Electron-ion collider in China

Daniele P. Anderle, Valerio Bertone, Xu Cao, Lei Chang, Ningbo Chang, Gu Chen, Xurong Chen, Zhuojun Chen, Zhufang Cui, Lingyun Dai, Weitian Deng, Minghui Ding, Xu Feng, Chang Gong, Longcheng Gui, Feng-Kun Guo, Chengdong Han, Jun He, Tie-Jiun Hou, Hongxia Huang, Yin Huang, KrešImir KumeričKi, L. P. Kaptari, Demin Li, Hengne Li, Minxiang Li, Xueqian Li, Yutie Liang, Zuotang Liang, Chen Liu, Chuan Liu, Guoming Liu, Jie Liu, Liuming Liu, Xiang Liu, Tianbo Liu, Xiaofeng Luo, Zhun Lyu, Boqiang Ma, Fu Ma, Jianping Ma, Yugang Ma, Lijun Mao, Cédric Mezrag, Hervé Moutarde, Jialun Ping, Sixue Qin, Hang Ren, Craig D. Roberts, Juan Rojo, Guodong Shen, Chao Shi, Qintao Song, Hao Sun, Paweł Sznajder, Enke Wang, Fan Wang, Qian Wang, Rong Wang, Ruiru Wang, Taofeng Wang, Wei Wang, Xiaoyu Wang, Xiaoyun Wang, Jiajun Wu, Xinggang Wu, Lei Xia, Bowen Xiao, Guoqing Xiao, Ju-Jun Xie, Yaping Xie, Hongxi Xing, Hushan Xu, Nu Xu, Shusheng Xu, Mengshi Yan, Wenbiao Yan, Wencheng Yan, Xinhu Yan, Jiancheng Yang, Yi-Bo Yang, Zhi Yang, Deliang Yao, Zhihong Ye, Peilin Yin, C.-P. Yuan, Wenlong Zhan, Jianhui Zhang, Jinlong Zhang, Pengming Zhang, Yifei Zhang, Chao-Hsi Chang, Zhenyu Zhang, Hongwei Zhao, Kuang-Ta Chao, Qiang Zhao, Yuxiang Zhao, Zhengguo Zhao, Liang Zheng, Jian Zhou, Xiang Zhou, Xiaorong Zhou, Bingsong Zou, Liping Zou

PDF(11129 KB)
PDF(11129 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 64701. DOI: 10.1007/s11467-021-1062-0
REPORT
REPORT

Electron-ion collider in China

Author information +
History +

Abstract

Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a po- larization of 80%) and protons (with a polarization of 70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3)×1033 cm2•s1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.

The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.

This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.

Graphical abstract

Keywords

electron ion collider / nucleon structure / nucleon mass / exotic hadronic states / quantum chromodynamics / 3D-tomography / helicity / transverse momentum dependent parton distribution / generalized parton distribution / energy recovery linac / polarization / spin rotator

Cite this article

Download citation ▾
Daniele P. Anderle, Valerio Bertone, Xu Cao, Lei Chang, Ningbo Chang, Gu Chen, Xurong Chen, Zhuojun Chen, Zhufang Cui, Lingyun Dai, Weitian Deng, Minghui Ding, Xu Feng, Chang Gong, Longcheng Gui, Feng-Kun Guo, Chengdong Han, Jun He, Tie-Jiun Hou, Hongxia Huang, Yin Huang, KrešImir KumeričKi, L. P. Kaptari, Demin Li, Hengne Li, Minxiang Li, Xueqian Li, Yutie Liang, Zuotang Liang, Chen Liu, Chuan Liu, Guoming Liu, Jie Liu, Liuming Liu, Xiang Liu, Tianbo Liu, Xiaofeng Luo, Zhun Lyu, Boqiang Ma, Fu Ma, Jianping Ma, Yugang Ma, Lijun Mao, Cédric Mezrag, Hervé Moutarde, Jialun Ping, Sixue Qin, Hang Ren, Craig D. Roberts, Juan Rojo, Guodong Shen, Chao Shi, Qintao Song, Hao Sun, Paweł Sznajder, Enke Wang, Fan Wang, Qian Wang, Rong Wang, Ruiru Wang, Taofeng Wang, Wei Wang, Xiaoyu Wang, Xiaoyun Wang, Jiajun Wu, Xinggang Wu, Lei Xia, Bowen Xiao, Guoqing Xiao, Ju-Jun Xie, Yaping Xie, Hongxi Xing, Hushan Xu, Nu Xu, Shusheng Xu, Mengshi Yan, Wenbiao Yan, Wencheng Yan, Xinhu Yan, Jiancheng Yang, Yi-Bo Yang, Zhi Yang, Deliang Yao, Zhihong Ye, Peilin Yin, C.-P. Yuan, Wenlong Zhan, Jianhui Zhang, Jinlong Zhang, Pengming Zhang, Yifei Zhang, Chao-Hsi Chang, Zhenyu Zhang, Hongwei Zhao, Kuang-Ta Chao, Qiang Zhao, Yuxiang Zhao, Zhengguo Zhao, Liang Zheng, Jian Zhou, Xiang Zhou, Xiaorong Zhou, Bingsong Zou, Liping Zou. Electron-ion collider in China. Front. Phys., 2021, 16(6): 64701 https://doi.org/10.1007/s11467-021-1062-0

References

[1]
C. Seife, Illuminating the dark universe, Science 302(5653), 2038 (2003)
CrossRef ADS Google scholar
[2]
S. Weinberg, A model of leptons, Phys. Rev. Lett.19, 1264 (1967)
CrossRef ADS Google scholar
[3]
A. Salam and J. C. Ward, Weak and electromagnetic interactions, Nuovo Cim.11, 568 (1959)
CrossRef ADS Google scholar
[4]
S. L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys.10, 107 (1959)
CrossRef ADS Google scholar
[5]
D. J. Gross and F. Wilczek, Asymptotically free gauge theories (I): Phys. Rev. D8, 3633 (1973)
CrossRef ADS Google scholar
[6]
D. J. Gross and F. Wilczek, Asymptotically free gauge theories (II): Phys. Rev. D9, 980 (1974)
CrossRef ADS Google scholar
[7]
S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett.43, 1566 (1979)
CrossRef ADS Google scholar
[8]
F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13, 321 (1964)
CrossRef ADS Google scholar
[9]
P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13, 508 (1964)
CrossRef ADS Google scholar
[10]
P. A. Zyla, (Particle Data Group), The review of particle physics, Prog. Theor. Exp. Phys.2020, 083C01 (2020)
[11]
Jr. Callan, G. Curtis, R. F. Dashen, and D. J. Gross, Toward a theory of the strong interactions, Phys. Rev. D17, 2717 (1978)
CrossRef ADS Google scholar
[12]
D. J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett.30, 1343 (1973)
CrossRef ADS Google scholar
[13]
H. D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett.30, 1346 (1973)
CrossRef ADS Google scholar
[14]
M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett.8, 214 (1964)
CrossRef ADS Google scholar
[15]
G. Zweig, An SU (3) model for strong interaction symmetry and its breaking, Version 1, CERN-TH-4011 (1964)
[16]
E. D. Bloom, , High-energy in elastic e–p scattering at 6◦ and 10◦, Phys. Rev. Lett.23, 930 (1969)
[17]
C. Chang, , Observed deviations from scale invari- ance in high-energy muon scattering, Phys. Rev. Lett.35, 901 (1975)
CrossRef ADS Google scholar
[18]
J. J. Aubert, , The ratio of the nucleon structure functions F2N for iron and deuterium, Phys. Lett. B123, 275 (1983)
[19]
A. C. Benvenuti, , Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189, 483 (1987)
CrossRef ADS Google scholar
[20]
J. Gomez, , Measurement of the A-dependence of deep inelastic electron scattering, Phys. Rev. D49, 4348 (1994)
CrossRef ADS Google scholar
[21]
D. F. Geesaman, K. Saito, and A. W. Thomas, The nu- clear EMC effect, Ann. Rev. Nucl. Part. Sci.45, 337 (1995)
CrossRef ADS Google scholar
[22]
J. Seely, , New measurements of the EMC effect in very light nuclei, Phys. Rev. Lett.103, 202301 (2009)
[23]
L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, and R. Shneor, Short range corre- lations and the EMC effect, Phys. Rev. Lett.106, 052301 (2011)
CrossRef ADS Google scholar
[24]
J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, and P. Solvignon, A detailed study of the nuclear de- pendence of the EMC effect and short-range correlations, Phys. Rev. C86, 065204 (2012)
CrossRef ADS Google scholar
[25]
O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Nucleon-nucleon correlations, short-lived excitations, and the quarks within, Rev. Mod. Phys.89(4), 045002 (2017)
CrossRef ADS Google scholar
[26]
S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D32, 189 (1985)
CrossRef ADS Google scholar
[27]
S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, AIP Conf. Proc.132, 267 (1985)
CrossRef ADS Google scholar
[28]
S. Coleman and R. E. Norton, Singularities in the physi- cal region, Nuovo Cim.38, 438 (1965)
CrossRef ADS Google scholar
[29]
F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys.112, 103757 (2020)
CrossRef ADS Google scholar
[30]
A. Accardi, , Electron Ion Collider: The next qcd frontier, Eur. Phys. J. A52(9), 268 (2016)
[31]
J. L. A. Fernandez, , A large hadron electron col- lider at CERN report on the physics and design concepts for machine and detector, J. Phys. G: Nucl. Part. Phys.39(7), 075001 (2012)
[32]
F. Gautheron, , COMPASS-II Proposal, 5 (2010)
[33]
G. van der Steenhoven, The HERMES experiment, Prog. Part. Nucl. Phys.55, 181 (2005)
CrossRef ADS Google scholar
[34]
W. Braunschweig and H1 Collaboration, Status HERA and the experiments H1 and ZEUS, Nucl. Phys. B: Proc. Suppl.31, 206 (1993)
CrossRef ADS Google scholar
[35]
J. Ashman, , A Measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon–proton scattering, Phys. Lett. B206, 364 (1988)
[36]
P. Amaudruz, , The Gottfried, sum from the ratio F2n/F2p, Phys. Rev. Lett.66,2712(1991)
[37]
M. Arneodo, , A reevaluation of the Gottfried sum, Phys. Rev. D50, R1 (1994)
[38]
K. Ackerstaff, , The flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering, Phys. Rev. Lett.81, 5519 (1998)
[39]
A. Baldit, , Study of the isospin symmetry breaking in the light quark sea of the nucleon from the Drell–Yan process, Phys. Lett. B332, 244 (1994)
[40]
R. S. Towell, , Improved measurement of the anti-d¯/anti−u¯ asymmetry in the nucleon sea, Phys. Rev. D64, 052002 (2001)
CrossRef ADS Google scholar
[41]
R. S. Bhalerao, Is the polarized anti-quark sea in the nu- cleon flavor symmetric? Phys. Rev. C63, 025208 (2001)
CrossRef ADS Google scholar
[42]
J.-C. Peng, Flavor structure of the nucleon sea, Eur. Phys. J. A18, 395 (2003)
CrossRef ADS Google scholar
[43]
C. Bourrely, J. Soffer, and F. Buccella, A statistical approach for polarized parton distributions, Eur. Phys. J. C23, 487 (2002)
CrossRef ADS Google scholar
[44]
J. Adam, , Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at s = 510 GeV, Phys. Rev. D99(5), 051102 (2019)
[45]
E. Leader, A. V. Sidorov, and D. B. Stamenov, Impact of clas and compass data on polarized parton densities and higher twist, Phys. Rev. D75, 074027 (2007)
CrossRef ADS Google scholar
[46]
M. Hirai, S. Kumano, and N. Saito, Determination of polarized parton distribution functions with recent data on polarization asymmetries, Phys. Rev. D74, 014015 (2006)
CrossRef ADS Google scholar
[47]
A. Airapetian, , Quark helicity distributions in the nucleon for up, down, and strange quarks from semi-inclusive deep-inelastic scattering, Phys. Rev. D71, 012003 (2005)
[48]
A. Airapetian, , Measurement of parton distribu- tions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the deuteron, Phys. Lett. B666, 446 (2008)
[49]
D. de Florian, R. Sassot, M. Stratmann, and W. Vogel- sang, Global analysis of helicity parton densities and their uncertainties, Phys. Rev. Lett.101, 072001 (2008)
CrossRef ADS Google scholar
[50]
A. Airapetian, , Flavor decomposition of the sea quark helicity distributions in the nucleon from semiinclu- sive deep inelastic scattering, Phys. Rev. Lett.92, 012005 (2004)
[51]
D. De Florian, G. A. Lucero, R. Sassot, M. Stratmann, and W. Vogelsang, Monte Carlo sampling variant of the DSSV14 set of helicity parton densities, Phys. Rev. D100(11), 114027 (2019)
CrossRef ADS Google scholar
[52]
C. Schmidt, J. Pumplin, C. P. Yuan, and P. Yuan, Updating and optimizing error parton distribution function sets in the Hessian approach, Phys. Rev. D98(9), 094005 (2018)
CrossRef ADS Google scholar
[53]
T.-J. Hou, Z. Yu, S. Dulat, C. Schmidt, and C. P. Yuan, Updating and optimizing error parton distribution func- tion sets in the Hessian approach (II): Phys. Rev. D100(11), 114024 (2019)
CrossRef ADS Google scholar
[54]
R. P. Feynman, Photon-Hadron Interactions, CRC Press, 1973
[55]
J. D. Bjorken and E. A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon, Phys. Rev.185, 1975 (1969)
CrossRef ADS Google scholar
[56]
J. C. Collins and D. E. Soper, Back-to-back jets in QCD, Nucl. Phys. B193, 381 (1981) [Erratum: Nucl. Phys.B213, 545 (1983)]
CrossRef ADS Google scholar
[57]
J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl. Phys. B194, 445 (1982)
CrossRef ADS Google scholar
[58]
D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejvsi, Wave functions, evolution equations and evo- lution kernels from light ray operators of QCD, Fortsch. Phys.42, 101 (1994)
CrossRef ADS Google scholar
[59]
X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D55, 7114 (1997)
CrossRef ADS Google scholar
[60]
X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett.78, 610 (1997)
CrossRef ADS Google scholar
[61]
A. V. Radyushkin, Nonforward parton distributions, Phys. Rev. D56, 5524 (1997)
CrossRef ADS Google scholar
[62]
A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D70, 117504 (2004)
CrossRef ADS Google scholar
[63]
X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D71, 034005 (2005)
CrossRef ADS Google scholar
[64]
X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell–Yan pro- cesses at low transverse momentum, Phys. Lett. B597, 299 (2004)
CrossRef ADS Google scholar
[65]
P. J. Mulders and R. D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B461, 197 (1996) [Erratum: Nucl. Phys. B484, 538 (1997)]
CrossRef ADS Google scholar
[66]
D. W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents, Phys. Rev. D41, 83 (1990)
CrossRef ADS Google scholar
[67]
J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B396, 161 (1993)
CrossRef ADS Google scholar
[68]
S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B530, 99 (2002)
CrossRef ADS Google scholar
[69]
J. C. Collins, Leading twist single transverse-spin asym- metries: Drell–Yan and deep inelastic scattering, Phys. Lett. B536, 43 (2002)
CrossRef ADS Google scholar
[70]
L. Adamczyk, , Measurement of the transverse single-spin asymmetry in p↑+p→W±/Z0 at RHIC, Phys. Rev. Lett.116(13), 132301 (2016)
[71]
M. Aghasyan, , First measurement of transversespin-dependent azimuthal asymmetries in the Drell–Yan process, Phys. Rev. Lett.119(11), 112002 (2017)
[72]
X.-D. Ji, J.-P. Ma, and F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables, Nucl. Phys. B652, 383 (2003)
CrossRef ADS Google scholar
[73]
E. S. Ageev, , A New measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target, Nucl. Phys. B765, 31 (2007)
[74]
M. Alekseev, , Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS, Phys. Lett. B673, 127 (2009)
[75]
M. G. Alekseev, , Measurement of the Collins and Sivers asymmetries on transversely polarised protons, Phys. Lett. B692, 240 (2010)
[76]
C. Adolph, , Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely po- larised protons, Phys. Lett. B744, 250 (2015)
[77]
X. Qian, , Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett.107, 072003 (2011)
[78]
A. Airapetian, , Single-spin asymmetries in semiinclusive deep-inelastic scattering on a transversely polar- ized hydrogen target, Phys. Rev. Lett.94, 012002 (2005)
[79]
A. Airapetian, , Observation of the naive-t-odd sivers effect in deep-inelastic scattering, Phys. Rev. Lett.103, 152002 (2009)
[80]
M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. O. Gonzalez-Hernandez, A. Prokudin, T. C. Rogers, and N. Sato, Mapping the kinematical regimes of semiinclusive deep inelastic scattering, JHEP10, 122 (2019)
CrossRef ADS Google scholar
[81]
M. Boglione, U. D’Alesio, C. Flore, and J. O. GonzalezHernandez, Assessing signals of TMD physics in SIDIS azimuthal asymmetries and in the extraction of the Sivers function, JHEP07, 148 (2018)
CrossRef ADS Google scholar
[82]
H. Dong, Du-X Zheng, and J. Zhou, Sea quark Sivers distribution, Phys. Lett. B788, 401 (2019)
CrossRef ADS Google scholar
[83]
J. Collins and T. Rogers, Understanding the largedistance behavior of transverse-momentum-dependent parton densities and the Collins–Soper evolution kernel, Phys. Rev. D91(7), 074020 (2015)
CrossRef ADS Google scholar
[84]
M. Diehl and S. Sapeta, On the analysis of lepton scat- tering on longitudinally or transversely polarized protons, Eur. Phys. J. C41, 515 (2005)
CrossRef ADS Google scholar
[85]
M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ→0, Phys. Rev. D62, 071503 (2000) [Erratum: Phys.Rev.D66, 119903 (2002)]
CrossRef ADS Google scholar
[86]
M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int. J. Mod. Phys. A18, 173 (2003)
CrossRef ADS Google scholar
[87]
M. V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei, Phys. Lett. B555, 57 (2003)
CrossRef ADS Google scholar
[88]
C. Lorcé, H. Moutarde, and A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur. Phys. J. C79(1), 89 (2019)
CrossRef ADS Google scholar
[89]
P. E. Shanahan and W. Detmold, Pressure distribution and shear forces inside the proton, Phys. Rev. Lett.122(7), 072003 (2019)
CrossRef ADS Google scholar
[90]
M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33(26), 1830025 (2018)
CrossRef ADS Google scholar
[91]
V. D. Burkert, L. Elouadrhiri, and F. X. Girod, The pressure distribution inside the proton, Nature557(7705), 396 (2018)
CrossRef ADS Google scholar
[92]
K. Kumerivcki, Measurability of pressure inside the proton, Nature570(7759), E1 (2019)
CrossRef ADS Google scholar
[93]
H. Moutarde, P. Sznajder, and J. Wagner, Border and skewness functions from a leading order fit to DVCS data, Eur. Phys. J. C 78(11), 890 (2018)
CrossRef ADS Google scholar
[94]
H. Moutarde, P. Sznajder, and J. Wagner, Unbiased determination of DVCS Compton form factors, Eur. Phys. J. C79(7), 614 (2019)
CrossRef ADS Google scholar
[95]
K. Kumericki, D. Mueller, and K. Passek-Kumericki, Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, Nucl. Phys. B794, 244 (2008)
CrossRef ADS Google scholar
[96]
K. Kumerivcki and D. Mueller, Deeply virtual Compton scattering at small xB and the access to the GPD H, Nucl. Phys. B841, 1 (2010)
CrossRef ADS Google scholar
[97]
M. Guidal, H. Moutarde, and M. Vanderhaeghen, Generalized parton distributions in the valence region from deeply virtual compton scattering, Rep. Prog. Phys.76, 066202 (2013)
CrossRef ADS Google scholar
[98]
K. Kumericki, S. Liuti, and H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high- precision era, Eur. Phys. J. A52(6), 157 (2016)
CrossRef ADS Google scholar
[99]
A. Airapetian, , Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction, JHEP 10, 042 (2012)
[100]
A. Sandacz, COMPASS results on DVCS and exclusive π0 production, J. Phys. Conf. Ser.938(1), 012015 (2017)
CrossRef ADS Google scholar
[101]
C. E. Hyde, M. Guidal, and A. V. Radyushkin, Deeply virtual exclusive processes and generalized parton distributions, J. Phys. Conf. Ser.299, 012006 (2011)
CrossRef ADS Google scholar
[102]
https://www.jlab.org/exp_prog/proposals/06/PR12-06-114.pdf
[103]
https://www.jlab.org/exp_prog/proposals/06/PR12-06-119.pdf
[104]
https://www.jlab.org/exp_prog/PACpage/PAC37/proposals/Proposals/New%20Proposals/PR-11-003.pdf
[105]
https://www.jlab.org/exp_prog/proposals/13/PR12-13-010.pdf
[106]
H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner, Timelike and spacelike deeply virtual Comp- ton scattering at next-to-leading order, Phys. Rev. D87(5), 054029 (2013)
CrossRef ADS Google scholar
[107]
V. M. Braun, A. N. Manashov, D. Müller, and B. M. Pirnay, Deeply Virtual Compton Scattering to the twist-four accuracy: Impact of finite-t and target mass corrections, Phys. Rev. D89(7), 074022 (2014)
CrossRef ADS Google scholar
[108]
M. Defurne, , E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV, Phys. Rev. C92(5), 055202 (2015)
[109]
M. Defurne, , A glimpse of gluons through deeply virtual compton scattering on the proton, Nature Com- mun.8(1), 1408 (2017)
[110]
E. Perez, L. Schoeffel, and L. Favart, MILOU: A Monte Carlo for deeply virtual Compton scattering, arXiv: hep- ph/0411389 (2004)
[111]
K. Kumericki, D. Mueller, and A. Schafer, Neural net- work generated parametrizations of deeply virtual Comp- ton form factors, JHEP07, 073 (2011)
CrossRef ADS Google scholar
[112]
B. Berthou, , PARTONS: PArtonic tomography of nucleon software, Eur. Phys. J. C78(6), 478 (2018)
CrossRef ADS Google scholar
[113]
M. Cuic, K. Kumericki, and A. Schafer, separation of quark flavors using DVCS data, arXiv: 2007.00029 [hep- ph] (2020)
[114]
S. V. Goloskokov and P. Kroll, An Attempt to understand exclusive π+ electroproduction, Eur. Phys. J. C65, 137 (2010)
CrossRef ADS Google scholar
[115]
S. V. Goloskokov and P. Kroll, Transversity in hard exclu- sive electroproduction of pseudoscalar mesons, Eur. Phys. J. A47, 112 (2011)
CrossRef ADS Google scholar
[116]
P. Kroll, H. Moutarde, and F. Sabatie, From hard exclu- sive meson electroproduction to deeply virtual Compton scattering, Eur. Phys. J. C73(1), 2278 (2013)
CrossRef ADS Google scholar
[117]
A. Airapetian, , Measurement of azimuthal asym- metries with respect to both beam charge and transverse target polarization in exclusive electroproduction of real photons, JHEP06, 066 (2008)
[118]
G. R. Goldstein, J. O G. Hernandez, and S. Liuti, Flexible parametrization of generalized parton distributions: The chiral-odd sector, Phys. Rev. D91(11), 114013 (2015)
CrossRef ADS Google scholar
[119]
A. Kim, , Target and double spin asymmetries of deeply virtual π0 production with a longitudinally po- larized proton target and CLAS, Phys. Lett. B768, 168 (2017)
[120]
R. A. Khalek, J. J. Ethier, J. Rojo, and G. van Weelden, nNNPDF2.0: Quark flavor separation in nuclei from LHC data, JHEP09, 183 (2020)
CrossRef ADS Google scholar
[121]
K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Sal- gado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C77(3), 163 (2017)
CrossRef ADS Google scholar
[122]
M. Hirai, S. Kumano, and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncer- tainties in next-to-leading order, Phys. Rev. C76, 065207 (2007)
CrossRef ADS Google scholar
[123]
D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D85, 074028 (2012)
CrossRef ADS Google scholar
[124]
K. Kovarik, , nCTEQ15: Global analysis of nu- clear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D93(8), 085037 (2016)
CrossRef ADS Google scholar
[125]
H. Khanpour and S. A. Tehrani, Global analysis of nu- clear parton distribution functions and their uncertain- xt-to-next-to-leading order, Phys. Rev. D93(1), 014026 (2016)
CrossRef ADS Google scholar
[126]
M. Walt, I. Helenius, and W. Vogelsang, Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO, Phys. Rev. D100(9), 096015 (2019)
CrossRef ADS Google scholar
[127]
J. Ashman, , A measurement of the ratio of the nucleon structure function in copper and deuterium, Z. Phys. C57, 211 (1993)
[128]
V. Guzey, L. Zhu, C. E. Keppel, M. E. Christy, D. Gaskell, P. Solvignon, and A. Accardi, Impact of nuclear dependence of R=σL/σT on antishadowing in nuclear structure functions, Phys. Rev. C86, 045201 (2012)
CrossRef ADS Google scholar
[129]
B. Schmookler, , Modified structure of protons and neutrons in correlated pairs, Nature 566(7744), 354 (2019)
CrossRef ADS Google scholar
[130]
I. Borsa, G. Lucero, R. Sassot, E. C. Aschenauer, and S. Nunes, Revisiting helicity parton distributions at a future electron–ion collider, Phys. Rev. D102(9), 094018 (2020)
CrossRef ADS Google scholar
[131]
W. Cosyn, V. Guzey, M. Sargsian, M. Strikman, and C. Weiss, Electron–deuteron DIS with spectator tagging at EIC: Development of theoretical framework, EPJ Web Conf.112, 01022 (2016)
CrossRef ADS Google scholar
[132]
L. Frankfurt, V. Guzey, and M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nu- clei, Phys. Rep.512, 255 (2012)
CrossRef ADS Google scholar
[133]
M. Gyulassy and X.-N. Wang, Multiple collisions and in- duced gluon Bremsstrahlung in QCD, Nucl. Phys. B420, 583 (1994)
CrossRef ADS Google scholar
[134]
R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, Radiative energy loss and p⊥-broadening of high-energy partons in nuclei, Nucl. Phys. B484, 265 (1997)
CrossRef ADS Google scholar
[135]
M. Gyulassy, P. Levai, and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B594, 371 (2001)
CrossRef ADS Google scholar
[136]
B. G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark–gluon plasma, JETP Lett.65, 615 (1997)
CrossRef ADS Google scholar
[137]
X.-F. Guo and X.-N. Wang, Multiple scattering, par- ton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett.85, 3591 (2000)
CrossRef ADS Google scholar
[138]
A. Airapetian, , Hadronization in semi-inclusive deep-inelastic scattering on nuclei, Nucl. Phys. B780, 1 (2007)
[139]
M. A. Vasilev, , Parton energy loss limits and shad- owing in Drell–Yan dimuon production, Phys. Rev. Lett.83, 2304 (1999)
[140]
E. Wang and X.-N. Wang, Jet tomography of dense and nuclear matter, Phys. Rev. Lett.89, 162301 (2002)
CrossRef ADS Google scholar
[141]
N.-B. Chang, W.-T. Deng, and X.-N. Wang, Initial con- ditions for the modified evolution of fragmentation func- tions in the nuclear medium, Phys. Rev. C89(3), 034911 (2014)
CrossRef ADS Google scholar
[142]
H. Xing, Y. Guo, E. Wang, and X.-N. Wang, Parton en- ergy loss and modified beam quark distribution functions Yan process in p+A collisions, Nucl. Phys. A 879, 77 (2012)
CrossRef ADS Google scholar
[143]
F. Arleo, C.-J. Naïm, and S. Platchkov, Initial-state energy loss in cold QCD matter and the Drell–Yan process, JHEP01, 129 (2019)
CrossRef ADS Google scholar
[144]
A. Bialas, Attenuation of high-energy particles leptoproduced in nuclear matter, Acta Phys. Polon. B11, 475 (1980)
[145]
N. Akopov, L. Grigoryan, and Z. Akopov, Application of the two-scale model to the HERMES data on nuclear attenuation, Eur. Phys. J. C44, 219 (2005)
CrossRef ADS Google scholar
[146]
K. M. Burke, , Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C90(1), 014909 (2014)
CrossRef ADS Google scholar
[147]
P. Ru, Z.-B. Kang, E. Wang, H. Xing, and B.-W. Zhang, A global extraction of the jet transport coefficient in cold nuclear matter, arXiv: 1907.11808 (2019)
[148]
P. A. Zyla, (Particle Data Gruop), Review of particle properties, Prog. Theor. Exp. Phys.2020, 083C01 (2020)
[149]
R. L. Jaffe, Exotica, Phys. Rep.409, 1 (2005)
CrossRef ADS Google scholar
[150]
E. S. Swanson, The new heavy mesons: A status report, Phys. Rep.429, 243 (2006)
CrossRef ADS Google scholar
[151]
M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys.61, 455 (2008)
CrossRef ADS Google scholar
[152]
E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. experimental facts versus QCD inspired concepts, Phys. Rep.454, 1 (2007)
CrossRef ADS Google scholar
[153]
E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys.82, 1095 (2010)
CrossRef ADS Google scholar
[154]
N. Brambilla, , Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C71, 1534 (2011)
[155]
H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hiddencharm pentaquark and tetraquark states, Phys. Rep.639, 1 (2016)
CrossRef ADS Google scholar
[156]
A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP2016(6), 062C01 (2016)
CrossRef ADS Google scholar
[157]
R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavyquark QCD exotica, Prog. Part. Nucl. Phys.93, 143 (2017)
CrossRef ADS Google scholar
[158]
A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark Resonances, Phys. Rep.668, 1 (2017)
CrossRef ADS Google scholar
[159]
F.-K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys.90(1), 015004 (2018)
CrossRef ADS Google scholar
[160]
Y. Dong, A. Faessler, and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys.94, 282 (2017)
CrossRef ADS Google scholar
[161]
A. Ali, J. Sören Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys.97, 123 (2017)
CrossRef ADS Google scholar
[162]
S. L Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.90(1), 015003 (2018)
CrossRef ADS Google scholar
[163]
M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018)
CrossRef ADS Google scholar
[164]
C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A33(21), 1830018 (2018)
CrossRef ADS Google scholar
[165]
W. Altmannshofer, , The Belle II Physics Book, PTEP2019(12), 123C01 (2019) [Erratum: PTEP2020, 029201 (2020)]
[166]
A. Cerri, , Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC Volume 7, pp 867–1158 (2019)
[167]
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep.873, 1 (2020)
CrossRef ADS Google scholar
[168]
Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys.107, 237 (2019)
CrossRef ADS Google scholar
[169]
Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: A guide for practitioners, J. Phys. G47(5), 053001 (2020)
CrossRef ADS Google scholar
[170]
T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D72, 054026 (2005)
CrossRef ADS Google scholar
[171]
F.-K. Guo and Ulf-G. Meißner, Where is the χc0(2P)? Phys. Rev. D86, 091501 (2012)
[172]
M. Aghasyan, , Search for muoproduction of X(3872) at COMPASS and indication of a new state X˜(3872), Phys. Lett. B 783, 334 (2018)
[173]
A. Ali, , First measurement of near-threshold J/ψ exclusive photoproduction off the proton, Phys. Rev. Lett. 123(7), 072001 (2019)
[174]
R. Aaij, , Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+→J/ψφK+ decays, Phys. Rev. Lett.118(2), 022003 (2017)
[175]
R. Aaij, , Observation of J/ψp resonances consistent with pentaquark states in Λb0→J/ψK−p decays, Phys. Rev. Lett.115, 072001 (2015)
[176]
R. Aaij, , Observation of a narrow pentaquark state, Pc (4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett.122(22), 222001 (2019)
[177]
R. Mizuk, , Observation of a new structure near 10.75 GeV in the energy dependence of the e+e→Y(nS)π+π (n = 1, 2, 3) cross sections, JHEP10, 220 (2019)
[178]
E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: The model, Phys. Rev. D17, 3090 (1978) [Erratum: Phys. Rev. D21, 313 (1980)]
CrossRef ADS Google scholar
[179]
E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: Comparison with experiment, Phys. Rev. D21, 203 (1980)
CrossRef ADS Google scholar
[180]
B. Gittelman, K. M. Hanson, D. Larson, E. Loh, A. Silverman, and G. Theodosiou, Photoproduction of the ψ(3100) meson at 11 GeV, Phys. Rev. Lett.35, 1616 (1975)
CrossRef ADS Google scholar
[181]
U. Camerini, J.G. Learned, R. Prepost, C. M. Spencer, D. E. Wiser, W. Ash, R. L. Anderson, D. Ritson, D. Sherden, and C. K. Sinclair, Photoproduction of the ψ particles, Phys. Rev. Lett.35, 483 (1975)
CrossRef ADS Google scholar
[182]
M. E. Binkley, , J/ψ photoproduction from 60 GeV/c to 300 GeV/c, Phys. Rev. Lett.48, 73 (1982)
CrossRef ADS Google scholar
[183]
B. H. Denby, , Inelastic and elastic photoproduction of J/ψ(3097), Phys. Rev. Lett.52, 795 (1984)
CrossRef ADS Google scholar
[184]
P. L. Frabetti, , A measurement of elastic J/ψ photoproduction cross-section at Fermilab E687, Phys. Lett. B316, 197 (1993)
[185]
C. Adloff, , Elastic photoproduction of J/ψ and Y mesons at HERA, Phys. Lett. B483, 23 (2000)
[186]
S. Chekanov, , Exclusive photoproduction of J/ψ mesons at HERA, Eur. Phys. J. C24, 345 (2002)
CrossRef ADS Google scholar
[187]
M. S. Atiya, , Evidence for the high-energy photoproduction of charmed mesons, Phys. Rev. Lett.43, 414 (1979)
CrossRef ADS Google scholar
[188]
A. R. Clark, , Cross-section measurements for charm production by muons and photons, Phys. Rev. Lett.45, 682 (1980)
CrossRef ADS Google scholar
[189]
J. J. Aubert, , Production of charmed particles in 250-GeV µ+-iron interactions, Nucl. Phys. B213, 31 (1983)
[190]
M. I. Adamovich, , Cross-sections and some features of charm photoproduction at γ energies of 20 GeV to 70 GeV, Phys. Lett. B187, 437 (1987)
[191]
O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψ-p scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94(7), 074001 (2016)
CrossRef ADS Google scholar
[192]
M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, Ulf-G Meißner, J. A. Oller, and Q. Wang, interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett.124(7), 072001 (2020)
CrossRef ADS Google scholar
[193]
J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N and Λ resonances with hidden charm above 4 GeV, Phys. Rev. Lett.105, 232001 (2010)
CrossRef ADS Google scholar
[194]
W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou,ΣcD¯ and ΛcD states in a chiral quark model, Phys. Rev. C84, 015203 (2011)
CrossRef ADS Google scholar
[195]
Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C36, 6 (2012)
CrossRef ADS Google scholar
[196]
J.-J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in coupled-channel models, Phys. Rev. C85, 044002 (2012)
CrossRef ADS Google scholar
[197]
C. W. Xiao, J. Nieves, and E. Oset, Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons, Phys. Rev. D88, 056012 (2013)
CrossRef ADS Google scholar
[198]
T. Uchino, W.-H. Liang, and E. Oset, Baryon states with hidden charm in the extended local hidden gauge approach, Eur. Phys. J. A 52(3), 43 (2016)
CrossRef ADS Google scholar
[199]
M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett.115(12), 122001 (2015)
CrossRef ADS Google scholar
[200]
X. Cao and J.-P. Dai, Confronting pentaquark photoproduction with new LHCb observations, Phys. Rev. D100(5), 054033 (2019)
CrossRef ADS Google scholar
[201]
Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D95(11), 114017 (2017)
CrossRef ADS Google scholar
[202]
Y.-H. Lin and B.-S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures, Phys. Rev. D100(5), 056005 (2019)
CrossRef ADS Google scholar
[203]
Y. Dong, P. Shen, F. Huang, and Z. Zhang, Selected strong decays of pentaquark State Pc(4312) in a chiral constituent quark model, Eur. Phys. J. C80(4), 341 (2020)
CrossRef ADS Google scholar
[204]
Y. Huang, J.-J. Xie, J. He, X. Chen, and H.-F. Zhang, Photoproduction of hidden-charm states in the γp→D¯*0Λc+ reaction near threshold, Chin. Phys. C40(12), 124104 (2016)
CrossRef ADS Google scholar
[205]
J.-J. Wu, T. S. H. Lee, and B.-S. Zou, Nucleon resonances with hidden charm in γp reactions, Phys. Rev. C100(3), 035206 (2019)
CrossRef ADS Google scholar
[206]
J. Breitweg, , Measurement of elastic Upsilon photoproduction at HERA, Phys. Lett. B437, 432 (1998)
CrossRef ADS Google scholar
[207]
S. Chekanov, , Exclusive photoproduction of upsilon mesons at HERA, Phys. Lett. B680, 4 (2009)
[208]
CMS Collaboration, Measurement of exclusive Y photoproduction in pPb collisions at SNN= 5.02 TeV (2016), https://cds.cern.ch/record/2147428
[209]
J. J. Aubert, , Observation of wrong sign trimuon events in 250-GeV muon–nucleon interactions, Phys. Lett. B106, 419 (1981)
[210]
C. Adloff, , Measurement of open beauty production at HERA, Phys. Lett. B467, 156 (1999) [Erratum: Phys. Lett. B518, 331 (2001)]
[211]
L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52(6), 158 (2016)
CrossRef ADS Google scholar
[212]
S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Photoproduction of charm near threshold, Phys. Lett. B498, 23 (2001)
CrossRef ADS Google scholar
[213]
E. Martynov, E. Predazzi, and A. Prokudin, A universal regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C 26, 271 (2002)
CrossRef ADS Google scholar
[214]
E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003)
CrossRef ADS Google scholar
[215]
Y. Xu, Y. Xie, R. Wang, and X. Chen, Estimation of Y(1S) production in ep process near threshold,Eur. Phys. J. C80(3), 283 (2020)
CrossRef ADS Google scholar
[216]
F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D92(7), 071502 (2015)
CrossRef ADS Google scholar
[217]
X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B757m, 231 (2016)
CrossRef ADS Google scholar
[218]
Q. Wang, C. Hanhart, and Q. Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett.111(13), 132003 (2013)
CrossRef ADS Google scholar
[219]
Q. Wang, C. Hanhart, and Q. Zhao, Systematic study of the singularity mechanism in heavy quarkonium decays, Phys. Lett. B725(1–3), 106 (2013)
CrossRef ADS Google scholar
[220]
A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, and A. P. Szczepaniak. Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B772, 200 (2017)
CrossRef ADS Google scholar
[221]
A. P. Szczepaniak, Triangle singularities and XYZ quarkonium peaks, Phys. Lett. B747, 410 (2015)
CrossRef ADS Google scholar
[222]
M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, and J. Nieves, Zc(3900): What has been really seen? Phys. Lett. B755, 337 (2016)
CrossRef ADS Google scholar
[223]
Q.-R. Gong, J.-L. Pang, Y.-F. Wang, and H.-Q. Zheng, The Zc(3900) peak does not come from the “triangle singularity”, Eur. Phys. J. C78(4), 276 (2018)
[224]
F.-K. Guo, Triangle singularities and charmonium-like XYZ states, Nucl. Phys. Rev.37(3), 406 (2020)
[225]
S. X. Nakamura and K. Tsushima, Zc(4430) and Zc(4200) as triangle singularities, Phys. Rev. D100(5), 051502 (2019)
CrossRef ADS Google scholar
[226]
S. X. Nakamura, Triangle singularities in B¯0→χc1K−π+ relevant to Z1(4050) and Z2(4250), Phys. Rev. D100(1), 011504 (2019)
CrossRef ADS Google scholar
[227]
C Adolph, , Search for exclusive photoproduction of Zc±(3900) at COMPASS, Phys. Lett. B742, 330 (2015)
[228]
X.-H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D77, 094005 (2008)
CrossRef ADS Google scholar
[229]
J. He and X. Liu, Discovery potential for charmoniumlike state Y (3940) by the meson photoproduction, Phys. Rev. D80, 114007 (2009)
CrossRef ADS Google scholar
[230]
G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, Phys. Rev. C83, 065203 (2011)
CrossRef ADS Google scholar
[231]
Q.-Y. Lin, X. Liu, and H.-S. Xu, Charged charmoniumlike state Zc(3900)±, Phys. Rev. D88, 114009 (2013)
CrossRef ADS Google scholar
[232]
Q.-Y. Lin, X. Liu, and H.-S. Xu, Probing charmoniumlike state X(3915) through meson photoproduction, Phys. Rev. D89(3), 034016 (2014)
CrossRef ADS Google scholar
[233]
Y. Huang, J. He, H.-F. Zhang, and X.-R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G41(11), 115004 (2014)
CrossRef ADS Google scholar
[234]
Q. Wang, X.-H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc+(4380) and Pc+(4450), Phys. Rev. D92, 034022 (2015)
CrossRef ADS Google scholar
[235]
X.-Y. Wang, X.-R. Chen, and A. Guskov, Photoproduction of the charged charmoniumlike Zc+(4200), Phys. Rev. D92(9), 094017 (2015)
CrossRef ADS Google scholar
[236]
V. Kubarovsky and M. B. Voloshin, Formation of hiddencharm pentaquarks in photonnucleon collisions, Phys. Rev. D92(3), 031502 (2015)
CrossRef ADS Google scholar
[237]
M. Karliner and J. L. Rosner, Photoproduction of exotic baryon resonances, Phys. Lett. B752, 329 (2016)
CrossRef ADS Google scholar
[238]
A. N. H. Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ photoproduction off protons, Phys. Rev. D94(3), 034002 (2016)
CrossRef ADS Google scholar
[239]
Z. E. Meziani, , A search for the LHCb charmed “Pentaquark” using photo-production of J/ψ at threshold in hall C at Jefferson Lab, 9 (2016)
[240]
S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017:017 (2018)
[241]
E. Ya. Paryev and Yu. T. Kiselev, The role of hiddencharm pentaquark resonance Pc+(4450) in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A978, 201 (2018)
CrossRef ADS Google scholar
[242]
X.-Y. Wang, X.-R. Chen, and J. He, Possibility to study pentaquark states Pc(4312), Pc(4440), and Pc(4457) in γp→J/ψp reaction, Phys. Rev. D99(11), 114007 (2019)
[243]
V. P. Gonçalves and M. M. Jaime, Photoproduction of pentaquark states at the LHC, Phys. Lett. B805, 135447 (2020)
CrossRef ADS Google scholar
[244]
X.-Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and π−p scatterings, Phys. Rev. D101(3), 034032 (2020)
[245]
X. Cao, F.-K. Guo, Y.-T. Liang, J.-J. Wu, J.-J. Xie, Y.-P. Xie, Z. Yang, and B.-S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D101(7), 074010 (2020)
CrossRef ADS Google scholar
[246]
D. Winney, C. Fanelli, A. Pilloni, A. N. H. Blin, C. Fernández-Ramírez, M. Albaladejo, V. Mathieu, V. I. Mokeev, and A. P. Szczepaniak, Double polarization observables in pentaquark photoproduction, Phys. Rev. D100(3), 034019 (2019)
CrossRef ADS Google scholar
[247]
Y.-P. Xie, X. Cao, Y.-T. Liang, and X. Chen, Pentaquark Pc electroproduction in J/ψ+p channel in electron–proton collisions, arXiv: 2003.11729 [hep-ph] (2020)
[248]
E. Ya. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 [nucl-th] (2020)
CrossRef ADS Google scholar
[249]
Z. Yang, X. Cao, Y.-T. Liang, and J.-J. Wu, Identify the hidden charm pentaquark signal from non-resonant background in electron–proton scattering, Chin. Phys. C44(8), 084102 (2020)
CrossRef ADS Google scholar
[250]
M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak, XYZ spectroscopy at electron–hadron facilities: Exclusive processes, Phys. Rev. D102, 114010 (2020)
CrossRef ADS Google scholar
[251]
J.-J. Wu and B. S. Zou, Prediction of super-heavy N∗ and Λ∗ resonances with hidden beauty, Phys. Lett. B709, 70 (2012)
[252]
Y.-H. Lin, C.-W. Shen, and B.-S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018)
[253]
G. Yang, J. Ping, and J. Segovia, Hidden-bottom pentaquarks, Phys. Rev. D99(1), 014035 (2019)
CrossRef ADS Google scholar
[254]
J. Ferretti, E. Santopinto, M. N. Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hiddencharm and bottom pentaquarks and LHCb Pc(4380) and Pc (4450) states, Phys. Lett. B789, 562 (2019)
[255]
H. Huang and J. Ping, Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D99(1), 014010 (2019)
CrossRef ADS Google scholar
[256]
H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C76(11), 624 (2016)
CrossRef ADS Google scholar
[257]
C.-W. Shen, D. Rönchen, Ulf-G. Meißner, and B.-S. Zou, Exploratory study of possible resonances in heavy meson — heavy baryon coupled-channel interactions, Chin. Phys. C42(2), 023106 (2018)
CrossRef ADS Google scholar
[258]
C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A49, 139 (2013)
CrossRef ADS Google scholar
[259]
R. Aaij, (LHCb Collaboration), Study of the lineshape of the χc1(3872) state, Phys. Rev. D102, 092005
[260]
R. Aaij, (LHCb Collaboration), Study of the ψ2(3823) and χc1(3872) states in B+→(Jψπ+π−)K+ decays, JHEP08, 123 (2020)
[261]
R. Aaij, , Determination of the X(3872) meson quantum numbers, Phys. Rev. Lett.110, 222001 (2013)
[262]
S. K. Choi, , Observation of a narrow charmonium — like state in exclusive B±→K±π+π−J/ψ decays, Phys. Rev. Lett.91, 262001 (2003)
[263]
M. Ablikim, , Observation of a charged charmoniumlike structure in e+e−→π+π−J/ψ⁢  at⁢ s= 4.26GeV, Phys. Rev. Lett.110, 252001 (2013)
[264]
Z. Q. Liu, , Study of e+e−→π+π−J/ψ and observation of a charged charmoniumlike state at Belle, Phys. Rev. Lett.110, 252002 (2013) [Erratum: Phys. Rev. Lett.111, 019901 (2013)]
[265]
T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Zc±(3900) and evidence for the neutral Zc0(3900) in e+e−→ππJ/ψ⁢   at s= 4170 MeV, Phys. Lett. B727, 366 (2013)
[266]
V. M. Abazov, , Properties of Zc±(3900) produced in pp‾ collision, Phys. Rev. D100, 012005 (2019)
[267]
M. Ablikim, , Determination of the spin and parity of the Zc(3900), Phys. Rev. Lett.119(7), 072001 (2017)
[268]
M. Ablikim, , Observation of Zc(3900)0 in e+e−→π0π0J/ψ, Phys. Rev. Lett.115(11), 112003 (2015)
[269]
M. Lomnitz and S. Klein, Exclusive vector meson production at an electron–ion collider, Phys. Rev. C99(1), 015203 (2019)
CrossRef ADS Google scholar
[270]
Z. Yang, X. Yao, F.-K. Guo, and T. Mehen, Leptoproduction of hidden-charm exotic hadrons (2020) (in preparation)
[271]
C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, and C. Sabelli, Is the X(3872) production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett.103, 162001 (2009)
CrossRef ADS Google scholar
[272]
P. Artoisenet and E. Braaten, Estimating the production rate of loosely-bound hadronic molecules using event generators, Phys. Rev. D83, 014019 (2011)
CrossRef ADS Google scholar
[273]
F.-K. Guo, Ulf-G. Meißner, and W. Wang, Production of charged heavy quarkonium-like states at the LHC and the tevatron, Commun. Theor. Phys.61, 354 (2014)
CrossRef ADS Google scholar
[274]
F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, Production of the bottom analogs and the spin partner of the X(3872) at hadron colliders, Eur. Phys. J. C74(9), 3063 (2014)
CrossRef ADS Google scholar
[275]
M. Albaladejo, F.-K. Guo, C. Hanhart, Ulf-G. Meißner, J. Nieves, A. Nogga, and Z. Yang, Note on X(3872) production at hadron colliders and its molecular structure, Chin. Phys. C 41(12), 121001 (2017)
CrossRef ADS Google scholar
[276]
T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP05, 026 (2006)
CrossRef ADS Google scholar
[277]
M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. S. Sánchez, L.-S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett.122(24), 242001 (2019)
CrossRef ADS Google scholar
[278]
M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett.78B, 443 (1978)
CrossRef ADS Google scholar
[279]
C. D. Roberts, Perspective on the origin of hadron masses, Few Body Syst.58(1), 5 (2017)
CrossRef ADS Google scholar
[280]
C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C78(2), 120 (2018)
CrossRef ADS Google scholar
[281]
X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett.74, 1071 (1995)
CrossRef ADS Google scholar
[282]
X.-D. Ji, Breakup of hadron masses and energymomentum tensor of QCD, Phys. Rev. D52, 271 (1995)
CrossRef ADS Google scholar
[283]
Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett.121(21), 212001 (2018)
CrossRef ADS Google scholar
[284]
Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D94(5), 054503 (2016)
[285]
A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco, Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett.116(25), 252001 (2016)
CrossRef ADS Google scholar
[286]
G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and A. Sternbeck, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D93(9), 094504 (2016)
CrossRef ADS Google scholar
[287]
Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP12, 008 (2018)
CrossRef ADS Google scholar
[288]
K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP01, 120 (2019)
CrossRef ADS Google scholar
[289]
X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)
[290]
S. Rodini, A. Metz, and B. Pasquini, Mass sum rules of the electron in quantum electrodynamics, JHEP09, 067 (2020)
CrossRef ADS Google scholar
[291]
A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, Phys. Rev. D102(11), 114042 (2021)
CrossRef ADS Google scholar
[292]
B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012. 09443v1 [hep-ph]
[293]
J. Carlson, A. Jaffe, and A. Wiles (Eds.), The Millenium Prize Problems, American Mathematical Society, Providence, 2006
[294]
D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi130, 105 (1996)
[295]
D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C9,459 (1999)
[296]
R. Boussarie and Y. Hatta, QCD analysis of nearthreshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D101(11), 114004 (2020)
CrossRef ADS Google scholar
[297]
J. M. Laget and R. Mendez-Galain, Exclusive photoproduction and electroproduction of vector mesons at large momentum transfer, Nucl. Phys. A581, 397 (1995)
CrossRef ADS Google scholar
[298]
T. Horn and C. D. Roberts, The pion: An enigma within the Standard Model, J. Phys. G43(7), 073001 (2016)
CrossRef ADS Google scholar
[299]
J. Volmer, , Measurement of the charged pion electromagnetic form-factor, Phys. Rev. Lett.86, 1713 (2001)
[300]
T. Horn, , Determination of the charged pion form factor at Q2= 1.60 and 2.45 (GeV/c)2, Phys. Rev. Lett.97, 192001 (2006)
[301]
V. Tadevosyan, , Determination of the pion charge form-factor for Q2=0.60−1.60 GeV2, Phys. Rev. C75, 055205 (2007)
[302]
T. Horn, , Scaling study of the pion electroproduction cross sections and the pion form factor, Phys. Rev. C 78, 058201 (2008)
[303]
G. M. Huber, , Charged pion form-factor between Q2= 0.60GeV2 and 2.45 GeV2(II): Determination of, and results for, the pion form-factor, Phys. Rev. C78, 045203 (2008)
[304]
H. P. Blok, , Charged pion form factor between Q2=0.60 and 2.45 GeV2(I): Measurements of the cross section for the 1H(e, e′π+)n reaction, Phys. Rev. C78, 045202 (2008)
[305]
J. Badier, , Measurement of the K−/π− structure function ratio using the Drell–Yan process, Phys. Lett.93B, 354 (1980)
[306]
J. Badier, , Experimental determination of the π meson structure functions by the Drell–Yan mechanism, Z. Phys. C18, 281 (1983)
CrossRef ADS Google scholar
[307]
B. Betev, , Observation of anomalous scaling violation in muon pair production by 194 GeV/cπ tungsten interactions, Z. Phys. C28, 15 (1985)
CrossRef ADS Google scholar
[308]
S. Falciano, , Angular distributions of muon pairs produced by 194 GeV/c negative pions, Z. Phys. C31, 513 (1986)
CrossRef ADS Google scholar
[309]
M. Guanziroli, , Angular distributions of muon pairs produced by negative pions on deuterium and tungsten, Z. Phys. C37, 545 (1988)
CrossRef ADS Google scholar
[310]
J. S. Conway, , Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D39, 92 (1989)
CrossRef ADS Google scholar
[311]
J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K20 meson, Phys. Rev. Lett.13, 138 (1964)
[312]
A. C. Aguilar, , Pion and kaon structure at the electron–ion collider, Eur. Phys. J. A55(10), 190 (2019)
[313]
C. D. Roberts and S. M. Schmidt, Reflections upon the emergence of hadronic mass, arXiv: 2006.08782 (2020)
[314]
S. Chekanov, , Leading neutron production in e+p collisions at HERA, Nucl. Phys. B637, 3 (2002)
[315]
F. D. Aaron, , Measurement of leading neutron production in deep-inelastic scattering at HERA, Eur. Phys. J. C68, 381 (2010)
[316]
S.-X. Qin, C. Chen, C. Mezrag, and C. D. Roberts, Offshell persistence of composite pions and kaons, Phys. Rev. C97(1), 015203 (2018)
CrossRef ADS Google scholar
[317]
G. M. Huber, D. Gaskell, , Jefferson Lab Experiment E12-06-101 (2006)
[318]
T. Horn, G. M. Huber, , Scaling study of the L/Tseparated pion electroproduction cross section at 11 GeV, approved Jefferson Lab 12 GeV Experiment E12-07-105 (2007)
[319]
D. Adikaram, , Measurement of Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment E12-15-006 (2015)
[320]
J. Annand, , Measurement of kaon structure function through tagged deep inelastic scattering (TDIS), approved Jefferson Lab experiment C12-15-006A (2017)
[321]
D. Gaskell, , Jefferson Lab Experiment E12-19-006 (2019)
[322]
M. Guidal, J. M. Laget, and M. Vanderhaeghen, Pseudoscalar meson photoproduction at high-energies: From the Regge regime to the hard scattering regime, Phys. Lett. B400, 6 (1997)
CrossRef ADS Google scholar
[323]
M. Vanderhaeghen, M. Guidal, and J. M. Laget, Regge description of charged pseudoscalar meson electroproduction above the resonance region, Phys. Rev. C57, 1454 (1998)
CrossRef ADS Google scholar
[324]
T. K. Choi, K. J. Kong, and B. G. Yu, Pion and proton form factors in the Regge description of electroproduction p(e, e′π+)n, J. Korean Phys. Soc.67(7), 1089 (2015)
[325]
R. J. Perry, A. Kizilersü, and A. W. Thomas, An improved hadronic model for pion electroproduction, Phys. Lett. B807, 135581 (2020)
CrossRef ADS Google scholar
[326]
M. Gluck, E. Reya, and I. Schienbein, Pionic parton distributions revisited, Eur. Phys. J. C10, 313 (1999)
CrossRef ADS Google scholar
[327]
G. P. Lepage and S. J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B87, 359 (1979)
CrossRef ADS Google scholar
[328]
G. P. Lepage and S. J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157 (1980)
CrossRef ADS Google scholar
[329]
S. J. Brodsky, Light cone quantized QCD and novel hadron phenomenology, in: QCD light cone physics and hadron phenomenology, Proceedings, 10th Nuclear Summer School and Symposium, NuSS’97, Seoul, Korea, June 23–28, 1997, pp 1–64 (1997)
[330]
V. N. Gribov and L. N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15, 438 (1972) [Yad. Fiz.15, 781 (1972)]
[331]
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B126, 298 (1977)
CrossRef ADS Google scholar
[332]
Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]
[333]
R. D. Field, Applications of Perturbative QCD, Volume 77 (1989)
[334]
D. Drijard, , Observation of charmed d meson production in pp collisions, Phys. Lett. B81, 250 (1979)
[335]
K. L. Giboni, , Diffractive production of the charmed baryon Λc+ at the CERN ISR, Phys. Lett. B85, 437 (1979)
[336]
W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, Evidence for Λc+ in inclusive pp→Λ°π+π+π−+X and pp→(K−π+p) +X at s= 53-GeV and 62-GeV, Phys. Lett. B85, 443 (1979)
[337]
D. Drijard, , Charmed baryon production at the cern intersecting storage rings, Phys. Lett. B85, 452 (1979)
CrossRef ADS Google scholar
[338]
H.M. Georgi, S. L. Glashow, M. E. Machacek, and D. V Nanopoulos, Charmed particles from two-gluon annihilation in proton proton collisions, Ann. Phys.114, 273 (1978)
CrossRef ADS Google scholar
[339]
S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B93, 451 (1980)
CrossRef ADS Google scholar
[340]
S. J. Brodsky, C. Peterson, and N. Sakai, Intrinsic heavy quark states, Phys. Rev. D23, 2745 (1981)
CrossRef ADS Google scholar
[341]
S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt, A review of the intrinsic heavy quark content of the nucleon, Adv. High Energy Phys.2015, 231547 (2015)
CrossRef ADS Google scholar
[342]
J. J. Aubert, , An experimental limit on the intrinsic charm component of the nucleon, Phys. Lett. B110, 73 (1982)
[343]
B. W. Harris, J. Smith, and R. Vogt, Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO, Nucl. Phys. B461, 181 (1996)
CrossRef ADS Google scholar
[344]
V. M. Abazov, , Measurement of γ+b+X and γ+c+Xproduction cross sections in pp‾ collisions at s= 1.96 TeV, Phys. Rev. Lett.102, 192002 (2009)
[345]
E. M Aitala, , Asymmetries in the production of Λc+ and Λc− baryons in 500-GeV/c π–nucleon interactions, Phys. Lett. B495, 42 (2000)
[346]
E. M. Aitala, , Differential cross-sections, charge production asymmetry, and spin density matrix elements for D∗±(2010) produced in 500-GeV/c π−–nucleon interactions, Phys. Lett. B539, 218 (2002)
[347]
C.-H. Chang, J.-P. Ma, C.-F. Qiao, and X.-G. Wu, Hadronic production of the doubly charmed baryon Ξcc+ with intrinsic charm, J. Phys. G34, 845 (2007)
[348]
G. Chen, X.-G. Wu, and S. Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D100(5), 054022 (2019)
[349]
G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, and H.-B. Fu, Hadronic production of Ξcc at a fixed-target experiment at the LHC, Phys. Rev. D89(7), 074020 (2014)
[350]
C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC: A generator for hadronic production of the double heavy baryons Ξcc,Ξbc ⁢ and⁢   Ξbb, Comput. Phys. Commun.177, 467 (2007)
[351]
C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc,Ξbc and Ξbb, Comput. Phys. Commun.181, 1144 (2010)
[352]
X.-Y. Wang and X.-G. Wu, GENXICC2.1: An improved version of genxicc for hadronic production of doubly heavy baryons, Comput. Phys. Commun.184, 1070 (2013)
CrossRef ADS Google scholar
[353]
X.-G. Wu, BCVEGPY and GENXICC for the hadronic production of the doubly heavy mesons and baryons, J. Phys. Conf. Ser.523, 012042 (2014)
CrossRef ADS Google scholar
[354]
S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rep.522, 239 (2013)
CrossRef ADS Google scholar
[355]
C. Hadjidakis, , A fixed-target programme at the LHC: Physics case and projected performances for heavyion, hadron, spin and astroparticle studies, Phys. Rep.911, 1 (2018)
CrossRef ADS Google scholar
[356]
J. P. Lansberg, , A fixed-target experiment at the LHC (AFTER@LHC): Luminosities, target polarisation and a selection of physics studies, PoS QNP2012, 049 (2012)
CrossRef ADS Google scholar
[357]
J. P. Lansberg, , Prospects for a fixed-target experiment at the LHC: AFTER@LHC, PoS ICHEP2012: 547 (2013)
CrossRef ADS Google scholar
[358]
J. P. Lansberg, , AFTER@LHC: A precision machine to study the interface between particle and nuclear physics, EPJ Web Conf.66, 11023 (2014)
CrossRef ADS Google scholar
[359]
G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D51, 1125 (1995)
CrossRef ADS Google scholar
[360]
R. Aaij, , Observation of the doubly charmed baryon Ξcc++, Phys. Rev. Lett.119(11), 112001 (2017)
[361]
R. Aaij, , Search for the doubly charmed baryon Ξcc+, Sci. China Phys. Mech. Astron.63(2), 221062 (2020)
[362]
M. Mattson, , First observation of the doubly charmed baryon Ξcc+, Phys. Rev. Lett. 89, 112001 (2002)
[363]
A. Ocherashvili, , Confirmation of the double charm baryon Ξcc+(3520) via its decay to pD+K−, Phys. Lett. B628, 18 (2005)
[364]
H.-W. Lin, , Parton distributions and lattice QCD calculations: A community white paper, Prog. Part. Nucl. Phys.100, 107 (2018)
[365]
S. Aoki, , FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C80(2), 113 (2020)
CrossRef ADS Google scholar
[366]
C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. V. Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett.119(14), 142002 (2017)
CrossRef ADS Google scholar
[367]
J. Liang, Y.-B. Yang, T. Draper, M. Gong, and K.-F. Liu, Quark spins and anomalous ward identity, Phys. Rev. D98(7), 074505 (2018)
CrossRef ADS Google scholar
[368]
H.-W. Lin, R. Gupta, B. Yoon, Y.-C. Jang, and T. Bhattacharya, Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. D98(9), 094512 (2018)
CrossRef ADS Google scholar
[369]
D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Evidence for polarization of gluons in the proton, Phys. Rev. Lett.113(1), 012001 (2014)
CrossRef ADS Google scholar
[370]
Y.-B. Yang, R. S. Sufian, A. Alexandru, T. Draper, M. J. Glatzmaier, K.-F. Liu, and Y. Zhao, Glue spin and helicity in the proton from lattice QCD, Phys. Rev. Lett.118(10), 102001 (2017)
CrossRef ADS Google scholar
[371]
Y.-B. Yang, A lattice story of proton spin, PoS LATTICE2018: 017 (2019)
[372]
R. L. Jaffe and A. Manohar, The G(1) problem: fact and fantasy on the spin of the proton, Nucl. Phys. B337, 509 (1990)
CrossRef ADS Google scholar
[373]
M. Deka, , Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D91(1), 014505 (2015)
CrossRef ADS Google scholar
[374]
C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos, and G. Spanoudes, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D101(9), 094513 (2020)
CrossRef ADS Google scholar
[375]
M. Engelhardt, J. Green, N. Hasan, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, and S. Syritsyn, Quark orbital angular momentum in the proton evaluated using a direct derivative method, PoS LATTICE2018:115 (2018)
CrossRef ADS Google scholar
[376]
M. Engelhardt, Quark orbital dynamics in the proton from Lattice QCD — from Ji to Jaffe–Manohar orbital angular momentum, Phys. Rev. D95(9), 094505 (2017)
CrossRef ADS Google scholar
[377]
X. Ji, Parton physics on a euclidean lattice, Phys. Rev. Lett.110, 262002 (2013)
CrossRef ADS Google scholar
[378]
Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D98(7), 074021 (2018)
CrossRef ADS Google scholar
[379]
A. Radyushkin, Nonperturbative evolution of parton quasi-distributions, Phys. Lett. B767, 314 (2017)
CrossRef ADS Google scholar
[380]
X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, largemomentum effective theory, arXiv: 2004.03543 (2020)
[381]
H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao, Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett.121(24), 242003 (2018)
CrossRef ADS Google scholar
[382]
C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett.121(11), 112001 (2018)
CrossRef ADS Google scholar
[383]
C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D98(9), 091503 (2018)
CrossRef ADS Google scholar
[384]
J. Liang, M. Sun, Y.-B. Yang, T. Draper, and K.-F. Liu, Ratio of strange to u/d momentum fraction in disconnected insertions, Phys. Rev. D102(3), 034514 (2020)
CrossRef ADS Google scholar
[385]
J.-W. Chen, H.-W. Lin, and J.-H. Zhang, Pion generalized parton distribution from lattice QCD, Nucl. Phys. B952, 114940 (2020)
CrossRef ADS Google scholar
[386]
X. Ji, Y. Liu, and Y.-S. Liu, Transverse-momentumdependent PDFs from large-momentum effective theory, arXiv: 1911.03840 (2019)
[387]
P. Shanahan, M. Wagman, and Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD, Phys. Rev. D102, 014511
CrossRef ADS Google scholar
[388]
Q.-A. Zhang, , Lattice-QCD calculations of TMD soft function through large-momentum effective theory, arXi: 2005.14572, (2020)
CrossRef ADS Google scholar
[389]
A. C. Benvenuti, , Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189(4), 483 (1987)
CrossRef ADS Google scholar
[390]
W. Detmold, M.Illa, D. J. Murphy, P. Oare, K. Orginos, P. E. Shanahan, M. L. Wagman, and F. Winter, Lattice QCD constraints on the parton distribution functions of 3He, arXiv: 2009.05522 (2020)
CrossRef ADS Google scholar
[391]
T. Yamazaki, Y. Kuramashi, and A. Ukawa, Helium nuclei in quenched lattice QCD, Phys. Rev. D81, 111504 (2010)
CrossRef ADS Google scholar
[392]
T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki, Systematics of the HAL QCD potential at low energies in lattice QCD, Phys. Rev. D99(1), 014514 (2019)
CrossRef ADS Google scholar
[393]
M. Luscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B354, 531 (1991)
CrossRef ADS Google scholar
[394]
L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and D. G. Richards, Excited and exotic charmonium spectroscopy from lattice QCD, JHEP07, 126 (2012)
CrossRef ADS Google scholar
[395]
S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Study of the Zc+ channel using lattice QCD, Phys. Rev. D91(1), 014504 (2015)
[396]
Y. Chen, , Low-energy scattering of the (DD‾∗)± system and the resonance-like structure Zc(3900), Phys. Rev. D89(9), 094506 (2014)
[397]
Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki, Fate of the tetraquark candidate Zc(3900) from lattice QCD, Phys. Rev. Lett.117(24), 242001 (2016)
CrossRef ADS Google scholar
[398]
M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator, Phys. Rev. C68, 015203 (2003)
CrossRef ADS Google scholar
[399]
P. O. Bowman, Urs M. Heller, D. B. Leinweber, M. B. Parappilly, A. G. Williams, and J.-B. Zhang, Unquenched quark propagator in Landau gauge, Phys. Rev. D71, 054507 (2005)
CrossRef ADS Google scholar
[400]
M. S. Bhagwat and P. C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators, AIP Conf. Proc.842(1), 225 (2006)
CrossRef ADS Google scholar
[401]
P. Maris, C. D. Roberts, and P. C. Tandy, Pion mass and decay constant, Phys. Lett. B420, 267 (1998)
CrossRef ADS Google scholar
[402]
S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Ward–Green–Takahashi identities and the axial-vector vertex, Phys. Lett. B733, 202 (2014)
CrossRef ADS Google scholar
[403]
D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations, Phys. Rev. D93(9), 096010 (2016)
CrossRef ADS Google scholar
[404]
C. D. Roberts, Three lectures on hadron physics, J. Phys. Conf. Ser.706(2), 022003 (2016)
CrossRef ADS Google scholar
[405]
G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic threequark bound states, Prog. Part. Nucl. Phys.91, 1 (2016)
CrossRef ADS Google scholar
[406]
V. D. Burkert and C. D. Roberts, Roper resonance: Toward a solution to the fifty year puzzle, Rev. Mod. Phys.91(1), 011003 (2019)
CrossRef ADS Google scholar
[407]
S.-X. Qin and C. D. Roberts, Impressions of the continuum bound state problem in QCD, arXiv: 2008.07629 (2020)
[408]
Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C. D Roberts, J. Rodríguez-Quintero, J. Segovia, and S. Zafeiropoulos, Effective charge from lattice QCD, Chin. Phys. C44(8), 083102 (2020)
CrossRef ADS Google scholar
[409]
C. D Roberts, Insights into the origin of mass, in: 27th International Nuclear Physics Conference (INPC 2019) Glasgow, Scotland, United Kingdom, July 29–August 2, 2019 (2019)
[410]
A. V. Efremov and A. V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD, Phys. Lett.94B, 245 (1980)
CrossRef ADS Google scholar
[411]
F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and Peter C. Tandy. Exposing strangeness: Projections for kaon electromagnetic form factors, Phys. Rev. D96(3), 034024 (2017)
CrossRef ADS Google scholar
[412]
Z. F. Ezawa, Wide-angle scattering in softened field theory, Nuovo Cim. A23, 271 (1974)
CrossRef ADS Google scholar
[413]
G. R. Farrar and D. R. Jackson, Pion and nucleon structure functions near x = 1, Phys. Rev. Lett.35, 1416 (1975)
CrossRef ADS Google scholar
[414]
E. L. Berger and S. J. Brodsky, Quark structure functions of mesons and the Drell–Yan process, Phys. Rev. Lett.42, 940 (1979)
CrossRef ADS Google scholar
[415]
R. J. Holt and C. D. Roberts, Distribution functions of the nucleon and pion in the valence region, Rev. Mod. Phys.82, 2991 (2010)
CrossRef ADS Google scholar
[416]
M. B. Hecht, C. D. Roberts, and S. M. Schmidt, Valence quark distributions in the pion, Phys. Rev. C63, 025213 (2001)
CrossRef ADS Google scholar
[417]
K. Wijesooriya, P. E.Reimer, and R. J.Holt, The pion parton distribution function in the valence region, Phys. Rev. C72, 065203 (2005)
CrossRef ADS Google scholar
[418]
M. Aicher, A. Schafer, and W. Vogelsang, Soft-gluon resummation and the valence parton distribution function of the pion, Phys. Rev. Lett.105, 252003 (2010)
CrossRef ADS Google scholar
[419]
M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Drawing insights from pion parton distributions, Chin. Phys.44(3), 031002 (2020)
CrossRef ADS Google scholar
[420]
M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D101(5), 054014 (2020)
CrossRef ADS Google scholar
[421]
P. C. Barry, N. Sato, W. Melnitchouk, and C.-R. Ji, First Monte Carlo global QCD analysis of pion parton distributions, Phys. Rev. Lett.121(15), 152001 (2018)
CrossRef ADS Google scholar
[422]
J.-H. Zhang, J.-W. Chen, L. Jin, H.-W Lin, A. Schäfer, and Y. Zhao, First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function, Phys. Rev. D100(3), 034505 (2019)
CrossRef ADS Google scholar
[423]
M. Oehm, C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou, B. Kostrzewa, F. Steffens, C. Urbach, and S. Zafeiropoulos, 〈x〉 and 〈x2〉 of the pion PDF from lattice QCD with Nf= 2+ 1+ 1 dynamical quark flavors, Phys. Rev. D99(1), 014508 (2019)
[424]
N. Karthik, T. Izubichi, L. Jin, C. Kallidonis, S. Mukherjee, P. Petreczky, C. Shugert, and S. Syritsyn, Renormalized quasi parton distribution function of pion, PoS LATTICE2018:109 (2019)
CrossRef ADS Google scholar
[425]
R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and D. G. Richards, Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D99(7), 074507 (2019)
CrossRef ADS Google scholar
[426]
L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, and P. C. Tandy, Imaging dynamical chiral symmetry breaking: Pion wave function on the light front, Phys. Rev. Lett.110(13), 132001 (2013)
CrossRef ADS Google scholar
[427]
P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling, Parton distributions for the pion extracted from Drell–Yan and prompt photon experiments, Phys. Rev. D45, 2349 (1992)
CrossRef ADS Google scholar
[428]
B. Adams, , Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS, arXiv: 1808.00848V6 (2018)
[429]
W.-C. Chang, J.-C. Peng, S. Platchkov, and T. Sawada, Constraining gluon density of pions at large x by pioninduced J/ψ production, Phys. Rev. D102, 054024
CrossRef ADS Google scholar
[430]
J. T. Londergan, G. Q. Liu, E. N. Rodionov, and A. W. Thomas, Probing the pion sea with π-D Drell–Yan processes, Phys. Lett. B361, 110 (1995)
CrossRef ADS Google scholar
[431]
Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon parton distributions: Revealing Higgs modulation of emergent mass, arXiv: 2006.14075 (2020)
[432]
Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon and pion parton distributions, Eur. Phys. J. C80(11), 1064 (2020)
CrossRef ADS Google scholar
[433]
X. Chen, F.-K. Guo, C. D. Roberts, and R. Wang, Selected science opportunities for the EicC, Few Body Syst.61(4), 43 (2020)
CrossRef ADS Google scholar
[434]
Q.-W. Wang, S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation, Phys. Rev. D98(5), 054019 (2018)
CrossRef ADS Google scholar
[435]
C. D. Roberts, R. J. Holt, and S. M. Schmidt, Nucleon spin structure at very high x, Phys. Lett. B727, 249 (2013)
CrossRef ADS Google scholar
[436]
C. Mezrag, L. Chang, H. Moutarde, C. D. Roberts, J. Rodríguez-Quintero, F. Sabatié, and S. M. Schmidt, Sketching the pion’s valence-quark generalised parton distribution, Phys. Lett. B741, 190 (2015)
CrossRef ADS Google scholar
[437]
C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, From Bethe–Salpeter wave functions to generalised parton distributions, Few Body Syst.57(9), 729 (2016)
CrossRef ADS Google scholar
[438]
N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities, Phys. Lett. B780, 287 (2018)
CrossRef ADS Google scholar
[439]
S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong, Pion and kaon valence-quark parton quasidistributions, Phys. Rev. D97(9), 094014 (2018)
CrossRef ADS Google scholar
[440]
C. Shi and I. C. Cloët, Intrinsic transverse motion of the pion’s valence quarks, Phys. Rev. Lett.122(8), 082301 (2019)
CrossRef ADS Google scholar
[441]
R. D. Field and R. P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B136, 1 (1978)
CrossRef ADS Google scholar
[442]
I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin, , Polarized proton collider at RHIC, Nuclear Instruments and Methods in Physics Research Section A499(2–3), 392 (2003)
[443]
L. J. Mao, J. C. Yang, J. W. Xia, X. D. Yang, Y. J. Yuan, J. Li, X. M. Ma, T. L. Yan, D. Y. Yin, W. P. Chai, , Electron cooling system in the booster synchrotron of the HIAF project, Nuclear Instruments and Methods in Physics Research Section A786, 91 (2015)
CrossRef ADS Google scholar
[444]
A. Zelenski, Review of polarized ion sources, Review of Scientific Instruments81(2), 02B308 (2010)
CrossRef ADS Google scholar
[445]
E. Tsentalovich, J. Bessuille, E. Ihloff, J. Kelsey, R. Redwine, and C. Vidal, High intensity polarized electron source, Nuclear Instruments and Methods in Physics Research Section A947, 162734 (2019)
CrossRef ADS Google scholar
[446]
D. W. Higinbotham, Electron spin precession at CEBAF, AIP Conf. Proc.1149(1), 751 (2009)
CrossRef ADS Google scholar
[447]
U. Fano, Remarks on the classical and quantummechanical treatment of partial polarization, JOSA39(10), 859 (1949)
CrossRef ADS Google scholar
[448]
J. R. Johnson, R. Prepost, D. E. Wiser, J. J. Murray, R. F. Schwitters, and C. K. Sinclair, Beam polarization measurements at the spear storage ring, Nuclear Instruments and Methods in Physics Research204(2–3), 261 (1983)
CrossRef ADS Google scholar
[449]
S. Abeyratne, A. Accardi, S. Ahmed, D. Barber, J. Bisognano, A. Bogacz, A. Castilla, P. Chevtsov, S. Corneliussen, W. Deconinck, , Science requirements and conceptual design for a polarized medium energy electron–ion collider at Jefferson lab, arXiv: 1209.0757 (2012)
[450]
K. Akai and Y. Morita, New design of crab cavity for superkekb, in: Proceedings of the 2005 Particle Accelerator Conference, pp 1129–1131, IEEE (2005)
[451]
T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun.135, 238 (2001)
CrossRef ADS Google scholar
[452]
N. Minafra, Beam impedance optimization of the TOTEM roman pots, in: 6th International Particle Accelerator Conference, p. MOPJE064 (2015)
[453]
M. Steigerwald, MeV Mott polarimetry at Jefferson lab, AIP Conf. Proc.570(1), 935 (2001)
CrossRef ADS Google scholar
[454]
M. Hauger, , A high precision polarimeter, Nucl. Instrum. Meth. A462, 382 (2001)
CrossRef ADS Google scholar
[455]
J. A. Magee, A. Narayan, D. Jones, R. Beminiwattha, J. C. Cornejo, , A novel comparison of moller and compton electron–beam polarimeters, Phys. Lett. B766, 339 (2017)
CrossRef ADS Google scholar
[456]
I. Nakagawa, I. Alekseev, A. Bravar, G. Bunce, S. Dhawan, K. O. Eyser, R. Gill, W. Haeberli, H. Huang, O. Jinnouchi, Y. Makdisi, A. Nass, H. Okada, E. Stephenson, D. Svirida, T. Wise, J. Wood, and A. Zelenski, Polarization measurements of RHIC‐pp RUN05 using CNI pC‐polarimeter, AIP Conf. Proc.915(1), 912 (2007)
CrossRef ADS Google scholar
[457]
I. G. Alekseev, A. Bravar, G. Bunce, , Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target, Phys. Rev. D79, 094014 (2009)
CrossRef ADS Google scholar
[458]
G. Contin, The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance, Nucl. Instrum. Meth. A831, 7 (2016)
CrossRef ADS Google scholar
[459]
R. Dupré, S. Stepanyan, M. Hattawy, N. Baltzell, K. Hafidi, M. Battaglieri, S. Bueltmann, A. Celentano, R. De Vita, A. El Alaoui, L. El Fassi, H. Fenker, K. Kosheleva, S. Kuhn, P. Musico, S. Minutoli, M. Oliver, Y. Perrin, B. Torayev, and E. Voutier, A radial time projection chamber for α detection in CLAS at Jlab, Nuclear Instruments and Methods in Physics Research Section A898, 90 (2018)
CrossRef ADS Google scholar
[460]
F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research Section A805, 2 (2016), Special issue in memory of G. F. Knoll
CrossRef ADS Google scholar
[461]
W. Erni, , Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) straw tube tracker, Eur. Phys. J. A49, 25 (2013)
[462]
M. Ablikim, , Design and construction of the BESIII detector, Nuclear Instruments and Methods in Physics Research Section A614(3), 345 (2010)
[463]
Y.Van Haarlem, , The GlueX central drift chamber: design and performance, Nucl. Instrum. Meth. A622, 142 (2010)
CrossRef ADS Google scholar
[464]
J. Smyrski. Overview of the panda experiment, Physic Procedia 37, 85 (2012), Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011)
CrossRef ADS Google scholar
[465]
L. Barion, , RICH detectors development for hadron identification at EIC: design, prototyping and reconstruction algorithm, JINST15(02), C02040 (2020)
CrossRef ADS Google scholar
[466]
I. Adam, , The dirc particle identification system for the BaBar experiment, Nuclear Instruments and Methods in Physics Research Section A538(1), 281 (2005)
CrossRef ADS Google scholar
[467]
A. Ali, F. Barbosa, J. Bessuille, E. Chudakov, R. Dzhygadlo, C. Fanelli, J. Frye, J. Hardin, A. Hurley, G. Kalicy, J. Kelsey, W. Li, M. Patsyuk, C. Schwarz, J. Schwiening, M. Shepherd, J. R. Stevens, T. Whitlatch, M. Williams, and Y. Yang, The Gluex DIRC program, Journal of Instrumentation15(04), C04054 (2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(11129 KB)

Accesses

Citations

Detail

Sections
Recommended

/