M. He, Y. H. Lai, H. He, G. Wang, K. T. Law, R. Lortz, J. Wang, and I. K. Sou, Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure, Nat. Commun. 5(1), 4247 (2014)
CrossRef ADS Google scholar
[59]
P. Zareapour, A. Hayat, S. Y. Zhao, M. Kreshchuk, A. Jain, D. C. Kwok, N. Lee, S. W. Cheong, Z. Xu, A. Yang, G. D. Gu, S. Jia, R. J. Cava, and K. S. Burch, Proximityinduced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3, Nat. Commun. 3(1), 1056 (2012)
CrossRef ADS Google scholar
[60]
M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Josephson supercurrent through a topological insulator surface state, Nat. Mater. 11(5), 417 (2012)
CrossRef ADS Google scholar
[61]
F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang, and L. Lu, Strong superconducting proximity effect in Pb-Bi2Te3 hybrid structures, Sci. Rep. 2(1), 339 (2012)
CrossRef ADS Google scholar
[62]
J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, and D. Goldhaber-Gordon, Unconventional Josephson effect in hybrid superconductor–topological insulator devices, Phys. Rev. Lett. 109(5), 056803 (2012)
CrossRef ADS Google scholar
[63]
S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Induced superconductivity in the quantum spin Hall edge, Nat. Phys. 10, 638 (2014)
CrossRef ADS Google scholar
[64]
E. Bocquillon, R. S. Deacon, J. Wiedenmann, P. Leubner, T. M. Klapwijk, C. Brune, K. Ishibashi, H. Buhmann, and L. W. Molenkamp, Gapless Andreev bound states in the quantum spin Hall insulator HgTe, Nat. Nanotechnol. 12(2), 137 (2016)
CrossRef ADS Google scholar
[65]
M. X. Wang, C. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Shen, X. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, The coexistence of superconductivity and topological order in the Bi2Se3 thin films, Science 336(6077), 52 (2012)
CrossRef ADS Google scholar
[66]
S. Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu, M. Neupane, G. Bian, S. H. Huang, R. Sankar, C. Fang, B. Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth, and M. Z. Hasan, Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor, Nat. Phys. 10(12), 943 (2014)
CrossRef ADS Google scholar
[67]
E. Wang, H. Ding, A. V. Fedorov, W. Yao, Z. Li, Y. F. Lv, K. Zhao, L. G. Zhang, Z. Xu, J. Schneeloch, R. Zhong, S. H. Ji, L. Wang, K. He, X. Ma, G. Gu, H. Yao, Q. K. Xue, X. Chen, and S. Zhou, Fully gapped topological surface states in Bi2Se3 films induced by a dwave high-temperature superconductor, Nat. Phys. 9(10), 621 (2013)
CrossRef ADS Google scholar
[68]
Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana fermion modes in a quantum anomalous Hall insulatorsuperconductor structure, Science 357(6348), 294 (2017)
CrossRef ADS Google scholar
[69]
C. F. Pai, Switching by topological insulators,Nat. Mater. 17(9), 755 (2018)
CrossRef ADS Google scholar
[70]
J. Han, A. Richardella, S. A. Siddiqui, J. Finley, N. Samarth, and L. Liu, Room-temperature spin–orbit torque switching induced by a topological insulator, Phys. Rev. Lett. 119(7), 077702 (2017)
CrossRef ADS Google scholar
[71]
Y. Wang, D. Zhu, Y. Wu, Y. Yang, J. Yu, R. Ramaswamy, R. Mishra, S. Shi, M. Elyasi, K. L. Teo, Y. Wu, and H. Yang, Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin–orbit torques, Nat. Commun. 8(1), 1364 (2017)
CrossRef ADS Google scholar
[72]
M. Dc, R. Grassi, J. Y. Chen, M. Jamali, D. Reifsnyder Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J. P. Wang, Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe1-x films, Nat. Mater. 17(9), 800 (2018)
CrossRef ADS Google scholar
[73]
N. H. D. Khang, Y. Ueda, and P. N. Hai, A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching, Nat. Mater. 17(9), 808 (2018)
CrossRef ADS Google scholar
[74]
D. A. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors, Phys. Rev. Lett. 86(2), 268 (2001)
CrossRef ADS Google scholar
[75]
J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)
CrossRef ADS Google scholar
[76]
D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones toward Majorana-based quantum computing, Phys. Rev. X 6 , 031016 (2016)
CrossRef ADS Google scholar
[77]
T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes, Phys. Rev. B 95(23), 235305 (2017)
CrossRef ADS Google scholar
[78]
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
CrossRef ADS Google scholar
[79]
A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)
CrossRef ADS Google scholar
[80]
S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Induced superconductivity in the quantum spin Hall edge, Nat. Phys. 10(9), 638 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2060 KB)

Accesses

Citations

Detail

Sections
Recommended

/