Laser-induced breakdown spectroscopy in China

Zhe Wang , Ting-Bi Yuan , Zong-Yu Hou , Wei-Dong Zhou , Ji-Dong Lu , Hong-Bin Ding , Xiao-Yan Zeng

Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 419 -438.

PDF (325KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 419 -438. DOI: 10.1007/s11467-013-0410-0
REVIEW ARTICLE

Laser-induced breakdown spectroscopy in China

Author information +
History +
PDF (325KB)

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS community is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS community are reviewed for the following four aspects: fundamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.

Graphical abstract

Keywords

laser-induced breakdown spectroscopy / laser-induced breakdown spectroscopy (LIBS) / quantitative analysis / signal enhancement / application / coal / metal / environment / energy

Cite this article

Download citation ▾
Zhe Wang, Ting-Bi Yuan, Zong-Yu Hou, Wei-Dong Zhou, Ji-Dong Lu, Hong-Bin Ding, Xiao-Yan Zeng. Laser-induced breakdown spectroscopy in China. Front. Phys., 2014, 9(4): 419-438 DOI:10.1007/s11467-013-0410-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Y. Meslin, O. Gasnault, O. Forni, S. Schröoder, , Soil diversity and hydration as observed by ChemCam at Gale crater, Mars, Science, 2013, 341(6153): 1238670

[2]

X. Z. Zhao, T. X. Lu, and Z. F. Cui, An experimental study of the lifetimes of excited electronic states of NO2, Chem. Phys. Lett., 1989, 162(1-2): 140

[3]

Z. F. Cui, E. Y. Feng, S. Z. Huang, T. X. Lu, and X. Z. Zhao, An investigation on the property of the laser produced plasma under additional static electricity field, Chin. J. Atom. Mol. Phys, 1996, 13: 8

[4]

J. Yu and R. E. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys., 2012, 7(6): 647

[5]

R. Cong, B. H. Zhang, J. M. Fan, X. F. Zheng, W. Q. Liu, R. E. Zheng, and Z. F. Cui, Experimental investigation on time and spatial evolution of emission spectra of AI atom in laser-induced plasmas, Acta Opt. Sin., 2009, 29: 2594

[6]

F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys, 2012, 7(6): 679

[7]

Q. Wang, X. L. Chen, R. H. Yu, M. M. Xu, Y. Yang, B. Wu, Z. B. Ni, and F. Z. Dong, Quantitative analysis of Mn, Cr in steel based on laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(9): 2546

[8]

X. L. Chen, F. Z. Dong, Q. Wang, R. H. Yu, Y. X. Liang, J. G. Wang, Y. Yang, Z. B. Ni, M. M. Xu, and B. Wu, Quantitative analysis of slag by calibration-free laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(12): 3289

[9]

Q. Q. Wang, K. Liu, H. Zhao, C. H. Ge, and Z. W. Huang, Detection of explosives with laser-induced breakdown spectroscopy, Front. Phys, 2012, 7(6): 701

[10]

H. Zhao, Q. Q. Wang, K. Liu, and C. H. Ge, Research on inorganic explosive and its principal component with laserinduced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(3): 577

[11]

Q. Q. Wang, K. Liu, and H. Zhao, Multivariate analysis of laser-induced breakdown spectroscopy for discrimination between explosives and plastics, Chin. Phys. Lett., 2012, 29(4): 044206

[12]

Q. Q. Wang, Z. W. Huang, K. Liu, W. J. Li, and J. X. Yan, Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model, Spectroscopy and Spectral Analysis, 2012, 32(12): 3179

[13]

K. Liu, Q. Q. Wang, H. Zhao, and Y. L. Xiao, Differentiation of plastic with laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(5): 1171

[14]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental advanced superconducting tokamak, Spectrochim. Acta B: At. Spectrosc., 2013, 87: 147

[15]

R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater., 2013, 438: S1168

[16]

Q. Xiao, A. Huber, G. Sergienko, B. Schweer, P. Mertens, A. Kubina, V. Philipps, and H. Ding, Application of laserinduced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des., 2013, 88(9-10): 1813

[17]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express, 2013, 21(15): 18188

[18]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express, 2011, 19(15): 14067

[19]

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express, 2012, 20(2): 1436

[20]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett., 2011, 98(13): 131501

[21]

N. H. Cheung and E. S. Yeung, Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown, Appl. Spectrosc., 1993, 47(7): 882

[22]

W. F. Ho, C. W. Ng, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength, Appl. Spectrosc., 1997, 51(1): 87

[23]

C. W. Ng, W. F. Ho, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength on plasma properties, Appl. Spectrosc., 1997, 51(7): 976

[24]

S. K. Ho and N. H. Cheung, Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: Elucidation of the fluorescence mechanism, Appl. Phys. Lett., 2005, 87: 264104

[25]

N. H. Cheung, Spectroscopy of laser plumes for atto-mole and ng/g elemental analysis, Appl. Spectrosc. Rev., 2007, 42(3): 235

[26]

P. C. Chu, W. L. Yip, Y. Cai, and N. H. Cheung, Multielement analysis of ceramic and polymeric samples by ArF laser excited atomic fluorescence of ablated plumes, J. Anal. At. Spectrom., 2011, 26(6): 1210

[27]

Y. Cai, P. C. Chu, S. K. Ho, and N. H. Cheung, Multielement analysis by ArF laser excited atomic fluorescence of laser ablated plumes: Mechanism and applications, Front. Phys., 2012, 7(6): 670

[28]

S. Y. Chan and N. H. Cheung, Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy, Anal. Chem., 2000, 72(9): 2087

[29]

S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms, Appl. Phys. Lett., 2002, 81(27): 5114

[30]

S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy: Ambient gas effects, Spectrochim. Acta B: At. Spectrosc., 2003, 58(9): 1613

[31]

W. L. Yip and N. H. Cheung, Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dye laser affect analytical performance, Spectrochim. Acta B: At. Spectrosc., 2009, 64(4): 315

[32]

Y. Cai and N. H. Cheung, Photoacoustic monitoring of the mass removed in pulsed laser ablation, Microchem. J., 2011, 97(2): 109

[33]

K. M. Lo and N. H. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions, Appl. Spectrosc., 2002, 56(6): 682

[34]

N. H. Cheung and E. S. Yeung, Distribution of sodium and potassium within individual human erythrocytes by pulsedlaser vaporization in a sheath flow, Anal. Chem., 1994, 66(7): 929

[35]

C. W. Ng and N. H. Cheung, Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration, Anal. Chem., 2000, 72(1): 247

[36]

Y. Z. Lin, M. Y. Yao, M. H. Liu, Q. M. Peng, X. Zhang, T. B. Chen, and Y. Xu, Determination of parameter range in detecting Cu of Gannan navel orange by LIBS setup, Spectroscopy and Spectral Analysis, 2012, 32(11): 2925

[37]

Y. Xu, M. H. Liu, M. Y. Yao, Q. M. Peng, T. B. Chen, X. Zhang, and Y. Z. Lin, Experimental study on chromium in gannan navel orange by laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32: 2555

[38]

M. Y. Yao, L. Huang, J. H. Zheng, S. Q. Fan, and M. H. Liu, Assessment of feasibility in determining of Cr in Gannan navel orange treated in controlled conditions by laser induced breakdown spectroscopy, Opt. Laser Technol., 2013, 52: 70

[39]

D. X. Sun, M. G. Su, and C. Z. Dong, Emission signal enhancement and plasma diagnostics using collinear double pulse for laser-induced breakdown spectroscopy of aluminum alloys, Eur. Phys. J.: Appl. Phys., 2013, 61(3): 30802

[40]

D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry, Plasma Science & Technology, 2013, 15: 6

[41]

G. C. He, D. X. Sun, M. G. Su, and C. Z. Dong, A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique, Eur. Phys. J.: Appl. Phys., 2011, 55(03): 30701

[42]

D. X. Sun, M. G. Su, C. Z. Dong, D. C. Zhang, and X. W. Ma, A semi-quantitative analysis of essential micronutrient in folium lycii using laser-induced breakdown spectroscopy technique, Plasma Science & Technology, 2010, 12(4): 478

[43]

J. T. Han, D. X. Sun, M. G. Su, L. L. Peng, and C. Z. Dong, Quantitative analysis of metallic elements in tobacco and tobacco ash by calibration free laser-induced breakdown spectroscopy, Anal. Lett., 2012, 45(13): 1936

[44]

H. M. Hou, Y. Li, Y. A. Lu, Z. N. Wang, and R. E. Zheng, Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample, Spectroscopy and Spectral Analysis, 2011, 31(3): 595

[45]

J. L. Wu, Y. X. Fu, Y. Li, Y. Lu, Z. F. Cui, and R. E. Zheng, Detection of metal ions in water solution by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2008, 28(9): 1979

[46]

S. L. Zhong, Y. Lu, K. Cheng, J. S. Xiu, and R. E. Zheng, Ultrasonic nebulizer assisted LIBS for detection of trace metal elements dissolved in water, Spectroscopy and Spectral Analysis, 2011, 31(6): 1458

[47]

Y. Lu, Y. Li, J. L.Wu, S. L. Zhong, and R. E. Zheng, Guided conversion to enhance cation detection in water using laserinduced breakdown spectroscopy, Appl. Opt., 2010, 49(13): C75

[48]

Y. Lu, J. L.Wu, Y. Li, J. J. Guo, K. Cheng, H. M. Hou, and R. E. Zheng, Experimental investigation of Pb in soil slurries by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2009, 29(11): 3121

[49]

Y. F. Bi, Y. Li, and R. E. Zheng, The symmetric zeroarea conversion adptive peak-seeking method research for LIBS/Raman spectra, Spectroscopy and Spectral Analysis, 2013, 33(2): 438

[50]

H. M. Hou, Y. Tian, Y. Li, and R. E. Zheng, Study of pressure effects on laser induced plasma in bulk seawater, J. Anal. Atom. Spectrom., 2014, 29(1): 169

[51]

W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc., 2009, 63(8): 865

[52]

L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys., 2012, 7(6): 690

[53]

L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc., 2008, 62(4): 458

[54]

B. Zhang, L. Sun, H. Yu, Y. Xin, and Z. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. Atom. Spectrom., 2013, 28:1884

[55]

L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B: At. Spectrosc., 2009, 64(3): 278

[56]

L. X. Sun and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta, 2009, 79(2): 388

[57]

B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc., 2013, 67(9): 1087

[58]

L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Quantitative analysis of Mn and Si of alloy steels by laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2010, 30(12): 3186

[59]

L. X. Sun, H. B. Yu, Z. B. Cong, and Y. Xin, Quantitative analysis of Mn and Si of Steels by laser-induced breakdown spectroscopy combined with neural networks, Acta Opt. Sin., 2010, 30(9): 2757

[60]

S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc., 2011, 65(10): 1197

[61]

M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom., 2011, 26(11): 2183

[62]

S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom., 2012, 27(3): 473

[63]

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom., 2010, 25(11): 1733

[64]

J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Y. Li, Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy, Opt. Laser Technol., 2009, 41(8): 907

[65]

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, Analysis of pulverized coal by laser-induced breakdown spectroscopy, Plasma Science & Technology, 2005, 7(5): 3041

[66]

K. Chen, J. D. Lu, and J. Y. Li, Real-time, quantitative analysis of multi-elements in liquid steel by LIBS, Spectroscopy and Spectral Analysis, 2011, 31(3): 823

[67]

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases, Appl. Surf. Sci., 2011, 257(7): 3103

[68]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B: At. Spectrosc., 2012, 68: 58

[69]

L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2274

[70]

J. Feng, Z. Wang, Z. Li, and W. D. Ni, Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters, Spectrochim. Acta B: At. Spectrosc., 2010, 65(7): 549

[71]

X. W. Li, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B: At. Spectrosc., 2013, 88(0): 180

[72]

T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt., 2012, 51(7): B22

[73]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling, Front. Phys., 2012, 7(6): 708

[74]

Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express, 2013, 21(13): 15974

[75]

T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom., 2013, 28(7): 1045

[76]

Z. Hou, Z. Wang, S. Lui, T. Yuan, L. Li, Z. Li, and W. Ni, Improving data stability and prediction accuracy in laserinduced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom., 2013, 28(1): 107

[77]

J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc., 2013, 67(3): 291

[78]

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express, 2012, 20(S6): A1011

[79]

Z. Wang, J. Feng, and Z. Li, Reply to “Comment on ‘A multivariate model based on dominant factor for laserinduced breakdown spectroscopy measurements”’ by Vincenzo Palleschi, J. Anal. At. Spectrom., 2011, 26(11): 2302

[80]

Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2175

[81]

Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2289

[82]

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laserinduced breakdown spectroscopy, Anal. Bioanal. Chem., 2011, 400(10): 3261

[83]

X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal by laser-induced breakdown spectroscopy, arXiv: 1402.2062, 2014

[84]

X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy, arXiv: 1402.2060, 2014

[85]

T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta, 2014, 807: 29

[86]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express, 2010, 18(3): 2573

[87]

W. D. Zhou, K. X. Li, H. G. Qian, Z. J. Ren, and Y. L. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt., 2012, 51(7): B42

[88]

X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys., 2012, 7(6): 721

[89]

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom., 2013, 28(5): 702

[90]

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom., 2010, 25(9): 1475

[91]

X. F. Li, W. D. Zhou, K. X. Li, H. G. Qian, and Z. J. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun., 2012, 285(1): 54

[92]

K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B: At. Spectrosc., 2010, 65(5): 420

[93]

W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, Development of a nanosecond discharge-enhanced laser plasma spectroscopy, Opt. Lett., 2011, 36(15): 2961

[94]

D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc., 2012, 66(4): 347

[95]

A. M. Leach and G. M. Hieftje, Methods for shot-to-shot normalization in laser ablation with an inductively coupled plasma time-of-flight mass spectrometer, J. Anal. At. Spectrom., 2000, 15(9): 1121

[96]

J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasmainduced current versus continuum background, J. Anal. At. Spectrom., 2005, 20(1): 53

[97]

Z. N. Wang, Y. Li, Q. Y. Zhang, Y. Lu, and R. E. Zheng, Experimental investigation of quantitatively analysing trace Mo in complex metallic alloys by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(6): 1697

[98]

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, C. Yang, Y. Y. Chen, Y. H. Zhang, and P. C. Han, Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy, Front. Phys., 2012, 7(6): 714

[99]

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, D. L. Li, Y. Liu, P. C. Han, and Y. Y. Chen, Depth profile analysis for irregular and unknown sample by laser-indu ced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2013, 33: 1468

[100]

L. X. Sun, H. B. Yu, Y. Xin, Z. B. Cong, and H. Y. Kong, On-line monitoring of molten steel compositions by laserinduced breakdown spectroscopy, Chinese Journal of Lasers, 2011, 38(9): 0915002

[101]

L. X. Sun, H. B. Yu, Z. B. Cong, and Y. Xin, On-line semiquantitative analysis of molten steel composition using laserinduced breakdown spectroscopy, Chinese Journal of Scientific Instrument, 2011, 32(11): 2602

[102]

T. B. Chen, M. Y. Yao, M. H. Liu, Z. J. Lei, Q. M. Peng, Y. Xu, and X. Zhang, Quantitative analysis of Ba and Sr in soil using laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(6): 1658

[103]

J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water, Optoelectronics Letters, 2011, 7(1): 65

[104]

Y. Li, Z. N. Wang, J. L. Wu, Y. Lu, and R. E. Zheng, Effects of laser wavelength on detection of metal elements in water solution by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(3): 582

[105]

X. Y. Pu and N. H. Cheung, ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse, Appl. Spectrosc., 2003, 57(5): 588

[106]

X. Y. Pu, W. Y. Ma, and N. H. Cheung, Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy, Appl. Phys. Lett., 2003, 83(16): 3416

[107]

M. Y. Yao, J. L. Lin, M. H. Liu, and Y. Xu, Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy, Appl. Opt., 2012, 51(10): 1552

[108]

L. Huang, M. Y. Yao, Y. Xu, and M. H. Liu, Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models, Appl. Phys. B, 2013, 111(1): 45

[109]

Y. Feng, J. J. Yang, J. M. Fan, G. X. Yao, X. H. Ji, X. Y. Zhang, X. F. Zheng, and Z. F. Cui, Investigation of laserinduced breakdown spectroscopy of a liquid jet, Appl. Opt., 2010, 49(13): C70

[110]

D. H. Zhu, J. P. Chen, J. Lu, and X. W. Ni, Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent, Analytical Methods, 2012, 4(3): 819

[111]

Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B: At. Spectrosc., 2008, 63(1): 64

[112]

Z. J. Chen, H. K. Li, F. Zhao, and R. H. Li, Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface, J. Anal. At. Spectrom., 2008, 23(6): 871

[113]

R. Hai, X. Wu, Y. Xin, P. Liu, D. Wu, H. Ding, Y. Zhou, L. Cai, and L. Yan, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater., 2013, 447(1-3): 9

[114]

Y. Zhang, G. Xiong, S. Li, Z. Dong, S. G. Buckley, and S. D. Tse, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis, Combust. Flame, 2013, 160(3): 725

[115]

L. L. Peng, D. X. Sun, M. G. Su, J. T. Han, and C. Dong, Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser-induced breakdown spectroscopy, Opt. Laser Technol., 2012, 44(8): 2469

[116]

Y. Tian, Z. N. Wang, H. M. Hou, X. W. Zhai, X. H. Ci, and R. E.Zheng, Study of cuttings identification using laserinduced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(8): 2027

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (325KB)

4393

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/