Electron-ion collider in China
Daniele P. Anderle, Valerio Bertone, Xu Cao, Lei Chang, Ningbo Chang, Gu Chen, Xurong Chen, Zhuojun Chen, Zhufang Cui, Lingyun Dai, Weitian Deng, Minghui Ding, Xu Feng, Chang Gong, Longcheng Gui, Feng-Kun Guo, Chengdong Han, Jun He, Tie-Jiun Hou, Hongxia Huang, Yin Huang, KrešImir KumeričKi, L. P. Kaptari, Demin Li, Hengne Li, Minxiang Li, Xueqian Li, Yutie Liang, Zuotang Liang, Chen Liu, Chuan Liu, Guoming Liu, Jie Liu, Liuming Liu, Xiang Liu, Tianbo Liu, Xiaofeng Luo, Zhun Lyu, Boqiang Ma, Fu Ma, Jianping Ma, Yugang Ma, Lijun Mao, Cédric Mezrag, Hervé Moutarde, Jialun Ping, Sixue Qin, Hang Ren, Craig D. Roberts, Juan Rojo, Guodong Shen, Chao Shi, Qintao Song, Hao Sun, Paweł Sznajder, Enke Wang, Fan Wang, Qian Wang, Rong Wang, Ruiru Wang, Taofeng Wang, Wei Wang, Xiaoyu Wang, Xiaoyun Wang, Jiajun Wu, Xinggang Wu, Lei Xia, Bowen Xiao, Guoqing Xiao, Ju-Jun Xie, Yaping Xie, Hongxi Xing, Hushan Xu, Nu Xu, Shusheng Xu, Mengshi Yan, Wenbiao Yan, Wencheng Yan, Xinhu Yan, Jiancheng Yang, Yi-Bo Yang, Zhi Yang, Deliang Yao, Zhihong Ye, Peilin Yin, C.-P. Yuan, Wenlong Zhan, Jianhui Zhang, Jinlong Zhang, Pengming Zhang, Yifei Zhang, Chao-Hsi Chang, Zhenyu Zhang, Hongwei Zhao, Kuang-Ta Chao, Qiang Zhao, Yuxiang Zhao, Zhengguo Zhao, Liang Zheng, Jian Zhou, Xiang Zhou, Xiaorong Zhou, Bingsong Zou, Liping Zou
Electron-ion collider in China
Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a po- larization of 80%) and protons (with a polarization of 70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3)×1033 cm−2•s−1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.
The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.
This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.
electron ion collider / nucleon structure / nucleon mass / exotic hadronic states / quantum chromodynamics / 3D-tomography / helicity / transverse momentum dependent parton distribution / generalized parton distribution / energy recovery linac / polarization / spin rotator
[1] |
C. Seife, Illuminating the dark universe, Science 302(5653), 2038 (2003)
CrossRef
ADS
Google scholar
|
[2] |
S. Weinberg, A model of leptons, Phys. Rev. Lett.19, 1264 (1967)
CrossRef
ADS
Google scholar
|
[3] |
A. Salam and J. C. Ward, Weak and electromagnetic interactions, Nuovo Cim.11, 568 (1959)
CrossRef
ADS
Google scholar
|
[4] |
S. L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys.10, 107 (1959)
CrossRef
ADS
Google scholar
|
[5] |
D. J. Gross and F. Wilczek, Asymptotically free gauge theories (I): Phys. Rev. D8, 3633 (1973)
CrossRef
ADS
Google scholar
|
[6] |
D. J. Gross and F. Wilczek, Asymptotically free gauge theories (II): Phys. Rev. D9, 980 (1974)
CrossRef
ADS
Google scholar
|
[7] |
S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett.43, 1566 (1979)
CrossRef
ADS
Google scholar
|
[8] |
F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13, 321 (1964)
CrossRef
ADS
Google scholar
|
[9] |
P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13, 508 (1964)
CrossRef
ADS
Google scholar
|
[10] |
P. A. Zyla,
|
[11] |
Jr. Callan, G. Curtis, R. F. Dashen, and D. J. Gross, Toward a theory of the strong interactions, Phys. Rev. D17, 2717 (1978)
CrossRef
ADS
Google scholar
|
[12] |
D. J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett.30, 1343 (1973)
CrossRef
ADS
Google scholar
|
[13] |
H. D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett.30, 1346 (1973)
CrossRef
ADS
Google scholar
|
[14] |
M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett.8, 214 (1964)
CrossRef
ADS
Google scholar
|
[15] |
G. Zweig, An SU (3) model for strong interaction symmetry and its breaking, Version 1, CERN-TH-4011 (1964)
|
[16] |
E. D. Bloom,
|
[17] |
C. Chang,
CrossRef
ADS
Google scholar
|
[18] |
J. J. Aubert,
|
[19] |
A. C. Benvenuti,
CrossRef
ADS
Google scholar
|
[20] |
J. Gomez,
CrossRef
ADS
Google scholar
|
[21] |
D. F. Geesaman, K. Saito, and A. W. Thomas, The nu- clear EMC effect, Ann. Rev. Nucl. Part. Sci.45, 337 (1995)
CrossRef
ADS
Google scholar
|
[22] |
J. Seely,
|
[23] |
L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, and R. Shneor, Short range corre- lations and the EMC effect, Phys. Rev. Lett.106, 052301 (2011)
CrossRef
ADS
Google scholar
|
[24] |
J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, and P. Solvignon, A detailed study of the nuclear de- pendence of the EMC effect and short-range correlations, Phys. Rev. C86, 065204 (2012)
CrossRef
ADS
Google scholar
|
[25] |
O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Nucleon-nucleon correlations, short-lived excitations, and the quarks within, Rev. Mod. Phys.89(4), 045002 (2017)
CrossRef
ADS
Google scholar
|
[26] |
S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D32, 189 (1985)
CrossRef
ADS
Google scholar
|
[27] |
S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, AIP Conf. Proc.132, 267 (1985)
CrossRef
ADS
Google scholar
|
[28] |
S. Coleman and R. E. Norton, Singularities in the physi- cal region, Nuovo Cim.38, 438 (1965)
CrossRef
ADS
Google scholar
|
[29] |
F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys.112, 103757 (2020)
CrossRef
ADS
Google scholar
|
[30] |
A. Accardi,
|
[31] |
J. L. A. Fernandez,
|
[32] |
F. Gautheron,
|
[33] |
G. van der Steenhoven, The HERMES experiment, Prog. Part. Nucl. Phys.55, 181 (2005)
CrossRef
ADS
Google scholar
|
[34] |
W. Braunschweig and H1 Collaboration, Status HERA and the experiments H1 and ZEUS, Nucl. Phys. B: Proc. Suppl.31, 206 (1993)
CrossRef
ADS
Google scholar
|
[35] |
J. Ashman,
|
[36] |
P. Amaudruz,
|
[37] |
M. Arneodo,
|
[38] |
K. Ackerstaff,
|
[39] |
A. Baldit,
|
[40] |
R. S. Towell,
CrossRef
ADS
Google scholar
|
[41] |
R. S. Bhalerao, Is the polarized anti-quark sea in the nu- cleon flavor symmetric? Phys. Rev. C63, 025208 (2001)
CrossRef
ADS
Google scholar
|
[42] |
J.-C. Peng, Flavor structure of the nucleon sea, Eur. Phys. J. A18, 395 (2003)
CrossRef
ADS
Google scholar
|
[43] |
C. Bourrely, J. Soffer, and F. Buccella, A statistical approach for polarized parton distributions, Eur. Phys. J. C23, 487 (2002)
CrossRef
ADS
Google scholar
|
[44] |
J. Adam,
|
[45] |
E. Leader, A. V. Sidorov, and D. B. Stamenov, Impact of clas and compass data on polarized parton densities and higher twist, Phys. Rev. D75, 074027 (2007)
CrossRef
ADS
Google scholar
|
[46] |
M. Hirai, S. Kumano, and N. Saito, Determination of polarized parton distribution functions with recent data on polarization asymmetries, Phys. Rev. D74, 014015 (2006)
CrossRef
ADS
Google scholar
|
[47] |
A. Airapetian,
|
[48] |
A. Airapetian,
|
[49] |
D. de Florian, R. Sassot, M. Stratmann, and W. Vogel- sang, Global analysis of helicity parton densities and their uncertainties, Phys. Rev. Lett.101, 072001 (2008)
CrossRef
ADS
Google scholar
|
[50] |
A. Airapetian,
|
[51] |
D. De Florian, G. A. Lucero, R. Sassot, M. Stratmann, and W. Vogelsang, Monte Carlo sampling variant of the DSSV14 set of helicity parton densities, Phys. Rev. D100(11), 114027 (2019)
CrossRef
ADS
Google scholar
|
[52] |
C. Schmidt, J. Pumplin, C. P. Yuan, and P. Yuan, Updating and optimizing error parton distribution function sets in the Hessian approach, Phys. Rev. D98(9), 094005 (2018)
CrossRef
ADS
Google scholar
|
[53] |
T.-J. Hou, Z. Yu, S. Dulat, C. Schmidt, and C. P. Yuan, Updating and optimizing error parton distribution func- tion sets in the Hessian approach (II): Phys. Rev. D100(11), 114024 (2019)
CrossRef
ADS
Google scholar
|
[54] |
R. P. Feynman, Photon-Hadron Interactions, CRC Press, 1973
|
[55] |
J. D. Bjorken and E. A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon, Phys. Rev.185, 1975 (1969)
CrossRef
ADS
Google scholar
|
[56] |
J. C. Collins and D. E. Soper, Back-to-back jets in QCD, Nucl. Phys. B193, 381 (1981) [Erratum: Nucl. Phys.B213, 545 (1983)]
CrossRef
ADS
Google scholar
|
[57] |
J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl. Phys. B194, 445 (1982)
CrossRef
ADS
Google scholar
|
[58] |
D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejvsi, Wave functions, evolution equations and evo- lution kernels from light ray operators of QCD, Fortsch. Phys.42, 101 (1994)
CrossRef
ADS
Google scholar
|
[59] |
X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D55, 7114 (1997)
CrossRef
ADS
Google scholar
|
[60] |
X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett.78, 610 (1997)
CrossRef
ADS
Google scholar
|
[61] |
A. V. Radyushkin, Nonforward parton distributions, Phys. Rev. D56, 5524 (1997)
CrossRef
ADS
Google scholar
|
[62] |
A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D70, 117504 (2004)
CrossRef
ADS
Google scholar
|
[63] |
X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D71, 034005 (2005)
CrossRef
ADS
Google scholar
|
[64] |
X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell–Yan pro- cesses at low transverse momentum, Phys. Lett. B597, 299 (2004)
CrossRef
ADS
Google scholar
|
[65] |
P. J. Mulders and R. D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B461, 197 (1996) [Erratum: Nucl. Phys. B484, 538 (1997)]
CrossRef
ADS
Google scholar
|
[66] |
D. W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents, Phys. Rev. D41, 83 (1990)
CrossRef
ADS
Google scholar
|
[67] |
J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B396, 161 (1993)
CrossRef
ADS
Google scholar
|
[68] |
S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B530, 99 (2002)
CrossRef
ADS
Google scholar
|
[69] |
J. C. Collins, Leading twist single transverse-spin asym- metries: Drell–Yan and deep inelastic scattering, Phys. Lett. B536, 43 (2002)
CrossRef
ADS
Google scholar
|
[70] |
L. Adamczyk,
|
[71] |
M. Aghasyan,
|
[72] |
X.-D. Ji, J.-P. Ma, and F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables, Nucl. Phys. B652, 383 (2003)
CrossRef
ADS
Google scholar
|
[73] |
E. S. Ageev,
|
[74] |
M. Alekseev,
|
[75] |
M. G. Alekseev,
|
[76] |
C. Adolph,
|
[77] |
X. Qian,
|
[78] |
A. Airapetian,
|
[79] |
A. Airapetian,
|
[80] |
M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. O. Gonzalez-Hernandez, A. Prokudin, T. C. Rogers, and N. Sato, Mapping the kinematical regimes of semiinclusive deep inelastic scattering, JHEP10, 122 (2019)
CrossRef
ADS
Google scholar
|
[81] |
M. Boglione, U. D’Alesio, C. Flore, and J. O. GonzalezHernandez, Assessing signals of TMD physics in SIDIS azimuthal asymmetries and in the extraction of the Sivers function, JHEP07, 148 (2018)
CrossRef
ADS
Google scholar
|
[82] |
H. Dong, Du-X Zheng, and J. Zhou, Sea quark Sivers distribution, Phys. Lett. B788, 401 (2019)
CrossRef
ADS
Google scholar
|
[83] |
J. Collins and T. Rogers, Understanding the largedistance behavior of transverse-momentum-dependent parton densities and the Collins–Soper evolution kernel, Phys. Rev. D91(7), 074020 (2015)
CrossRef
ADS
Google scholar
|
[84] |
M. Diehl and S. Sapeta, On the analysis of lepton scat- tering on longitudinally or transversely polarized protons, Eur. Phys. J. C41, 515 (2005)
CrossRef
ADS
Google scholar
|
[85] |
M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ→0, Phys. Rev. D62, 071503 (2000) [Erratum: Phys.Rev.D66, 119903 (2002)]
CrossRef
ADS
Google scholar
|
[86] |
M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int. J. Mod. Phys. A18, 173 (2003)
CrossRef
ADS
Google scholar
|
[87] |
M. V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei, Phys. Lett. B555, 57 (2003)
CrossRef
ADS
Google scholar
|
[88] |
C. Lorcé, H. Moutarde, and A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur. Phys. J. C79(1), 89 (2019)
CrossRef
ADS
Google scholar
|
[89] |
P. E. Shanahan and W. Detmold, Pressure distribution and shear forces inside the proton, Phys. Rev. Lett.122(7), 072003 (2019)
CrossRef
ADS
Google scholar
|
[90] |
M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33(26), 1830025 (2018)
CrossRef
ADS
Google scholar
|
[91] |
V. D. Burkert, L. Elouadrhiri, and F. X. Girod, The pressure distribution inside the proton, Nature557(7705), 396 (2018)
CrossRef
ADS
Google scholar
|
[92] |
K. Kumerivcki, Measurability of pressure inside the proton, Nature570(7759), E1 (2019)
CrossRef
ADS
Google scholar
|
[93] |
H. Moutarde, P. Sznajder, and J. Wagner, Border and skewness functions from a leading order fit to DVCS data, Eur. Phys. J. C 78(11), 890 (2018)
CrossRef
ADS
Google scholar
|
[94] |
H. Moutarde, P. Sznajder, and J. Wagner, Unbiased determination of DVCS Compton form factors, Eur. Phys. J. C79(7), 614 (2019)
CrossRef
ADS
Google scholar
|
[95] |
K. Kumericki, D. Mueller, and K. Passek-Kumericki, Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, Nucl. Phys. B794, 244 (2008)
CrossRef
ADS
Google scholar
|
[96] |
K. Kumerivcki and D. Mueller, Deeply virtual Compton scattering at small xB and the access to the GPD H, Nucl. Phys. B841, 1 (2010)
CrossRef
ADS
Google scholar
|
[97] |
M. Guidal, H. Moutarde, and M. Vanderhaeghen, Generalized parton distributions in the valence region from deeply virtual compton scattering, Rep. Prog. Phys.76, 066202 (2013)
CrossRef
ADS
Google scholar
|
[98] |
K. Kumericki, S. Liuti, and H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high- precision era, Eur. Phys. J. A52(6), 157 (2016)
CrossRef
ADS
Google scholar
|
[99] |
A. Airapetian,
|
[100] |
A. Sandacz, COMPASS results on DVCS and exclusive π0 production, J. Phys. Conf. Ser.938(1), 012015 (2017)
CrossRef
ADS
Google scholar
|
[101] |
C. E. Hyde, M. Guidal, and A. V. Radyushkin, Deeply virtual exclusive processes and generalized parton distributions, J. Phys. Conf. Ser.299, 012006 (2011)
CrossRef
ADS
Google scholar
|
[102] |
https://www.jlab.org/exp_prog/proposals/06/PR12-06-114.pdf
|
[103] |
https://www.jlab.org/exp_prog/proposals/06/PR12-06-119.pdf
|
[104] |
https://www.jlab.org/exp_prog/PACpage/PAC37/proposals/Proposals/New%20Proposals/PR-11-003.pdf
|
[105] |
https://www.jlab.org/exp_prog/proposals/13/PR12-13-010.pdf
|
[106] |
H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner, Timelike and spacelike deeply virtual Comp- ton scattering at next-to-leading order, Phys. Rev. D87(5), 054029 (2013)
CrossRef
ADS
Google scholar
|
[107] |
V. M. Braun, A. N. Manashov, D. Müller, and B. M. Pirnay, Deeply Virtual Compton Scattering to the twist-four accuracy: Impact of finite-t and target mass corrections, Phys. Rev. D89(7), 074022 (2014)
CrossRef
ADS
Google scholar
|
[108] |
M. Defurne,
|
[109] |
M. Defurne,
|
[110] |
E. Perez, L. Schoeffel, and L. Favart, MILOU: A Monte Carlo for deeply virtual Compton scattering, arXiv: hep- ph/0411389 (2004)
|
[111] |
K. Kumericki, D. Mueller, and A. Schafer, Neural net- work generated parametrizations of deeply virtual Comp- ton form factors, JHEP07, 073 (2011)
CrossRef
ADS
Google scholar
|
[112] |
B. Berthou,
CrossRef
ADS
Google scholar
|
[113] |
M. Cuic, K. Kumericki, and A. Schafer, separation of quark flavors using DVCS data, arXiv: 2007.00029 [hep- ph] (2020)
|
[114] |
S. V. Goloskokov and P. Kroll, An Attempt to understand exclusive π+ electroproduction, Eur. Phys. J. C65, 137 (2010)
CrossRef
ADS
Google scholar
|
[115] |
S. V. Goloskokov and P. Kroll, Transversity in hard exclu- sive electroproduction of pseudoscalar mesons, Eur. Phys. J. A47, 112 (2011)
CrossRef
ADS
Google scholar
|
[116] |
P. Kroll, H. Moutarde, and F. Sabatie, From hard exclu- sive meson electroproduction to deeply virtual Compton scattering, Eur. Phys. J. C73(1), 2278 (2013)
CrossRef
ADS
Google scholar
|
[117] |
A. Airapetian,
|
[118] |
G. R. Goldstein, J. O G. Hernandez, and S. Liuti, Flexible parametrization of generalized parton distributions: The chiral-odd sector, Phys. Rev. D91(11), 114013 (2015)
CrossRef
ADS
Google scholar
|
[119] |
A. Kim,
|
[120] |
R. A. Khalek, J. J. Ethier, J. Rojo, and G. van Weelden, nNNPDF2.0: Quark flavor separation in nuclei from LHC data, JHEP09, 183 (2020)
CrossRef
ADS
Google scholar
|
[121] |
K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Sal- gado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C77(3), 163 (2017)
CrossRef
ADS
Google scholar
|
[122] |
M. Hirai, S. Kumano, and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncer- tainties in next-to-leading order, Phys. Rev. C76, 065207 (2007)
CrossRef
ADS
Google scholar
|
[123] |
D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D85, 074028 (2012)
CrossRef
ADS
Google scholar
|
[124] |
K. Kovarik,
CrossRef
ADS
Google scholar
|
[125] |
H. Khanpour and S. A. Tehrani, Global analysis of nu- clear parton distribution functions and their uncertain- xt-to-next-to-leading order, Phys. Rev. D93(1), 014026 (2016)
CrossRef
ADS
Google scholar
|
[126] |
M. Walt, I. Helenius, and W. Vogelsang, Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO, Phys. Rev. D100(9), 096015 (2019)
CrossRef
ADS
Google scholar
|
[127] |
J. Ashman,
|
[128] |
V. Guzey, L. Zhu, C. E. Keppel, M. E. Christy, D. Gaskell, P. Solvignon, and A. Accardi, Impact of nuclear dependence of R=σL/σT on antishadowing in nuclear structure functions, Phys. Rev. C86, 045201 (2012)
CrossRef
ADS
Google scholar
|
[129] |
B. Schmookler,
CrossRef
ADS
Google scholar
|
[130] |
I. Borsa, G. Lucero, R. Sassot, E. C. Aschenauer, and S. Nunes, Revisiting helicity parton distributions at a future electron–ion collider, Phys. Rev. D102(9), 094018 (2020)
CrossRef
ADS
Google scholar
|
[131] |
W. Cosyn, V. Guzey, M. Sargsian, M. Strikman, and C. Weiss, Electron–deuteron DIS with spectator tagging at EIC: Development of theoretical framework, EPJ Web Conf.112, 01022 (2016)
CrossRef
ADS
Google scholar
|
[132] |
L. Frankfurt, V. Guzey, and M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nu- clei, Phys. Rep.512, 255 (2012)
CrossRef
ADS
Google scholar
|
[133] |
M. Gyulassy and X.-N. Wang, Multiple collisions and in- duced gluon Bremsstrahlung in QCD, Nucl. Phys. B420, 583 (1994)
CrossRef
ADS
Google scholar
|
[134] |
R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, Radiative energy loss and p⊥-broadening of high-energy partons in nuclei, Nucl. Phys. B484, 265 (1997)
CrossRef
ADS
Google scholar
|
[135] |
M. Gyulassy, P. Levai, and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B594, 371 (2001)
CrossRef
ADS
Google scholar
|
[136] |
B. G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark–gluon plasma, JETP Lett.65, 615 (1997)
CrossRef
ADS
Google scholar
|
[137] |
X.-F. Guo and X.-N. Wang, Multiple scattering, par- ton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett.85, 3591 (2000)
CrossRef
ADS
Google scholar
|
[138] |
A. Airapetian,
|
[139] |
M. A. Vasilev,
|
[140] |
E. Wang and X.-N. Wang, Jet tomography of dense and nuclear matter, Phys. Rev. Lett.89, 162301 (2002)
CrossRef
ADS
Google scholar
|
[141] |
N.-B. Chang, W.-T. Deng, and X.-N. Wang, Initial con- ditions for the modified evolution of fragmentation func- tions in the nuclear medium, Phys. Rev. C89(3), 034911 (2014)
CrossRef
ADS
Google scholar
|
[142] |
H. Xing, Y. Guo, E. Wang, and X.-N. Wang, Parton en- ergy loss and modified beam quark distribution functions Yan process in p+A collisions, Nucl. Phys. A 879, 77 (2012)
CrossRef
ADS
Google scholar
|
[143] |
F. Arleo, C.-J. Naïm, and S. Platchkov, Initial-state energy loss in cold QCD matter and the Drell–Yan process, JHEP01, 129 (2019)
CrossRef
ADS
Google scholar
|
[144] |
A. Bialas, Attenuation of high-energy particles leptoproduced in nuclear matter, Acta Phys. Polon. B11, 475 (1980)
|
[145] |
N. Akopov, L. Grigoryan, and Z. Akopov, Application of the two-scale model to the HERMES data on nuclear attenuation, Eur. Phys. J. C44, 219 (2005)
CrossRef
ADS
Google scholar
|
[146] |
K. M. Burke,
CrossRef
ADS
Google scholar
|
[147] |
P. Ru, Z.-B. Kang, E. Wang, H. Xing, and B.-W. Zhang, A global extraction of the jet transport coefficient in cold nuclear matter, arXiv: 1907.11808 (2019)
|
[148] |
P. A. Zyla,
|
[149] |
R. L. Jaffe, Exotica, Phys. Rep.409, 1 (2005)
CrossRef
ADS
Google scholar
|
[150] |
E. S. Swanson, The new heavy mesons: A status report, Phys. Rep.429, 243 (2006)
CrossRef
ADS
Google scholar
|
[151] |
M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys.61, 455 (2008)
CrossRef
ADS
Google scholar
|
[152] |
E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. experimental facts versus QCD inspired concepts, Phys. Rep.454, 1 (2007)
CrossRef
ADS
Google scholar
|
[153] |
E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys.82, 1095 (2010)
CrossRef
ADS
Google scholar
|
[154] |
N. Brambilla,
|
[155] |
H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hiddencharm pentaquark and tetraquark states, Phys. Rep.639, 1 (2016)
CrossRef
ADS
Google scholar
|
[156] |
A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP2016(6), 062C01 (2016)
CrossRef
ADS
Google scholar
|
[157] |
R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavyquark QCD exotica, Prog. Part. Nucl. Phys.93, 143 (2017)
CrossRef
ADS
Google scholar
|
[158] |
A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark Resonances, Phys. Rep.668, 1 (2017)
CrossRef
ADS
Google scholar
|
[159] |
F.-K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys.90(1), 015004 (2018)
CrossRef
ADS
Google scholar
|
[160] |
Y. Dong, A. Faessler, and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys.94, 282 (2017)
CrossRef
ADS
Google scholar
|
[161] |
A. Ali, J. Sören Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys.97, 123 (2017)
CrossRef
ADS
Google scholar
|
[162] |
S. L Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.90(1), 015003 (2018)
CrossRef
ADS
Google scholar
|
[163] |
M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018)
CrossRef
ADS
Google scholar
|
[164] |
C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A33(21), 1830018 (2018)
CrossRef
ADS
Google scholar
|
[165] |
W. Altmannshofer,
|
[166] |
A. Cerri,
|
[167] |
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep.873, 1 (2020)
CrossRef
ADS
Google scholar
|
[168] |
Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys.107, 237 (2019)
CrossRef
ADS
Google scholar
|
[169] |
Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: A guide for practitioners, J. Phys. G47(5), 053001 (2020)
CrossRef
ADS
Google scholar
|
[170] |
T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D72, 054026 (2005)
CrossRef
ADS
Google scholar
|
[171] |
F.-K. Guo and Ulf-G. Meißner, Where is the χc0(2P)? Phys. Rev. D86, 091501 (2012)
|
[172] |
M. Aghasyan,
|
[173] |
A. Ali,
|
[174] |
R. Aaij,
|
[175] |
R. Aaij,
|
[176] |
R. Aaij,
|
[177] |
R. Mizuk,
|
[178] |
E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: The model, Phys. Rev. D17, 3090 (1978) [Erratum: Phys. Rev. D21, 313 (1980)]
CrossRef
ADS
Google scholar
|
[179] |
E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: Comparison with experiment, Phys. Rev. D21, 203 (1980)
CrossRef
ADS
Google scholar
|
[180] |
B. Gittelman, K. M. Hanson, D. Larson, E. Loh, A. Silverman, and G. Theodosiou, Photoproduction of the ψ(3100) meson at 11 GeV, Phys. Rev. Lett.35, 1616 (1975)
CrossRef
ADS
Google scholar
|
[181] |
U. Camerini, J.G. Learned, R. Prepost, C. M. Spencer, D. E. Wiser, W. Ash, R. L. Anderson, D. Ritson, D. Sherden, and C. K. Sinclair, Photoproduction of the ψ particles, Phys. Rev. Lett.35, 483 (1975)
CrossRef
ADS
Google scholar
|
[182] |
M. E. Binkley,
CrossRef
ADS
Google scholar
|
[183] |
B. H. Denby,
CrossRef
ADS
Google scholar
|
[184] |
P. L. Frabetti,
|
[185] |
C. Adloff,
|
[186] |
S. Chekanov,
CrossRef
ADS
Google scholar
|
[187] |
M. S. Atiya,
CrossRef
ADS
Google scholar
|
[188] |
A. R. Clark,
CrossRef
ADS
Google scholar
|
[189] |
J. J. Aubert,
|
[190] |
M. I. Adamovich,
|
[191] |
O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψ-p scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94(7), 074001 (2016)
CrossRef
ADS
Google scholar
|
[192] |
M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, Ulf-G Meißner, J. A. Oller, and Q. Wang, interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett.124(7), 072001 (2020)
CrossRef
ADS
Google scholar
|
[193] |
J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N∗ and Λ∗ resonances with hidden charm above 4 GeV, Phys. Rev. Lett.105, 232001 (2010)
CrossRef
ADS
Google scholar
|
[194] |
W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou,ΣcD¯ and ΛcD states in a chiral quark model, Phys. Rev. C84, 015203 (2011)
CrossRef
ADS
Google scholar
|
[195] |
Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C36, 6 (2012)
CrossRef
ADS
Google scholar
|
[196] |
J.-J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in coupled-channel models, Phys. Rev. C85, 044002 (2012)
CrossRef
ADS
Google scholar
|
[197] |
C. W. Xiao, J. Nieves, and E. Oset, Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons, Phys. Rev. D88, 056012 (2013)
CrossRef
ADS
Google scholar
|
[198] |
T. Uchino, W.-H. Liang, and E. Oset, Baryon states with hidden charm in the extended local hidden gauge approach, Eur. Phys. J. A 52(3), 43 (2016)
CrossRef
ADS
Google scholar
|
[199] |
M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett.115(12), 122001 (2015)
CrossRef
ADS
Google scholar
|
[200] |
X. Cao and J.-P. Dai, Confronting pentaquark photoproduction with new LHCb observations, Phys. Rev. D100(5), 054033 (2019)
CrossRef
ADS
Google scholar
|
[201] |
Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D95(11), 114017 (2017)
CrossRef
ADS
Google scholar
|
[202] |
Y.-H. Lin and B.-S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures, Phys. Rev. D100(5), 056005 (2019)
CrossRef
ADS
Google scholar
|
[203] |
Y. Dong, P. Shen, F. Huang, and Z. Zhang, Selected strong decays of pentaquark State Pc(4312) in a chiral constituent quark model, Eur. Phys. J. C80(4), 341 (2020)
CrossRef
ADS
Google scholar
|
[204] |
Y. Huang, J.-J. Xie, J. He, X. Chen, and H.-F. Zhang, Photoproduction of hidden-charm states in the γp→D¯*0Λc+ reaction near threshold, Chin. Phys. C40(12), 124104 (2016)
CrossRef
ADS
Google scholar
|
[205] |
J.-J. Wu, T. S. H. Lee, and B.-S. Zou, Nucleon resonances with hidden charm in γp reactions, Phys. Rev. C100(3), 035206 (2019)
CrossRef
ADS
Google scholar
|
[206] |
J. Breitweg,
CrossRef
ADS
Google scholar
|
[207] |
S. Chekanov,
|
[208] |
CMS Collaboration, Measurement of exclusive Y photoproduction in pPb collisions at SNN= 5.02 TeV (2016), https://cds.cern.ch/record/2147428
|
[209] |
J. J. Aubert,
|
[210] |
C. Adloff,
|
[211] |
L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52(6), 158 (2016)
CrossRef
ADS
Google scholar
|
[212] |
S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Photoproduction of charm near threshold, Phys. Lett. B498, 23 (2001)
CrossRef
ADS
Google scholar
|
[213] |
E. Martynov, E. Predazzi, and A. Prokudin, A universal regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C 26, 271 (2002)
CrossRef
ADS
Google scholar
|
[214] |
E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003)
CrossRef
ADS
Google scholar
|
[215] |
Y. Xu, Y. Xie, R. Wang, and X. Chen, Estimation of Y(1S) production in ep process near threshold,Eur. Phys. J. C80(3), 283 (2020)
CrossRef
ADS
Google scholar
|
[216] |
F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D92(7), 071502 (2015)
CrossRef
ADS
Google scholar
|
[217] |
X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B757m, 231 (2016)
CrossRef
ADS
Google scholar
|
[218] |
Q. Wang, C. Hanhart, and Q. Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett.111(13), 132003 (2013)
CrossRef
ADS
Google scholar
|
[219] |
Q. Wang, C. Hanhart, and Q. Zhao, Systematic study of the singularity mechanism in heavy quarkonium decays, Phys. Lett. B725(1–3), 106 (2013)
CrossRef
ADS
Google scholar
|
[220] |
A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, and A. P. Szczepaniak. Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B772, 200 (2017)
CrossRef
ADS
Google scholar
|
[221] |
A. P. Szczepaniak, Triangle singularities and XYZ quarkonium peaks, Phys. Lett. B747, 410 (2015)
CrossRef
ADS
Google scholar
|
[222] |
M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, and J. Nieves, Zc(3900): What has been really seen? Phys. Lett. B755, 337 (2016)
CrossRef
ADS
Google scholar
|
[223] |
Q.-R. Gong, J.-L. Pang, Y.-F. Wang, and H.-Q. Zheng, The Zc(3900) peak does not come from the “triangle singularity”, Eur. Phys. J. C78(4), 276 (2018)
|
[224] |
F.-K. Guo, Triangle singularities and charmonium-like XYZ states, Nucl. Phys. Rev.37(3), 406 (2020)
|
[225] |
S. X. Nakamura and K. Tsushima, Zc(4430) and Zc(4200) as triangle singularities, Phys. Rev. D100(5), 051502 (2019)
CrossRef
ADS
Google scholar
|
[226] |
S. X. Nakamura, Triangle singularities in B¯0→χc1K−π+ relevant to Z1(4050) and Z2(4250), Phys. Rev. D100(1), 011504 (2019)
CrossRef
ADS
Google scholar
|
[227] |
C Adolph,
|
[228] |
X.-H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D77, 094005 (2008)
CrossRef
ADS
Google scholar
|
[229] |
J. He and X. Liu, Discovery potential for charmoniumlike state Y (3940) by the meson photoproduction, Phys. Rev. D80, 114007 (2009)
CrossRef
ADS
Google scholar
|
[230] |
G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, Phys. Rev. C83, 065203 (2011)
CrossRef
ADS
Google scholar
|
[231] |
Q.-Y. Lin, X. Liu, and H.-S. Xu, Charged charmoniumlike state Zc(3900)±, Phys. Rev. D88, 114009 (2013)
CrossRef
ADS
Google scholar
|
[232] |
Q.-Y. Lin, X. Liu, and H.-S. Xu, Probing charmoniumlike state X(3915) through meson photoproduction, Phys. Rev. D89(3), 034016 (2014)
CrossRef
ADS
Google scholar
|
[233] |
Y. Huang, J. He, H.-F. Zhang, and X.-R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G41(11), 115004 (2014)
CrossRef
ADS
Google scholar
|
[234] |
Q. Wang, X.-H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc+(4380) and Pc+(4450), Phys. Rev. D92, 034022 (2015)
CrossRef
ADS
Google scholar
|
[235] |
X.-Y. Wang, X.-R. Chen, and A. Guskov, Photoproduction of the charged charmoniumlike Zc+(4200), Phys. Rev. D92(9), 094017 (2015)
CrossRef
ADS
Google scholar
|
[236] |
V. Kubarovsky and M. B. Voloshin, Formation of hiddencharm pentaquarks in photonnucleon collisions, Phys. Rev. D92(3), 031502 (2015)
CrossRef
ADS
Google scholar
|
[237] |
M. Karliner and J. L. Rosner, Photoproduction of exotic baryon resonances, Phys. Lett. B752, 329 (2016)
CrossRef
ADS
Google scholar
|
[238] |
A. N. H. Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ photoproduction off protons, Phys. Rev. D94(3), 034002 (2016)
CrossRef
ADS
Google scholar
|
[239] |
Z. E. Meziani,
|
[240] |
S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017:017 (2018)
|
[241] |
E. Ya. Paryev and Yu. T. Kiselev, The role of hiddencharm pentaquark resonance Pc+(4450) in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A978, 201 (2018)
CrossRef
ADS
Google scholar
|
[242] |
X.-Y. Wang, X.-R. Chen, and J. He, Possibility to study pentaquark states Pc(4312), Pc(4440), and Pc(4457) in γp→J/ψp reaction, Phys. Rev. D99(11), 114007 (2019)
|
[243] |
V. P. Gonçalves and M. M. Jaime, Photoproduction of pentaquark states at the LHC, Phys. Lett. B805, 135447 (2020)
CrossRef
ADS
Google scholar
|
[244] |
X.-Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and π−p scatterings, Phys. Rev. D101(3), 034032 (2020)
|
[245] |
X. Cao, F.-K. Guo, Y.-T. Liang, J.-J. Wu, J.-J. Xie, Y.-P. Xie, Z. Yang, and B.-S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D101(7), 074010 (2020)
CrossRef
ADS
Google scholar
|
[246] |
D. Winney, C. Fanelli, A. Pilloni, A. N. H. Blin, C. Fernández-Ramírez, M. Albaladejo, V. Mathieu, V. I. Mokeev, and A. P. Szczepaniak, Double polarization observables in pentaquark photoproduction, Phys. Rev. D100(3), 034019 (2019)
CrossRef
ADS
Google scholar
|
[247] |
Y.-P. Xie, X. Cao, Y.-T. Liang, and X. Chen, Pentaquark Pc electroproduction in J/ψ+p channel in electron–proton collisions, arXiv: 2003.11729 [hep-ph] (2020)
|
[248] |
E. Ya. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 [nucl-th] (2020)
CrossRef
ADS
Google scholar
|
[249] |
Z. Yang, X. Cao, Y.-T. Liang, and J.-J. Wu, Identify the hidden charm pentaquark signal from non-resonant background in electron–proton scattering, Chin. Phys. C44(8), 084102 (2020)
CrossRef
ADS
Google scholar
|
[250] |
M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak, XYZ spectroscopy at electron–hadron facilities: Exclusive processes, Phys. Rev. D102, 114010 (2020)
CrossRef
ADS
Google scholar
|
[251] |
J.-J. Wu and B. S. Zou, Prediction of super-heavy N∗ and Λ∗ resonances with hidden beauty, Phys. Lett. B709, 70 (2012)
|
[252] |
Y.-H. Lin, C.-W. Shen, and B.-S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018)
|
[253] |
G. Yang, J. Ping, and J. Segovia, Hidden-bottom pentaquarks, Phys. Rev. D99(1), 014035 (2019)
CrossRef
ADS
Google scholar
|
[254] |
J. Ferretti, E. Santopinto, M. N. Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hiddencharm and bottom pentaquarks and LHCb Pc(4380) and Pc (4450) states, Phys. Lett. B789, 562 (2019)
|
[255] |
H. Huang and J. Ping, Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D99(1), 014010 (2019)
CrossRef
ADS
Google scholar
|
[256] |
H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C76(11), 624 (2016)
CrossRef
ADS
Google scholar
|
[257] |
C.-W. Shen, D. Rönchen, Ulf-G. Meißner, and B.-S. Zou, Exploratory study of possible resonances in heavy meson — heavy baryon coupled-channel interactions, Chin. Phys. C42(2), 023106 (2018)
CrossRef
ADS
Google scholar
|
[258] |
C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A49, 139 (2013)
CrossRef
ADS
Google scholar
|
[259] |
R. Aaij,
|
[260] |
R. Aaij,
|
[261] |
R. Aaij,
|
[262] |
S. K. Choi,
|
[263] |
M. Ablikim,
|
[264] |
Z. Q. Liu,
|
[265] |
T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Zc±(3900) and evidence for the neutral Zc0(3900) in e+e−→ππJ/ψ at s= 4170 MeV, Phys. Lett. B727, 366 (2013)
|
[266] |
V. M. Abazov,
|
[267] |
M. Ablikim,
|
[268] |
M. Ablikim,
|
[269] |
M. Lomnitz and S. Klein, Exclusive vector meson production at an electron–ion collider, Phys. Rev. C99(1), 015203 (2019)
CrossRef
ADS
Google scholar
|
[270] |
Z. Yang, X. Yao, F.-K. Guo, and T. Mehen, Leptoproduction of hidden-charm exotic hadrons (2020) (in preparation)
|
[271] |
C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, and C. Sabelli, Is the X(3872) production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett.103, 162001 (2009)
CrossRef
ADS
Google scholar
|
[272] |
P. Artoisenet and E. Braaten, Estimating the production rate of loosely-bound hadronic molecules using event generators, Phys. Rev. D83, 014019 (2011)
CrossRef
ADS
Google scholar
|
[273] |
F.-K. Guo, Ulf-G. Meißner, and W. Wang, Production of charged heavy quarkonium-like states at the LHC and the tevatron, Commun. Theor. Phys.61, 354 (2014)
CrossRef
ADS
Google scholar
|
[274] |
F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, Production of the bottom analogs and the spin partner of the X(3872) at hadron colliders, Eur. Phys. J. C74(9), 3063 (2014)
CrossRef
ADS
Google scholar
|
[275] |
M. Albaladejo, F.-K. Guo, C. Hanhart, Ulf-G. Meißner, J. Nieves, A. Nogga, and Z. Yang, Note on X(3872) production at hadron colliders and its molecular structure, Chin. Phys. C 41(12), 121001 (2017)
CrossRef
ADS
Google scholar
|
[276] |
T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP05, 026 (2006)
CrossRef
ADS
Google scholar
|
[277] |
M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. S. Sánchez, L.-S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett.122(24), 242001 (2019)
CrossRef
ADS
Google scholar
|
[278] |
M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett.78B, 443 (1978)
CrossRef
ADS
Google scholar
|
[279] |
C. D. Roberts, Perspective on the origin of hadron masses, Few Body Syst.58(1), 5 (2017)
CrossRef
ADS
Google scholar
|
[280] |
C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C78(2), 120 (2018)
CrossRef
ADS
Google scholar
|
[281] |
X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett.74, 1071 (1995)
CrossRef
ADS
Google scholar
|
[282] |
X.-D. Ji, Breakup of hadron masses and energymomentum tensor of QCD, Phys. Rev. D52, 271 (1995)
CrossRef
ADS
Google scholar
|
[283] |
Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett.121(21), 212001 (2018)
CrossRef
ADS
Google scholar
|
[284] |
Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D94(5), 054503 (2016)
|
[285] |
A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco, Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett.116(25), 252001 (2016)
CrossRef
ADS
Google scholar
|
[286] |
G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and A. Sternbeck, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D93(9), 094504 (2016)
CrossRef
ADS
Google scholar
|
[287] |
Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP12, 008 (2018)
CrossRef
ADS
Google scholar
|
[288] |
K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP01, 120 (2019)
CrossRef
ADS
Google scholar
|
[289] |
X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)
|
[290] |
S. Rodini, A. Metz, and B. Pasquini, Mass sum rules of the electron in quantum electrodynamics, JHEP09, 067 (2020)
CrossRef
ADS
Google scholar
|
[291] |
A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, Phys. Rev. D102(11), 114042 (2021)
CrossRef
ADS
Google scholar
|
[292] |
B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012. 09443v1 [hep-ph]
|
[293] |
J. Carlson, A. Jaffe, and A. Wiles (Eds.), The Millenium Prize Problems, American Mathematical Society, Providence, 2006
|
[294] |
D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi130, 105 (1996)
|
[295] |
D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C9,459 (1999)
|
[296] |
R. Boussarie and Y. Hatta, QCD analysis of nearthreshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D101(11), 114004 (2020)
CrossRef
ADS
Google scholar
|
[297] |
J. M. Laget and R. Mendez-Galain, Exclusive photoproduction and electroproduction of vector mesons at large momentum transfer, Nucl. Phys. A581, 397 (1995)
CrossRef
ADS
Google scholar
|
[298] |
T. Horn and C. D. Roberts, The pion: An enigma within the Standard Model, J. Phys. G43(7), 073001 (2016)
CrossRef
ADS
Google scholar
|
[299] |
J. Volmer,
|
[300] |
T. Horn,
|
[301] |
V. Tadevosyan,
|
[302] |
T. Horn,
|
[303] |
G. M. Huber,
|
[304] |
H. P. Blok,
|
[305] |
J. Badier,
|
[306] |
J. Badier,
CrossRef
ADS
Google scholar
|
[307] |
B. Betev,
CrossRef
ADS
Google scholar
|
[308] |
S. Falciano,
CrossRef
ADS
Google scholar
|
[309] |
M. Guanziroli,
CrossRef
ADS
Google scholar
|
[310] |
J. S. Conway,
CrossRef
ADS
Google scholar
|
[311] |
J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K20 meson, Phys. Rev. Lett.13, 138 (1964)
|
[312] |
A. C. Aguilar,
|
[313] |
C. D. Roberts and S. M. Schmidt, Reflections upon the emergence of hadronic mass, arXiv: 2006.08782 (2020)
|
[314] |
S. Chekanov,
|
[315] |
F. D. Aaron,
|
[316] |
S.-X. Qin, C. Chen, C. Mezrag, and C. D. Roberts, Offshell persistence of composite pions and kaons, Phys. Rev. C97(1), 015203 (2018)
CrossRef
ADS
Google scholar
|
[317] |
G. M. Huber, D. Gaskell,
|
[318] |
T. Horn, G. M. Huber,
|
[319] |
D. Adikaram,
|
[320] |
J. Annand,
|
[321] |
D. Gaskell,
|
[322] |
M. Guidal, J. M. Laget, and M. Vanderhaeghen, Pseudoscalar meson photoproduction at high-energies: From the Regge regime to the hard scattering regime, Phys. Lett. B400, 6 (1997)
CrossRef
ADS
Google scholar
|
[323] |
M. Vanderhaeghen, M. Guidal, and J. M. Laget, Regge description of charged pseudoscalar meson electroproduction above the resonance region, Phys. Rev. C57, 1454 (1998)
CrossRef
ADS
Google scholar
|
[324] |
T. K. Choi, K. J. Kong, and B. G. Yu, Pion and proton form factors in the Regge description of electroproduction p(e, e′π+)n, J. Korean Phys. Soc.67(7), 1089 (2015)
|
[325] |
R. J. Perry, A. Kizilersü, and A. W. Thomas, An improved hadronic model for pion electroproduction, Phys. Lett. B807, 135581 (2020)
CrossRef
ADS
Google scholar
|
[326] |
M. Gluck, E. Reya, and I. Schienbein, Pionic parton distributions revisited, Eur. Phys. J. C10, 313 (1999)
CrossRef
ADS
Google scholar
|
[327] |
G. P. Lepage and S. J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B87, 359 (1979)
CrossRef
ADS
Google scholar
|
[328] |
G. P. Lepage and S. J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157 (1980)
CrossRef
ADS
Google scholar
|
[329] |
S. J. Brodsky, Light cone quantized QCD and novel hadron phenomenology, in: QCD light cone physics and hadron phenomenology, Proceedings, 10th Nuclear Summer School and Symposium, NuSS’97, Seoul, Korea, June 23–28, 1997, pp 1–64 (1997)
|
[330] |
V. N. Gribov and L. N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15, 438 (1972) [Yad. Fiz.15, 781 (1972)]
|
[331] |
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B126, 298 (1977)
CrossRef
ADS
Google scholar
|
[332] |
Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]
|
[333] |
R. D. Field, Applications of Perturbative QCD, Volume 77 (1989)
|
[334] |
D. Drijard,
|
[335] |
K. L. Giboni,
|
[336] |
W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, Evidence for Λc+ in inclusive pp→Λ°π+π+π−+X and pp→(K−π+p) +X at s= 53-GeV and 62-GeV, Phys. Lett. B85, 443 (1979)
|
[337] |
D. Drijard,
CrossRef
ADS
Google scholar
|
[338] |
H.M. Georgi, S. L. Glashow, M. E. Machacek, and D. V Nanopoulos, Charmed particles from two-gluon annihilation in proton proton collisions, Ann. Phys.114, 273 (1978)
CrossRef
ADS
Google scholar
|
[339] |
S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B93, 451 (1980)
CrossRef
ADS
Google scholar
|
[340] |
S. J. Brodsky, C. Peterson, and N. Sakai, Intrinsic heavy quark states, Phys. Rev. D23, 2745 (1981)
CrossRef
ADS
Google scholar
|
[341] |
S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt, A review of the intrinsic heavy quark content of the nucleon, Adv. High Energy Phys.2015, 231547 (2015)
CrossRef
ADS
Google scholar
|
[342] |
J. J. Aubert,
|
[343] |
B. W. Harris, J. Smith, and R. Vogt, Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO, Nucl. Phys. B461, 181 (1996)
CrossRef
ADS
Google scholar
|
[344] |
V. M. Abazov,
|
[345] |
E. M Aitala,
|
[346] |
E. M. Aitala,
|
[347] |
C.-H. Chang, J.-P. Ma, C.-F. Qiao, and X.-G. Wu, Hadronic production of the doubly charmed baryon Ξcc+ with intrinsic charm, J. Phys. G34, 845 (2007)
|
[348] |
G. Chen, X.-G. Wu, and S. Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D100(5), 054022 (2019)
|
[349] |
G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, and H.-B. Fu, Hadronic production of Ξcc at a fixed-target experiment at the LHC, Phys. Rev. D89(7), 074020 (2014)
|
[350] |
C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC: A generator for hadronic production of the double heavy baryons Ξcc,Ξbc and Ξbb, Comput. Phys. Commun.177, 467 (2007)
|
[351] |
C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc,Ξbc and Ξbb, Comput. Phys. Commun.181, 1144 (2010)
|
[352] |
X.-Y. Wang and X.-G. Wu, GENXICC2.1: An improved version of genxicc for hadronic production of doubly heavy baryons, Comput. Phys. Commun.184, 1070 (2013)
CrossRef
ADS
Google scholar
|
[353] |
X.-G. Wu, BCVEGPY and GENXICC for the hadronic production of the doubly heavy mesons and baryons, J. Phys. Conf. Ser.523, 012042 (2014)
CrossRef
ADS
Google scholar
|
[354] |
S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rep.522, 239 (2013)
CrossRef
ADS
Google scholar
|
[355] |
C. Hadjidakis,
CrossRef
ADS
Google scholar
|
[356] |
J. P. Lansberg,
CrossRef
ADS
Google scholar
|
[357] |
J. P. Lansberg,
CrossRef
ADS
Google scholar
|
[358] |
J. P. Lansberg,
CrossRef
ADS
Google scholar
|
[359] |
G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D51, 1125 (1995)
CrossRef
ADS
Google scholar
|
[360] |
R. Aaij,
|
[361] |
R. Aaij,
|
[362] |
M. Mattson,
|
[363] |
A. Ocherashvili,
|
[364] |
H.-W. Lin,
|
[365] |
S. Aoki,
CrossRef
ADS
Google scholar
|
[366] |
C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. V. Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett.119(14), 142002 (2017)
CrossRef
ADS
Google scholar
|
[367] |
J. Liang, Y.-B. Yang, T. Draper, M. Gong, and K.-F. Liu, Quark spins and anomalous ward identity, Phys. Rev. D98(7), 074505 (2018)
CrossRef
ADS
Google scholar
|
[368] |
H.-W. Lin, R. Gupta, B. Yoon, Y.-C. Jang, and T. Bhattacharya, Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. D98(9), 094512 (2018)
CrossRef
ADS
Google scholar
|
[369] |
D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Evidence for polarization of gluons in the proton, Phys. Rev. Lett.113(1), 012001 (2014)
CrossRef
ADS
Google scholar
|
[370] |
Y.-B. Yang, R. S. Sufian, A. Alexandru, T. Draper, M. J. Glatzmaier, K.-F. Liu, and Y. Zhao, Glue spin and helicity in the proton from lattice QCD, Phys. Rev. Lett.118(10), 102001 (2017)
CrossRef
ADS
Google scholar
|
[371] |
Y.-B. Yang, A lattice story of proton spin, PoS LATTICE2018: 017 (2019)
|
[372] |
R. L. Jaffe and A. Manohar, The G(1) problem: fact and fantasy on the spin of the proton, Nucl. Phys. B337, 509 (1990)
CrossRef
ADS
Google scholar
|
[373] |
M. Deka,
CrossRef
ADS
Google scholar
|
[374] |
C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos, and G. Spanoudes, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D101(9), 094513 (2020)
CrossRef
ADS
Google scholar
|
[375] |
M. Engelhardt, J. Green, N. Hasan, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, and S. Syritsyn, Quark orbital angular momentum in the proton evaluated using a direct derivative method, PoS LATTICE2018:115 (2018)
CrossRef
ADS
Google scholar
|
[376] |
M. Engelhardt, Quark orbital dynamics in the proton from Lattice QCD — from Ji to Jaffe–Manohar orbital angular momentum, Phys. Rev. D95(9), 094505 (2017)
CrossRef
ADS
Google scholar
|
[377] |
X. Ji, Parton physics on a euclidean lattice, Phys. Rev. Lett.110, 262002 (2013)
CrossRef
ADS
Google scholar
|
[378] |
Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D98(7), 074021 (2018)
CrossRef
ADS
Google scholar
|
[379] |
A. Radyushkin, Nonperturbative evolution of parton quasi-distributions, Phys. Lett. B767, 314 (2017)
CrossRef
ADS
Google scholar
|
[380] |
X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, largemomentum effective theory, arXiv: 2004.03543 (2020)
|
[381] |
H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao, Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett.121(24), 242003 (2018)
CrossRef
ADS
Google scholar
|
[382] |
C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett.121(11), 112001 (2018)
CrossRef
ADS
Google scholar
|
[383] |
C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D98(9), 091503 (2018)
CrossRef
ADS
Google scholar
|
[384] |
J. Liang, M. Sun, Y.-B. Yang, T. Draper, and K.-F. Liu, Ratio of strange to u/d momentum fraction in disconnected insertions, Phys. Rev. D102(3), 034514 (2020)
CrossRef
ADS
Google scholar
|
[385] |
J.-W. Chen, H.-W. Lin, and J.-H. Zhang, Pion generalized parton distribution from lattice QCD, Nucl. Phys. B952, 114940 (2020)
CrossRef
ADS
Google scholar
|
[386] |
X. Ji, Y. Liu, and Y.-S. Liu, Transverse-momentumdependent PDFs from large-momentum effective theory, arXiv: 1911.03840 (2019)
|
[387] |
P. Shanahan, M. Wagman, and Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD, Phys. Rev. D102, 014511
CrossRef
ADS
Google scholar
|
[388] |
Q.-A. Zhang,
CrossRef
ADS
Google scholar
|
[389] |
A. C. Benvenuti,
CrossRef
ADS
Google scholar
|
[390] |
W. Detmold, M.Illa, D. J. Murphy, P. Oare, K. Orginos, P. E. Shanahan, M. L. Wagman, and F. Winter, Lattice QCD constraints on the parton distribution functions of 3He, arXiv: 2009.05522 (2020)
CrossRef
ADS
Google scholar
|
[391] |
T. Yamazaki, Y. Kuramashi, and A. Ukawa, Helium nuclei in quenched lattice QCD, Phys. Rev. D81, 111504 (2010)
CrossRef
ADS
Google scholar
|
[392] |
T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki, Systematics of the HAL QCD potential at low energies in lattice QCD, Phys. Rev. D99(1), 014514 (2019)
CrossRef
ADS
Google scholar
|
[393] |
M. Luscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B354, 531 (1991)
CrossRef
ADS
Google scholar
|
[394] |
L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and D. G. Richards, Excited and exotic charmonium spectroscopy from lattice QCD, JHEP07, 126 (2012)
CrossRef
ADS
Google scholar
|
[395] |
S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Study of the Zc+ channel using lattice QCD, Phys. Rev. D91(1), 014504 (2015)
|
[396] |
Y. Chen,
|
[397] |
Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki, Fate of the tetraquark candidate Zc(3900) from lattice QCD, Phys. Rev. Lett.117(24), 242001 (2016)
CrossRef
ADS
Google scholar
|
[398] |
M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator, Phys. Rev. C68, 015203 (2003)
CrossRef
ADS
Google scholar
|
[399] |
P. O. Bowman, Urs M. Heller, D. B. Leinweber, M. B. Parappilly, A. G. Williams, and J.-B. Zhang, Unquenched quark propagator in Landau gauge, Phys. Rev. D71, 054507 (2005)
CrossRef
ADS
Google scholar
|
[400] |
M. S. Bhagwat and P. C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators, AIP Conf. Proc.842(1), 225 (2006)
CrossRef
ADS
Google scholar
|
[401] |
P. Maris, C. D. Roberts, and P. C. Tandy, Pion mass and decay constant, Phys. Lett. B420, 267 (1998)
CrossRef
ADS
Google scholar
|
[402] |
S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Ward–Green–Takahashi identities and the axial-vector vertex, Phys. Lett. B733, 202 (2014)
CrossRef
ADS
Google scholar
|
[403] |
D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations, Phys. Rev. D93(9), 096010 (2016)
CrossRef
ADS
Google scholar
|
[404] |
C. D. Roberts, Three lectures on hadron physics, J. Phys. Conf. Ser.706(2), 022003 (2016)
CrossRef
ADS
Google scholar
|
[405] |
G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic threequark bound states, Prog. Part. Nucl. Phys.91, 1 (2016)
CrossRef
ADS
Google scholar
|
[406] |
V. D. Burkert and C. D. Roberts, Roper resonance: Toward a solution to the fifty year puzzle, Rev. Mod. Phys.91(1), 011003 (2019)
CrossRef
ADS
Google scholar
|
[407] |
S.-X. Qin and C. D. Roberts, Impressions of the continuum bound state problem in QCD, arXiv: 2008.07629 (2020)
|
[408] |
Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C. D Roberts, J. Rodríguez-Quintero, J. Segovia, and S. Zafeiropoulos, Effective charge from lattice QCD, Chin. Phys. C44(8), 083102 (2020)
CrossRef
ADS
Google scholar
|
[409] |
C. D Roberts, Insights into the origin of mass, in: 27th International Nuclear Physics Conference (INPC 2019) Glasgow, Scotland, United Kingdom, July 29–August 2, 2019 (2019)
|
[410] |
A. V. Efremov and A. V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD, Phys. Lett.94B, 245 (1980)
CrossRef
ADS
Google scholar
|
[411] |
F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and Peter C. Tandy. Exposing strangeness: Projections for kaon electromagnetic form factors, Phys. Rev. D96(3), 034024 (2017)
CrossRef
ADS
Google scholar
|
[412] |
Z. F. Ezawa, Wide-angle scattering in softened field theory, Nuovo Cim. A23, 271 (1974)
CrossRef
ADS
Google scholar
|
[413] |
G. R. Farrar and D. R. Jackson, Pion and nucleon structure functions near x = 1, Phys. Rev. Lett.35, 1416 (1975)
CrossRef
ADS
Google scholar
|
[414] |
E. L. Berger and S. J. Brodsky, Quark structure functions of mesons and the Drell–Yan process, Phys. Rev. Lett.42, 940 (1979)
CrossRef
ADS
Google scholar
|
[415] |
R. J. Holt and C. D. Roberts, Distribution functions of the nucleon and pion in the valence region, Rev. Mod. Phys.82, 2991 (2010)
CrossRef
ADS
Google scholar
|
[416] |
M. B. Hecht, C. D. Roberts, and S. M. Schmidt, Valence quark distributions in the pion, Phys. Rev. C63, 025213 (2001)
CrossRef
ADS
Google scholar
|
[417] |
K. Wijesooriya, P. E.Reimer, and R. J.Holt, The pion parton distribution function in the valence region, Phys. Rev. C72, 065203 (2005)
CrossRef
ADS
Google scholar
|
[418] |
M. Aicher, A. Schafer, and W. Vogelsang, Soft-gluon resummation and the valence parton distribution function of the pion, Phys. Rev. Lett.105, 252003 (2010)
CrossRef
ADS
Google scholar
|
[419] |
M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Drawing insights from pion parton distributions, Chin. Phys.44(3), 031002 (2020)
CrossRef
ADS
Google scholar
|
[420] |
M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D101(5), 054014 (2020)
CrossRef
ADS
Google scholar
|
[421] |
P. C. Barry, N. Sato, W. Melnitchouk, and C.-R. Ji, First Monte Carlo global QCD analysis of pion parton distributions, Phys. Rev. Lett.121(15), 152001 (2018)
CrossRef
ADS
Google scholar
|
[422] |
J.-H. Zhang, J.-W. Chen, L. Jin, H.-W Lin, A. Schäfer, and Y. Zhao, First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function, Phys. Rev. D100(3), 034505 (2019)
CrossRef
ADS
Google scholar
|
[423] |
M. Oehm, C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou, B. Kostrzewa, F. Steffens, C. Urbach, and S. Zafeiropoulos, 〈x〉 and 〈x2〉 of the pion PDF from lattice QCD with Nf= 2+ 1+ 1 dynamical quark flavors, Phys. Rev. D99(1), 014508 (2019)
|
[424] |
N. Karthik, T. Izubichi, L. Jin, C. Kallidonis, S. Mukherjee, P. Petreczky, C. Shugert, and S. Syritsyn, Renormalized quasi parton distribution function of pion, PoS LATTICE2018:109 (2019)
CrossRef
ADS
Google scholar
|
[425] |
R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and D. G. Richards, Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D99(7), 074507 (2019)
CrossRef
ADS
Google scholar
|
[426] |
L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, and P. C. Tandy, Imaging dynamical chiral symmetry breaking: Pion wave function on the light front, Phys. Rev. Lett.110(13), 132001 (2013)
CrossRef
ADS
Google scholar
|
[427] |
P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling, Parton distributions for the pion extracted from Drell–Yan and prompt photon experiments, Phys. Rev. D45, 2349 (1992)
CrossRef
ADS
Google scholar
|
[428] |
B. Adams,
|
[429] |
W.-C. Chang, J.-C. Peng, S. Platchkov, and T. Sawada, Constraining gluon density of pions at large x by pioninduced J/ψ production, Phys. Rev. D102, 054024
CrossRef
ADS
Google scholar
|
[430] |
J. T. Londergan, G. Q. Liu, E. N. Rodionov, and A. W. Thomas, Probing the pion sea with π-D Drell–Yan processes, Phys. Lett. B361, 110 (1995)
CrossRef
ADS
Google scholar
|
[431] |
Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon parton distributions: Revealing Higgs modulation of emergent mass, arXiv: 2006.14075 (2020)
|
[432] |
Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon and pion parton distributions, Eur. Phys. J. C80(11), 1064 (2020)
CrossRef
ADS
Google scholar
|
[433] |
X. Chen, F.-K. Guo, C. D. Roberts, and R. Wang, Selected science opportunities for the EicC, Few Body Syst.61(4), 43 (2020)
CrossRef
ADS
Google scholar
|
[434] |
Q.-W. Wang, S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation, Phys. Rev. D98(5), 054019 (2018)
CrossRef
ADS
Google scholar
|
[435] |
C. D. Roberts, R. J. Holt, and S. M. Schmidt, Nucleon spin structure at very high x, Phys. Lett. B727, 249 (2013)
CrossRef
ADS
Google scholar
|
[436] |
C. Mezrag, L. Chang, H. Moutarde, C. D. Roberts, J. Rodríguez-Quintero, F. Sabatié, and S. M. Schmidt, Sketching the pion’s valence-quark generalised parton distribution, Phys. Lett. B741, 190 (2015)
CrossRef
ADS
Google scholar
|
[437] |
C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, From Bethe–Salpeter wave functions to generalised parton distributions, Few Body Syst.57(9), 729 (2016)
CrossRef
ADS
Google scholar
|
[438] |
N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities, Phys. Lett. B780, 287 (2018)
CrossRef
ADS
Google scholar
|
[439] |
S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong, Pion and kaon valence-quark parton quasidistributions, Phys. Rev. D97(9), 094014 (2018)
CrossRef
ADS
Google scholar
|
[440] |
C. Shi and I. C. Cloët, Intrinsic transverse motion of the pion’s valence quarks, Phys. Rev. Lett.122(8), 082301 (2019)
CrossRef
ADS
Google scholar
|
[441] |
R. D. Field and R. P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B136, 1 (1978)
CrossRef
ADS
Google scholar
|
[442] |
I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin,
|
[443] |
L. J. Mao, J. C. Yang, J. W. Xia, X. D. Yang, Y. J. Yuan, J. Li, X. M. Ma, T. L. Yan, D. Y. Yin, W. P. Chai,
CrossRef
ADS
Google scholar
|
[444] |
A. Zelenski, Review of polarized ion sources, Review of Scientific Instruments81(2), 02B308 (2010)
CrossRef
ADS
Google scholar
|
[445] |
E. Tsentalovich, J. Bessuille, E. Ihloff, J. Kelsey, R. Redwine, and C. Vidal, High intensity polarized electron source, Nuclear Instruments and Methods in Physics Research Section A947, 162734 (2019)
CrossRef
ADS
Google scholar
|
[446] |
D. W. Higinbotham, Electron spin precession at CEBAF, AIP Conf. Proc.1149(1), 751 (2009)
CrossRef
ADS
Google scholar
|
[447] |
U. Fano, Remarks on the classical and quantummechanical treatment of partial polarization, JOSA39(10), 859 (1949)
CrossRef
ADS
Google scholar
|
[448] |
J. R. Johnson, R. Prepost, D. E. Wiser, J. J. Murray, R. F. Schwitters, and C. K. Sinclair, Beam polarization measurements at the spear storage ring, Nuclear Instruments and Methods in Physics Research204(2–3), 261 (1983)
CrossRef
ADS
Google scholar
|
[449] |
S. Abeyratne, A. Accardi, S. Ahmed, D. Barber, J. Bisognano, A. Bogacz, A. Castilla, P. Chevtsov, S. Corneliussen, W. Deconinck,
|
[450] |
K. Akai and Y. Morita, New design of crab cavity for superkekb, in: Proceedings of the 2005 Particle Accelerator Conference, pp 1129–1131, IEEE (2005)
|
[451] |
T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun.135, 238 (2001)
CrossRef
ADS
Google scholar
|
[452] |
N. Minafra, Beam impedance optimization of the TOTEM roman pots, in: 6th International Particle Accelerator Conference, p. MOPJE064 (2015)
|
[453] |
M. Steigerwald, MeV Mott polarimetry at Jefferson lab, AIP Conf. Proc.570(1), 935 (2001)
CrossRef
ADS
Google scholar
|
[454] |
M. Hauger,
CrossRef
ADS
Google scholar
|
[455] |
J. A. Magee, A. Narayan, D. Jones, R. Beminiwattha, J. C. Cornejo,
CrossRef
ADS
Google scholar
|
[456] |
I. Nakagawa, I. Alekseev, A. Bravar, G. Bunce, S. Dhawan, K. O. Eyser, R. Gill, W. Haeberli, H. Huang, O. Jinnouchi, Y. Makdisi, A. Nass, H. Okada, E. Stephenson, D. Svirida, T. Wise, J. Wood, and A. Zelenski, Polarization measurements of RHIC‐pp RUN05 using CNI pC‐polarimeter, AIP Conf. Proc.915(1), 912 (2007)
CrossRef
ADS
Google scholar
|
[457] |
I. G. Alekseev, A. Bravar, G. Bunce,
CrossRef
ADS
Google scholar
|
[458] |
G. Contin, The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance, Nucl. Instrum. Meth. A831, 7 (2016)
CrossRef
ADS
Google scholar
|
[459] |
R. Dupré, S. Stepanyan, M. Hattawy, N. Baltzell, K. Hafidi, M. Battaglieri, S. Bueltmann, A. Celentano, R. De Vita, A. El Alaoui, L. El Fassi, H. Fenker, K. Kosheleva, S. Kuhn, P. Musico, S. Minutoli, M. Oliver, Y. Perrin, B. Torayev, and E. Voutier, A radial time projection chamber for α detection in CLAS at Jlab, Nuclear Instruments and Methods in Physics Research Section A898, 90 (2018)
CrossRef
ADS
Google scholar
|
[460] |
F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research Section A805, 2 (2016), Special issue in memory of G. F. Knoll
CrossRef
ADS
Google scholar
|
[461] |
W. Erni,
|
[462] |
M. Ablikim,
|
[463] |
Y.Van Haarlem,
CrossRef
ADS
Google scholar
|
[464] |
J. Smyrski. Overview of the panda experiment, Physic Procedia 37, 85 (2012), Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011)
CrossRef
ADS
Google scholar
|
[465] |
L. Barion,
CrossRef
ADS
Google scholar
|
[466] |
I. Adam,
CrossRef
ADS
Google scholar
|
[467] |
A. Ali, F. Barbosa, J. Bessuille, E. Chudakov, R. Dzhygadlo, C. Fanelli, J. Frye, J. Hardin, A. Hurley, G. Kalicy, J. Kelsey, W. Li, M. Patsyuk, C. Schwarz, J. Schwiening, M. Shepherd, J. R. Stevens, T. Whitlatch, M. Williams, and Y. Yang, The Gluex DIRC program, Journal of Instrumentation15(04), C04054 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |