Laser-induced breakdown spectroscopy in China
Zhe Wang, Ting-Bi Yuan, Zong-Yu Hou, Wei-Dong Zhou, Ji-Dong Lu, Hong-Bin Ding, Xiao-Yan Zeng
Laser-induced breakdown spectroscopy in China
Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS community is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS community are reviewed for the following four aspects: fundamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.
laser-induced breakdown spectroscopy / laser-induced breakdown spectroscopy (LIBS) / quantitative analysis / signal enhancement / application / coal / metal / environment / energy
[1] |
P. Y. Meslin, O. Gasnault, O. Forni, S. Schröoder,
CrossRef
ADS
Google scholar
|
[2] |
X. Z. Zhao, T. X. Lu, and Z. F. Cui, An experimental study of the lifetimes of excited electronic states of NO2, Chem. Phys. Lett., 1989, 162(1-2): 140
CrossRef
ADS
Google scholar
|
[3] |
Z. F. Cui, E. Y. Feng, S. Z. Huang, T. X. Lu, and X. Z. Zhao, An investigation on the property of the laser produced plasma under additional static electricity field, Chin. J. Atom. Mol. Phys, 1996, 13: 8
|
[4] |
J. Yu and R. E. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys., 2012, 7(6): 647
CrossRef
ADS
Google scholar
|
[5] |
R. Cong, B. H. Zhang, J. M. Fan, X. F. Zheng, W. Q. Liu, R. E. Zheng, and Z. F. Cui, Experimental investigation on time and spatial evolution of emission spectra of AI atom in laser-induced plasmas, Acta Opt. Sin., 2009, 29: 2594
CrossRef
ADS
Google scholar
|
[6] |
F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys, 2012, 7(6): 679
CrossRef
ADS
Google scholar
|
[7] |
Q. Wang, X. L. Chen, R. H. Yu, M. M. Xu, Y. Yang, B. Wu, Z. B. Ni, and F. Z. Dong, Quantitative analysis of Mn, Cr in steel based on laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(9): 2546
|
[8] |
X. L. Chen, F. Z. Dong, Q. Wang, R. H. Yu, Y. X. Liang, J. G. Wang, Y. Yang, Z. B. Ni, M. M. Xu, and B. Wu, Quantitative analysis of slag by calibration-free laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(12): 3289
|
[9] |
Q. Q. Wang, K. Liu, H. Zhao, C. H. Ge, and Z. W. Huang, Detection of explosives with laser-induced breakdown spectroscopy, Front. Phys, 2012, 7(6): 701
CrossRef
ADS
Google scholar
|
[10] |
H. Zhao, Q. Q. Wang, K. Liu, and C. H. Ge, Research on inorganic explosive and its principal component with laserinduced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(3): 577
|
[11] |
Q. Q. Wang, K. Liu, and H. Zhao, Multivariate analysis of laser-induced breakdown spectroscopy for discrimination between explosives and plastics, Chin. Phys. Lett., 2012, 29(4): 044206
CrossRef
ADS
Google scholar
|
[12] |
Q. Q. Wang, Z. W. Huang, K. Liu, W. J. Li, and J. X. Yan, Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model, Spectroscopy and Spectral Analysis, 2012, 32(12): 3179
|
[13] |
K. Liu, Q. Q. Wang, H. Zhao, and Y. L. Xiao, Differentiation of plastic with laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(5): 1171
|
[14] |
R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental advanced superconducting tokamak, Spectrochim. Acta B: At. Spectrosc., 2013, 87: 147
CrossRef
ADS
Google scholar
|
[15] |
R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater., 2013, 438: S1168
CrossRef
ADS
Google scholar
|
[16] |
Q. Xiao, A. Huber, G. Sergienko, B. Schweer, P. Mertens, A. Kubina, V. Philipps, and H. Ding, Application of laserinduced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des., 2013, 88(9-10): 1813
CrossRef
ADS
Google scholar
|
[17] |
L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express, 2013, 21(15): 18188
CrossRef
ADS
Google scholar
|
[18] |
L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express, 2011, 19(15): 14067
CrossRef
ADS
Google scholar
|
[19] |
L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express, 2012, 20(2): 1436
CrossRef
ADS
Google scholar
|
[20] |
L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett., 2011, 98(13): 131501
CrossRef
ADS
Google scholar
|
[21] |
N. H. Cheung and E. S. Yeung, Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown, Appl. Spectrosc., 1993, 47(7): 882
CrossRef
ADS
Google scholar
|
[22] |
W. F. Ho, C. W. Ng, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength, Appl. Spectrosc., 1997, 51(1): 87
CrossRef
ADS
Google scholar
|
[23] |
C. W. Ng, W. F. Ho, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength on plasma properties, Appl. Spectrosc., 1997, 51(7): 976
CrossRef
ADS
Google scholar
|
[24] |
S. K. Ho and N. H. Cheung, Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: Elucidation of the fluorescence mechanism, Appl. Phys. Lett., 2005, 87: 264104
CrossRef
ADS
Google scholar
|
[25] |
N. H. Cheung, Spectroscopy of laser plumes for atto-mole and ng/g elemental analysis, Appl. Spectrosc. Rev., 2007, 42(3): 235
CrossRef
ADS
Google scholar
|
[26] |
P. C. Chu, W. L. Yip, Y. Cai, and N. H. Cheung, Multielement analysis of ceramic and polymeric samples by ArF laser excited atomic fluorescence of ablated plumes, J. Anal. At. Spectrom., 2011, 26(6): 1210
CrossRef
ADS
Google scholar
|
[27] |
Y. Cai, P. C. Chu, S. K. Ho, and N. H. Cheung, Multielement analysis by ArF laser excited atomic fluorescence of laser ablated plumes: Mechanism and applications, Front. Phys., 2012, 7(6): 670
CrossRef
ADS
Google scholar
|
[28] |
S. Y. Chan and N. H. Cheung, Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy, Anal. Chem., 2000, 72(9): 2087
CrossRef
ADS
Google scholar
|
[29] |
S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms, Appl. Phys. Lett., 2002, 81(27): 5114
CrossRef
ADS
Google scholar
|
[30] |
S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy: Ambient gas effects, Spectrochim. Acta B: At. Spectrosc., 2003, 58(9): 1613
CrossRef
ADS
Google scholar
|
[31] |
W. L. Yip and N. H. Cheung, Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dye laser affect analytical performance, Spectrochim. Acta B: At. Spectrosc., 2009, 64(4): 315
CrossRef
ADS
Google scholar
|
[32] |
Y. Cai and N. H. Cheung, Photoacoustic monitoring of the mass removed in pulsed laser ablation, Microchem. J., 2011, 97(2): 109
CrossRef
ADS
Google scholar
|
[33] |
K. M. Lo and N. H. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions, Appl. Spectrosc., 2002, 56(6): 682
CrossRef
ADS
Google scholar
|
[34] |
N. H. Cheung and E. S. Yeung, Distribution of sodium and potassium within individual human erythrocytes by pulsedlaser vaporization in a sheath flow, Anal. Chem., 1994, 66(7): 929
CrossRef
ADS
Google scholar
|
[35] |
C. W. Ng and N. H. Cheung, Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration, Anal. Chem., 2000, 72(1): 247
CrossRef
ADS
Google scholar
|
[36] |
Y. Z. Lin, M. Y. Yao, M. H. Liu, Q. M. Peng, X. Zhang, T. B. Chen, and Y. Xu, Determination of parameter range in detecting Cu of Gannan navel orange by LIBS setup, Spectroscopy and Spectral Analysis, 2012, 32(11): 2925
|
[37] |
Y. Xu, M. H. Liu, M. Y. Yao, Q. M. Peng, T. B. Chen, X. Zhang, and Y. Z. Lin, Experimental study on chromium in gannan navel orange by laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32: 2555
|
[38] |
M. Y. Yao, L. Huang, J. H. Zheng, S. Q. Fan, and M. H. Liu, Assessment of feasibility in determining of Cr in Gannan navel orange treated in controlled conditions by laser induced breakdown spectroscopy, Opt. Laser Technol., 2013, 52: 70
CrossRef
ADS
Google scholar
|
[39] |
D. X. Sun, M. G. Su, and C. Z. Dong, Emission signal enhancement and plasma diagnostics using collinear double pulse for laser-induced breakdown spectroscopy of aluminum alloys, Eur. Phys. J.: Appl. Phys., 2013, 61(3): 30802
CrossRef
ADS
Google scholar
|
[40] |
D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry, Plasma Science & Technology, 2013, 15: 6
|
[41] |
G. C. He, D. X. Sun, M. G. Su, and C. Z. Dong, A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique, Eur. Phys. J.: Appl. Phys., 2011, 55(03): 30701
CrossRef
ADS
Google scholar
|
[42] |
D. X. Sun, M. G. Su, C. Z. Dong, D. C. Zhang, and X. W. Ma, A semi-quantitative analysis of essential micronutrient in folium lycii using laser-induced breakdown spectroscopy technique, Plasma Science & Technology, 2010, 12(4): 478
CrossRef
ADS
Google scholar
|
[43] |
J. T. Han, D. X. Sun, M. G. Su, L. L. Peng, and C. Z. Dong, Quantitative analysis of metallic elements in tobacco and tobacco ash by calibration free laser-induced breakdown spectroscopy, Anal. Lett., 2012, 45(13): 1936
CrossRef
ADS
Google scholar
|
[44] |
H. M. Hou, Y. Li, Y. A. Lu, Z. N. Wang, and R. E. Zheng, Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample, Spectroscopy and Spectral Analysis, 2011, 31(3): 595
|
[45] |
J. L. Wu, Y. X. Fu, Y. Li, Y. Lu, Z. F. Cui, and R. E. Zheng, Detection of metal ions in water solution by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2008, 28(9): 1979
|
[46] |
S. L. Zhong, Y. Lu, K. Cheng, J. S. Xiu, and R. E. Zheng, Ultrasonic nebulizer assisted LIBS for detection of trace metal elements dissolved in water, Spectroscopy and Spectral Analysis, 2011, 31(6): 1458
|
[47] |
Y. Lu, Y. Li, J. L.Wu, S. L. Zhong, and R. E. Zheng, Guided conversion to enhance cation detection in water using laserinduced breakdown spectroscopy, Appl. Opt., 2010, 49(13): C75
CrossRef
ADS
Google scholar
|
[48] |
Y. Lu, J. L.Wu, Y. Li, J. J. Guo, K. Cheng, H. M. Hou, and R. E. Zheng, Experimental investigation of Pb in soil slurries by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2009, 29(11): 3121
|
[49] |
Y. F. Bi, Y. Li, and R. E. Zheng, The symmetric zeroarea conversion adptive peak-seeking method research for LIBS/Raman spectra, Spectroscopy and Spectral Analysis, 2013, 33(2): 438
|
[50] |
H. M. Hou, Y. Tian, Y. Li, and R. E. Zheng, Study of pressure effects on laser induced plasma in bulk seawater, J. Anal. Atom. Spectrom., 2014, 29(1): 169
CrossRef
ADS
Google scholar
|
[51] |
W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc., 2009, 63(8): 865
CrossRef
ADS
Google scholar
|
[52] |
L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys., 2012, 7(6): 690
CrossRef
ADS
Google scholar
|
[53] |
L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc., 2008, 62(4): 458
CrossRef
ADS
Google scholar
|
[54] |
B. Zhang, L. Sun, H. Yu, Y. Xin, and Z. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. Atom. Spectrom., 2013, 28:1884
CrossRef
ADS
Google scholar
|
[55] |
L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B: At. Spectrosc., 2009, 64(3): 278
CrossRef
ADS
Google scholar
|
[56] |
L. X. Sun and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta, 2009, 79(2): 388
CrossRef
ADS
Google scholar
|
[57] |
B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc., 2013, 67(9): 1087
CrossRef
ADS
Google scholar
|
[58] |
L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Quantitative analysis of Mn and Si of alloy steels by laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2010, 30(12): 3186
|
[59] |
L. X. Sun, H. B. Yu, Z. B. Cong, and Y. Xin, Quantitative analysis of Mn and Si of Steels by laser-induced breakdown spectroscopy combined with neural networks, Acta Opt. Sin., 2010, 30(9): 2757
CrossRef
ADS
Google scholar
|
[60] |
S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc., 2011, 65(10): 1197
CrossRef
ADS
Google scholar
|
[61] |
M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom., 2011, 26(11): 2183
CrossRef
ADS
Google scholar
|
[62] |
S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom., 2012, 27(3): 473
CrossRef
ADS
Google scholar
|
[63] |
S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom., 2010, 25(11): 1733
CrossRef
ADS
Google scholar
|
[64] |
J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Y. Li, Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy, Opt. Laser Technol., 2009, 41(8): 907
CrossRef
ADS
Google scholar
|
[65] |
L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, Analysis of pulverized coal by laser-induced breakdown spectroscopy, Plasma Science & Technology, 2005, 7(5): 3041
CrossRef
ADS
Google scholar
|
[66] |
K. Chen, J. D. Lu, and J. Y. Li, Real-time, quantitative analysis of multi-elements in liquid steel by LIBS, Spectroscopy and Spectral Analysis, 2011, 31(3): 823
|
[67] |
S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases, Appl. Surf. Sci., 2011, 257(7): 3103
CrossRef
ADS
Google scholar
|
[68] |
Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B: At. Spectrosc., 2012, 68: 58
CrossRef
ADS
Google scholar
|
[69] |
L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2274
CrossRef
ADS
Google scholar
|
[70] |
J. Feng, Z. Wang, Z. Li, and W. D. Ni, Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters, Spectrochim. Acta B: At. Spectrosc., 2010, 65(7): 549
CrossRef
ADS
Google scholar
|
[71] |
X. W. Li, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B: At. Spectrosc., 2013, 88(0): 180
CrossRef
ADS
Google scholar
|
[72] |
T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt., 2012, 51(7): B22
CrossRef
ADS
Google scholar
|
[73] |
Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling, Front. Phys., 2012, 7(6): 708
CrossRef
ADS
Google scholar
|
[74] |
Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express, 2013, 21(13): 15974
CrossRef
ADS
Google scholar
|
[75] |
T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom., 2013, 28(7): 1045
CrossRef
ADS
Google scholar
|
[76] |
Z. Hou, Z. Wang, S. Lui, T. Yuan, L. Li, Z. Li, and W. Ni, Improving data stability and prediction accuracy in laserinduced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom., 2013, 28(1): 107
CrossRef
ADS
Google scholar
|
[77] |
J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc., 2013, 67(3): 291
CrossRef
ADS
Google scholar
|
[78] |
Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express, 2012, 20(S6): A1011
CrossRef
ADS
Google scholar
|
[79] |
Z. Wang, J. Feng, and Z. Li, Reply to “Comment on ‘A multivariate model based on dominant factor for laserinduced breakdown spectroscopy measurements”’ by Vincenzo Palleschi, J. Anal. At. Spectrom., 2011, 26(11): 2302
CrossRef
ADS
Google scholar
|
[80] |
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2175
CrossRef
ADS
Google scholar
|
[81] |
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2289
CrossRef
ADS
Google scholar
|
[82] |
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laserinduced breakdown spectroscopy, Anal. Bioanal. Chem., 2011, 400(10): 3261
CrossRef
ADS
Google scholar
|
[83] |
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal by laser-induced breakdown spectroscopy, arXiv: 1402.2062, 2014
|
[84] |
X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy, arXiv: 1402.2060, 2014
|
[85] |
T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta, 2014, 807: 29
CrossRef
ADS
Google scholar
|
[86] |
W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express, 2010, 18(3): 2573
CrossRef
ADS
Google scholar
|
[87] |
W. D. Zhou, K. X. Li, H. G. Qian, Z. J. Ren, and Y. L. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt., 2012, 51(7): B42
CrossRef
ADS
Google scholar
|
[88] |
X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys., 2012, 7(6): 721
CrossRef
ADS
Google scholar
|
[89] |
W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom., 2013, 28(5): 702
CrossRef
ADS
Google scholar
|
[90] |
K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom., 2010, 25(9): 1475
CrossRef
ADS
Google scholar
|
[91] |
X. F. Li, W. D. Zhou, K. X. Li, H. G. Qian, and Z. J. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun., 2012, 285(1): 54
CrossRef
ADS
Google scholar
|
[92] |
K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B: At. Spectrosc., 2010, 65(5): 420
CrossRef
ADS
Google scholar
|
[93] |
W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, Development of a nanosecond discharge-enhanced laser plasma spectroscopy, Opt. Lett., 2011, 36(15): 2961
CrossRef
ADS
Google scholar
|
[94] |
D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc., 2012, 66(4): 347
CrossRef
ADS
Google scholar
|
[95] |
A. M. Leach and G. M. Hieftje, Methods for shot-to-shot normalization in laser ablation with an inductively coupled plasma time-of-flight mass spectrometer, J. Anal. At. Spectrom., 2000, 15(9): 1121
CrossRef
ADS
Google scholar
|
[96] |
J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasmainduced current versus continuum background, J. Anal. At. Spectrom., 2005, 20(1): 53
CrossRef
ADS
Google scholar
|
[97] |
Z. N. Wang, Y. Li, Q. Y. Zhang, Y. Lu, and R. E. Zheng, Experimental investigation of quantitatively analysing trace Mo in complex metallic alloys by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2011, 31(6): 1697
|
[98] |
Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, C. Yang, Y. Y. Chen, Y. H. Zhang, and P. C. Han, Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy, Front. Phys., 2012, 7(6): 714
CrossRef
ADS
Google scholar
|
[99] |
Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, D. L. Li, Y. Liu, P. C. Han, and Y. Y. Chen, Depth profile analysis for irregular and unknown sample by laser-indu ced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2013, 33: 1468
|
[100] |
L. X. Sun, H. B. Yu, Y. Xin, Z. B. Cong, and H. Y. Kong, On-line monitoring of molten steel compositions by laserinduced breakdown spectroscopy, Chinese Journal of Lasers, 2011, 38(9): 0915002
CrossRef
ADS
Google scholar
|
[101] |
L. X. Sun, H. B. Yu, Z. B. Cong, and Y. Xin, On-line semiquantitative analysis of molten steel composition using laserinduced breakdown spectroscopy, Chinese Journal of Scientific Instrument, 2011, 32(11): 2602
|
[102] |
T. B. Chen, M. Y. Yao, M. H. Liu, Z. J. Lei, Q. M. Peng, Y. Xu, and X. Zhang, Quantitative analysis of Ba and Sr in soil using laser-induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(6): 1658
|
[103] |
J. L. Wu, Y. Lu, Y. Li, K. Cheng, J. J. Guo, and R. E. Zheng, Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water, Optoelectronics Letters, 2011, 7(1): 65
CrossRef
ADS
Google scholar
|
[104] |
Y. Li, Z. N. Wang, J. L. Wu, Y. Lu, and R. E. Zheng, Effects of laser wavelength on detection of metal elements in water solution by laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(3): 582
|
[105] |
X. Y. Pu and N. H. Cheung, ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse, Appl. Spectrosc., 2003, 57(5): 588
CrossRef
ADS
Google scholar
|
[106] |
X. Y. Pu, W. Y. Ma, and N. H. Cheung, Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy, Appl. Phys. Lett., 2003, 83(16): 3416
CrossRef
ADS
Google scholar
|
[107] |
M. Y. Yao, J. L. Lin, M. H. Liu, and Y. Xu, Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy, Appl. Opt., 2012, 51(10): 1552
CrossRef
ADS
Google scholar
|
[108] |
L. Huang, M. Y. Yao, Y. Xu, and M. H. Liu, Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models, Appl. Phys. B, 2013, 111(1): 45
CrossRef
ADS
Google scholar
|
[109] |
Y. Feng, J. J. Yang, J. M. Fan, G. X. Yao, X. H. Ji, X. Y. Zhang, X. F. Zheng, and Z. F. Cui, Investigation of laserinduced breakdown spectroscopy of a liquid jet, Appl. Opt., 2010, 49(13): C70
CrossRef
ADS
Google scholar
|
[110] |
D. H. Zhu, J. P. Chen, J. Lu, and X. W. Ni, Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent, Analytical Methods, 2012, 4(3): 819
CrossRef
ADS
Google scholar
|
[111] |
Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B: At. Spectrosc., 2008, 63(1): 64
CrossRef
ADS
Google scholar
|
[112] |
Z. J. Chen, H. K. Li, F. Zhao, and R. H. Li, Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface, J. Anal. At. Spectrom., 2008, 23(6): 871
CrossRef
ADS
Google scholar
|
[113] |
R. Hai, X. Wu, Y. Xin, P. Liu, D. Wu, H. Ding, Y. Zhou, L. Cai, and L. Yan, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater., 2013, 447(1-3): 9
|
[114] |
Y. Zhang, G. Xiong, S. Li, Z. Dong, S. G. Buckley, and S. D. Tse, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis, Combust. Flame, 2013, 160(3): 725
CrossRef
ADS
Google scholar
|
[115] |
L. L. Peng, D. X. Sun, M. G. Su, J. T. Han, and C. Dong, Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser-induced breakdown spectroscopy, Opt. Laser Technol., 2012, 44(8): 2469
CrossRef
ADS
Google scholar
|
[116] |
Y. Tian, Z. N. Wang, H. M. Hou, X. W. Zhai, X. H. Ci, and R. E.Zheng, Study of cuttings identification using laserinduced breakdown spectroscopy, Spectroscopy and Spectral Analysis, 2012, 32(8): 2027
|
/
〈 | 〉 |