Electron-ion collider in China

Daniele P. Anderle , Valerio Bertone , Xu Cao , Lei Chang , Ningbo Chang , Gu Chen , Xurong Chen , Zhuojun Chen , Zhufang Cui , Lingyun Dai , Weitian Deng , Minghui Ding , Xu Feng , Chang Gong , Longcheng Gui , Feng-Kun Guo , Chengdong Han , Jun He , Tie-Jiun Hou , Hongxia Huang , Yin Huang , KrešImir KumeričKi , L. P. Kaptari , Demin Li , Hengne Li , Minxiang Li , Xueqian Li , Yutie Liang , Zuotang Liang , Chen Liu , Chuan Liu , Guoming Liu , Jie Liu , Liuming Liu , Xiang Liu , Tianbo Liu , Xiaofeng Luo , Zhun Lyu , Boqiang Ma , Fu Ma , Jianping Ma , Yugang Ma , Lijun Mao , Cédric Mezrag , Hervé Moutarde , Jialun Ping , Sixue Qin , Hang Ren , Craig D. Roberts , Juan Rojo , Guodong Shen , Chao Shi , Qintao Song , Hao Sun , Paweł Sznajder , Enke Wang , Fan Wang , Qian Wang , Rong Wang , Ruiru Wang , Taofeng Wang , Wei Wang , Xiaoyu Wang , Xiaoyun Wang , Jiajun Wu , Xinggang Wu , Lei Xia , Bowen Xiao , Guoqing Xiao , Ju-Jun Xie , Yaping Xie , Hongxi Xing , Hushan Xu , Nu Xu , Shusheng Xu , Mengshi Yan , Wenbiao Yan , Wencheng Yan , Xinhu Yan , Jiancheng Yang , Yi-Bo Yang , Zhi Yang , Deliang Yao , Zhihong Ye , Peilin Yin , C.-P. Yuan , Wenlong Zhan , Jianhui Zhang , Jinlong Zhang , Pengming Zhang , Yifei Zhang , Chao-Hsi Chang , Zhenyu Zhang , Hongwei Zhao , Kuang-Ta Chao , Qiang Zhao , Yuxiang Zhao , Zhengguo Zhao , Liang Zheng , Jian Zhou , Xiang Zhou , Xiaorong Zhou , Bingsong Zou , Liping Zou

Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 64701

PDF (11129KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 64701 DOI: 10.1007/s11467-021-1062-0
REPORT

Electron-ion collider in China

Author information +
History +
PDF (11129KB)

Abstract

Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a po- larization of 80%) and protons (with a polarization of 70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3)×1033 cm2•s1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.

The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.

This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.

Graphical abstract

Keywords

electron ion collider / nucleon structure / nucleon mass / exotic hadronic states / quantum chromodynamics / 3D-tomography / helicity / transverse momentum dependent parton distribution / generalized parton distribution / energy recovery linac / polarization / spin rotator

Cite this article

Download citation ▾
Daniele P. Anderle, Valerio Bertone, Xu Cao, Lei Chang, Ningbo Chang, Gu Chen, Xurong Chen, Zhuojun Chen, Zhufang Cui, Lingyun Dai, Weitian Deng, Minghui Ding, Xu Feng, Chang Gong, Longcheng Gui, Feng-Kun Guo, Chengdong Han, Jun He, Tie-Jiun Hou, Hongxia Huang, Yin Huang, KrešImir KumeričKi, L. P. Kaptari, Demin Li, Hengne Li, Minxiang Li, Xueqian Li, Yutie Liang, Zuotang Liang, Chen Liu, Chuan Liu, Guoming Liu, Jie Liu, Liuming Liu, Xiang Liu, Tianbo Liu, Xiaofeng Luo, Zhun Lyu, Boqiang Ma, Fu Ma, Jianping Ma, Yugang Ma, Lijun Mao, Cédric Mezrag, Hervé Moutarde, Jialun Ping, Sixue Qin, Hang Ren, Craig D. Roberts, Juan Rojo, Guodong Shen, Chao Shi, Qintao Song, Hao Sun, Paweł Sznajder, Enke Wang, Fan Wang, Qian Wang, Rong Wang, Ruiru Wang, Taofeng Wang, Wei Wang, Xiaoyu Wang, Xiaoyun Wang, Jiajun Wu, Xinggang Wu, Lei Xia, Bowen Xiao, Guoqing Xiao, Ju-Jun Xie, Yaping Xie, Hongxi Xing, Hushan Xu, Nu Xu, Shusheng Xu, Mengshi Yan, Wenbiao Yan, Wencheng Yan, Xinhu Yan, Jiancheng Yang, Yi-Bo Yang, Zhi Yang, Deliang Yao, Zhihong Ye, Peilin Yin, C.-P. Yuan, Wenlong Zhan, Jianhui Zhang, Jinlong Zhang, Pengming Zhang, Yifei Zhang, Chao-Hsi Chang, Zhenyu Zhang, Hongwei Zhao, Kuang-Ta Chao, Qiang Zhao, Yuxiang Zhao, Zhengguo Zhao, Liang Zheng, Jian Zhou, Xiang Zhou, Xiaorong Zhou, Bingsong Zou, Liping Zou. Electron-ion collider in China. Front. Phys., 2021, 16(6): 64701 DOI:10.1007/s11467-021-1062-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Seife, Illuminating the dark universe, Science 302(5653), 2038 (2003)

[2]

S. Weinberg, A model of leptons, Phys. Rev. Lett.19, 1264 (1967)

[3]

A. Salam and J. C. Ward, Weak and electromagnetic interactions, Nuovo Cim.11, 568 (1959)

[4]

S. L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys.10, 107 (1959)

[5]

D. J. Gross and F. Wilczek, Asymptotically free gauge theories (I): Phys. Rev. D8, 3633 (1973)

[6]

D. J. Gross and F. Wilczek, Asymptotically free gauge theories (II): Phys. Rev. D9, 980 (1974)

[7]

S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett.43, 1566 (1979)

[8]

F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13, 321 (1964)

[9]

P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13, 508 (1964)

[10]

P. A. Zyla, (Particle Data Group), The review of particle physics, Prog. Theor. Exp. Phys.2020, 083C01 (2020)

[11]

Jr. Callan, G. Curtis, R. F. Dashen, and D. J. Gross, Toward a theory of the strong interactions, Phys. Rev. D17, 2717 (1978)

[12]

D. J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett.30, 1343 (1973)

[13]

H. D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett.30, 1346 (1973)

[14]

M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett.8, 214 (1964)

[15]

G. Zweig, An SU (3) model for strong interaction symmetry and its breaking, Version 1, CERN-TH-4011 (1964)

[16]

E. D. Bloom, , High-energy in elastic ep scattering at 6◦ and 10◦, Phys. Rev. Lett.23, 930 (1969)

[17]

C. Chang, , Observed deviations from scale invari- ance in high-energy muon scattering, Phys. Rev. Lett.35, 901 (1975)

[18]

J. J. Aubert, , The ratio of the nucleon structure functions F2N for iron and deuterium, Phys. Lett. B123, 275 (1983)

[19]

A. C. Benvenuti, , Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189, 483 (1987)

[20]

J. Gomez, , Measurement of the A-dependence of deep inelastic electron scattering, Phys. Rev. D49, 4348 (1994)

[21]

D. F. Geesaman, K. Saito, and A. W. Thomas, The nu- clear EMC effect, Ann. Rev. Nucl. Part. Sci.45, 337 (1995)

[22]

J. Seely, , New measurements of the EMC effect in very light nuclei, Phys. Rev. Lett.103, 202301 (2009)

[23]

L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, and R. Shneor, Short range corre- lations and the EMC effect, Phys. Rev. Lett.106, 052301 (2011)

[24]

J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, and P. Solvignon, A detailed study of the nuclear de- pendence of the EMC effect and short-range correlations, Phys. Rev. C86, 065204 (2012)

[25]

O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Nucleon-nucleon correlations, short-lived excitations, and the quarks within, Rev. Mod. Phys.89(4), 045002 (2017)

[26]

S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D32, 189 (1985)

[27]

S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, AIP Conf. Proc.132, 267 (1985)

[28]

S. Coleman and R. E. Norton, Singularities in the physi- cal region, Nuovo Cim.38, 438 (1965)

[29]

F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys.112, 103757 (2020)

[30]

A. Accardi, , Electron Ion Collider: The next qcd frontier, Eur. Phys. J. A52(9), 268 (2016)

[31]

J. L. A. Fernandez, , A large hadron electron col- lider at CERN report on the physics and design concepts for machine and detector, J. Phys. G: Nucl. Part. Phys.39(7), 075001 (2012)

[32]

F. Gautheron, , COMPASS-II Proposal, 5 (2010)

[33]

G. van der Steenhoven, The HERMES experiment, Prog. Part. Nucl. Phys.55, 181 (2005)

[34]

W. Braunschweig and H1 Collaboration, Status HERA and the experiments H1 and ZEUS, Nucl. Phys. B: Proc. Suppl.31, 206 (1993)

[35]

J. Ashman, , A Measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon–proton scattering, Phys. Lett. B206, 364 (1988)

[36]

P. Amaudruz, , The Gottfried, sum from the ratio F2n/F2p, Phys. Rev. Lett.66,2712(1991)

[37]

M. Arneodo, , A reevaluation of the Gottfried sum, Phys. Rev. D50, R1 (1994)

[38]

K. Ackerstaff, , The flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering, Phys. Rev. Lett.81, 5519 (1998)

[39]

A. Baldit, , Study of the isospin symmetry breaking in the light quark sea of the nucleon from the Drell–Yan process, Phys. Lett. B332, 244 (1994)

[40]

R. S. Towell, , Improved measurement of the anti-d¯/anti−u¯ asymmetry in the nucleon sea, Phys. Rev. D64, 052002 (2001)

[41]

R. S. Bhalerao, Is the polarized anti-quark sea in the nu- cleon flavor symmetric? Phys. Rev. C63, 025208 (2001)

[42]

J.-C. Peng, Flavor structure of the nucleon sea, Eur. Phys. J. A18, 395 (2003)

[43]

C. Bourrely, J. Soffer, and F. Buccella, A statistical approach for polarized parton distributions, Eur. Phys. J. C23, 487 (2002)

[44]

J. Adam, , Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at s = 510 GeV, Phys. Rev. D99(5), 051102 (2019)

[45]

E. Leader, A. V. Sidorov, and D. B. Stamenov, Impact of clas and compass data on polarized parton densities and higher twist, Phys. Rev. D75, 074027 (2007)

[46]

M. Hirai, S. Kumano, and N. Saito, Determination of polarized parton distribution functions with recent data on polarization asymmetries, Phys. Rev. D74, 014015 (2006)

[47]

A. Airapetian, , Quark helicity distributions in the nucleon for up, down, and strange quarks from semi-inclusive deep-inelastic scattering, Phys. Rev. D71, 012003 (2005)

[48]

A. Airapetian, , Measurement of parton distribu- tions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the deuteron, Phys. Lett. B666, 446 (2008)

[49]

D. de Florian, R. Sassot, M. Stratmann, and W. Vogel- sang, Global analysis of helicity parton densities and their uncertainties, Phys. Rev. Lett.101, 072001 (2008)

[50]

A. Airapetian, , Flavor decomposition of the sea quark helicity distributions in the nucleon from semiinclu- sive deep inelastic scattering, Phys. Rev. Lett.92, 012005 (2004)

[51]

D. De Florian, G. A. Lucero, R. Sassot, M. Stratmann, and W. Vogelsang, Monte Carlo sampling variant of the DSSV14 set of helicity parton densities, Phys. Rev. D100(11), 114027 (2019)

[52]

C. Schmidt, J. Pumplin, C. P. Yuan, and P. Yuan, Updating and optimizing error parton distribution function sets in the Hessian approach, Phys. Rev. D98(9), 094005 (2018)

[53]

T.-J. Hou, Z. Yu, S. Dulat, C. Schmidt, and C. P. Yuan, Updating and optimizing error parton distribution func- tion sets in the Hessian approach (II): Phys. Rev. D100(11), 114024 (2019)

[54]

R. P. Feynman, Photon-Hadron Interactions, CRC Press, 1973

[55]

J. D. Bjorken and E. A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon, Phys. Rev.185, 1975 (1969)

[56]

J. C. Collins and D. E. Soper, Back-to-back jets in QCD, Nucl. Phys. B193, 381 (1981) [Erratum: Nucl. Phys.B213, 545 (1983)]

[57]

J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl. Phys. B194, 445 (1982)

[58]

D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejvsi, Wave functions, evolution equations and evo- lution kernels from light ray operators of QCD, Fortsch. Phys.42, 101 (1994)

[59]

X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D55, 7114 (1997)

[60]

X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett.78, 610 (1997)

[61]

A. V. Radyushkin, Nonforward parton distributions, Phys. Rev. D56, 5524 (1997)

[62]

A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D70, 117504 (2004)

[63]

X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D71, 034005 (2005)

[64]

X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell–Yan pro- cesses at low transverse momentum, Phys. Lett. B597, 299 (2004)

[65]

P. J. Mulders and R. D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B461, 197 (1996) [Erratum: Nucl. Phys. B484, 538 (1997)]

[66]

D. W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents, Phys. Rev. D41, 83 (1990)

[67]

J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B396, 161 (1993)

[68]

S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B530, 99 (2002)

[69]

J. C. Collins, Leading twist single transverse-spin asym- metries: Drell–Yan and deep inelastic scattering, Phys. Lett. B536, 43 (2002)

[70]

L. Adamczyk, , Measurement of the transverse single-spin asymmetry in p↑+p→W±/Z0 at RHIC, Phys. Rev. Lett.116(13), 132301 (2016)

[71]

M. Aghasyan, , First measurement of transversespin-dependent azimuthal asymmetries in the Drell–Yan process, Phys. Rev. Lett.119(11), 112002 (2017)

[72]

X.-D. Ji, J.-P. Ma, and F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables, Nucl. Phys. B652, 383 (2003)

[73]

E. S. Ageev, , A New measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target, Nucl. Phys. B765, 31 (2007)

[74]

M. Alekseev, , Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS, Phys. Lett. B673, 127 (2009)

[75]

M. G. Alekseev, , Measurement of the Collins and Sivers asymmetries on transversely polarised protons, Phys. Lett. B692, 240 (2010)

[76]

C. Adolph, , Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely po- larised protons, Phys. Lett. B744, 250 (2015)

[77]

X. Qian, , Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett.107, 072003 (2011)

[78]

A. Airapetian, , Single-spin asymmetries in semiinclusive deep-inelastic scattering on a transversely polar- ized hydrogen target, Phys. Rev. Lett.94, 012002 (2005)

[79]

A. Airapetian, , Observation of the naive-t-odd sivers effect in deep-inelastic scattering, Phys. Rev. Lett.103, 152002 (2009)

[80]

M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. O. Gonzalez-Hernandez, A. Prokudin, T. C. Rogers, and N. Sato, Mapping the kinematical regimes of semiinclusive deep inelastic scattering, JHEP10, 122 (2019)

[81]

M. Boglione, U. D’Alesio, C. Flore, and J. O. GonzalezHernandez, Assessing signals of TMD physics in SIDIS azimuthal asymmetries and in the extraction of the Sivers function, JHEP07, 148 (2018)

[82]

H. Dong, Du-X Zheng, and J. Zhou, Sea quark Sivers distribution, Phys. Lett. B788, 401 (2019)

[83]

J. Collins and T. Rogers, Understanding the largedistance behavior of transverse-momentum-dependent parton densities and the Collins–Soper evolution kernel, Phys. Rev. D91(7), 074020 (2015)

[84]

M. Diehl and S. Sapeta, On the analysis of lepton scat- tering on longitudinally or transversely polarized protons, Eur. Phys. J. C41, 515 (2005)

[85]

M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ→0, Phys. Rev. D62, 071503 (2000) [Erratum: Phys.Rev.D66, 119903 (2002)]

[86]

M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int. J. Mod. Phys. A18, 173 (2003)

[87]

M. V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei, Phys. Lett. B555, 57 (2003)

[88]

C. Lorcé, H. Moutarde, and A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur. Phys. J. C79(1), 89 (2019)

[89]

P. E. Shanahan and W. Detmold, Pressure distribution and shear forces inside the proton, Phys. Rev. Lett.122(7), 072003 (2019)

[90]

M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33(26), 1830025 (2018)

[91]

V. D. Burkert, L. Elouadrhiri, and F. X. Girod, The pressure distribution inside the proton, Nature557(7705), 396 (2018)

[92]

K. Kumerivcki, Measurability of pressure inside the proton, Nature570(7759), E1 (2019)

[93]

H. Moutarde, P. Sznajder, and J. Wagner, Border and skewness functions from a leading order fit to DVCS data, Eur. Phys. J. C 78(11), 890 (2018)

[94]

H. Moutarde, P. Sznajder, and J. Wagner, Unbiased determination of DVCS Compton form factors, Eur. Phys. J. C79(7), 614 (2019)

[95]

K. Kumericki, D. Mueller, and K. Passek-Kumericki, Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, Nucl. Phys. B794, 244 (2008)

[96]

K. Kumerivcki and D. Mueller, Deeply virtual Compton scattering at small xB and the access to the GPD H, Nucl. Phys. B841, 1 (2010)

[97]

M. Guidal, H. Moutarde, and M. Vanderhaeghen, Generalized parton distributions in the valence region from deeply virtual compton scattering, Rep. Prog. Phys.76, 066202 (2013)

[98]

K. Kumericki, S. Liuti, and H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high- precision era, Eur. Phys. J. A52(6), 157 (2016)

[99]

A. Airapetian, , Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction, JHEP 10, 042 (2012)

[100]

A. Sandacz, COMPASS results on DVCS and exclusive π0 production, J. Phys. Conf. Ser.938(1), 012015 (2017)

[101]

C. E. Hyde, M. Guidal, and A. V. Radyushkin, Deeply virtual exclusive processes and generalized parton distributions, J. Phys. Conf. Ser.299, 012006 (2011)

[102]

[103]

[104]

[105]

[106]

H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner, Timelike and spacelike deeply virtual Comp- ton scattering at next-to-leading order, Phys. Rev. D87(5), 054029 (2013)

[107]

V. M. Braun, A. N. Manashov, D. Müller, and B. M. Pirnay, Deeply Virtual Compton Scattering to the twist-four accuracy: Impact of finite-t and target mass corrections, Phys. Rev. D89(7), 074022 (2014)

[108]

M. Defurne, , E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV, Phys. Rev. C92(5), 055202 (2015)

[109]

M. Defurne, , A glimpse of gluons through deeply virtual compton scattering on the proton, Nature Com- mun.8(1), 1408 (2017)

[110]

E. Perez, L. Schoeffel, and L. Favart, MILOU: A Monte Carlo for deeply virtual Compton scattering, arXiv: hep- ph/0411389 (2004)

[111]

K. Kumericki, D. Mueller, and A. Schafer, Neural net- work generated parametrizations of deeply virtual Comp- ton form factors, JHEP07, 073 (2011)

[112]

B. Berthou, , PARTONS: PArtonic tomography of nucleon software, Eur. Phys. J. C78(6), 478 (2018)

[113]

M. Cuic, K. Kumericki, and A. Schafer, separation of quark flavors using DVCS data, arXiv: 2007.00029 [hep- ph] (2020)

[114]

S. V. Goloskokov and P. Kroll, An Attempt to understand exclusive π+ electroproduction, Eur. Phys. J. C65, 137 (2010)

[115]

S. V. Goloskokov and P. Kroll, Transversity in hard exclu- sive electroproduction of pseudoscalar mesons, Eur. Phys. J. A47, 112 (2011)

[116]

P. Kroll, H. Moutarde, and F. Sabatie, From hard exclu- sive meson electroproduction to deeply virtual Compton scattering, Eur. Phys. J. C73(1), 2278 (2013)

[117]

A. Airapetian, , Measurement of azimuthal asym- metries with respect to both beam charge and transverse target polarization in exclusive electroproduction of real photons, JHEP06, 066 (2008)

[118]

G. R. Goldstein, J. O G. Hernandez, and S. Liuti, Flexible parametrization of generalized parton distributions: The chiral-odd sector, Phys. Rev. D91(11), 114013 (2015)

[119]

A. Kim, , Target and double spin asymmetries of deeply virtual π0 production with a longitudinally po- larized proton target and CLAS, Phys. Lett. B768, 168 (2017)

[120]

R. A. Khalek, J. J. Ethier, J. Rojo, and G. van Weelden, nNNPDF2.0: Quark flavor separation in nuclei from LHC data, JHEP09, 183 (2020)

[121]

K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Sal- gado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C77(3), 163 (2017)

[122]

M. Hirai, S. Kumano, and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncer- tainties in next-to-leading order, Phys. Rev. C76, 065207 (2007)

[123]

D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D85, 074028 (2012)

[124]

K. Kovarik, , nCTEQ15: Global analysis of nu- clear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D93(8), 085037 (2016)

[125]

H. Khanpour and S. A. Tehrani, Global analysis of nu- clear parton distribution functions and their uncertain- xt-to-next-to-leading order, Phys. Rev. D93(1), 014026 (2016)

[126]

M. Walt, I. Helenius, and W. Vogelsang, Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO, Phys. Rev. D100(9), 096015 (2019)

[127]

J. Ashman, , A measurement of the ratio of the nucleon structure function in copper and deuterium, Z. Phys. C57, 211 (1993)

[128]

V. Guzey, L. Zhu, C. E. Keppel, M. E. Christy, D. Gaskell, P. Solvignon, and A. Accardi, Impact of nuclear dependence of R=σL/σT on antishadowing in nuclear structure functions, Phys. Rev. C86, 045201 (2012)

[129]

B. Schmookler, , Modified structure of protons and neutrons in correlated pairs, Nature 566(7744), 354 (2019)

[130]

I. Borsa, G. Lucero, R. Sassot, E. C. Aschenauer, and S. Nunes, Revisiting helicity parton distributions at a future electron–ion collider, Phys. Rev. D102(9), 094018 (2020)

[131]

W. Cosyn, V. Guzey, M. Sargsian, M. Strikman, and C. Weiss, Electron–deuteron DIS with spectator tagging at EIC: Development of theoretical framework, EPJ Web Conf.112, 01022 (2016)

[132]

L. Frankfurt, V. Guzey, and M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nu- clei, Phys. Rep.512, 255 (2012)

[133]

M. Gyulassy and X.-N. Wang, Multiple collisions and in- duced gluon Bremsstrahlung in QCD, Nucl. Phys. B420, 583 (1994)

[134]

R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, Radiative energy loss and p⊥-broadening of high-energy partons in nuclei, Nucl. Phys. B484, 265 (1997)

[135]

M. Gyulassy, P. Levai, and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B594, 371 (2001)

[136]

B. G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark–gluon plasma, JETP Lett.65, 615 (1997)

[137]

X.-F. Guo and X.-N. Wang, Multiple scattering, par- ton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett.85, 3591 (2000)

[138]

A. Airapetian, , Hadronization in semi-inclusive deep-inelastic scattering on nuclei, Nucl. Phys. B780, 1 (2007)

[139]

M. A. Vasilev, , Parton energy loss limits and shad- owing in Drell–Yan dimuon production, Phys. Rev. Lett.83, 2304 (1999)

[140]

E. Wang and X.-N. Wang, Jet tomography of dense and nuclear matter, Phys. Rev. Lett.89, 162301 (2002)

[141]

N.-B. Chang, W.-T. Deng, and X.-N. Wang, Initial con- ditions for the modified evolution of fragmentation func- tions in the nuclear medium, Phys. Rev. C89(3), 034911 (2014)

[142]

H. Xing, Y. Guo, E. Wang, and X.-N. Wang, Parton en- ergy loss and modified beam quark distribution functions Yan process in p+A collisions, Nucl. Phys. A 879, 77 (2012)

[143]

F. Arleo, C.-J. Naïm, and S. Platchkov, Initial-state energy loss in cold QCD matter and the Drell–Yan process, JHEP01, 129 (2019)

[144]

A. Bialas, Attenuation of high-energy particles leptoproduced in nuclear matter, Acta Phys. Polon. B11, 475 (1980)

[145]

N. Akopov, L. Grigoryan, and Z. Akopov, Application of the two-scale model to the HERMES data on nuclear attenuation, Eur. Phys. J. C44, 219 (2005)

[146]

K. M. Burke, , Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C90(1), 014909 (2014)

[147]

P. Ru, Z.-B. Kang, E. Wang, H. Xing, and B.-W. Zhang, A global extraction of the jet transport coefficient in cold nuclear matter, arXiv: 1907.11808 (2019)

[148]

P. A. Zyla, (Particle Data Gruop), Review of particle properties, Prog. Theor. Exp. Phys.2020, 083C01 (2020)

[149]

R. L. Jaffe, Exotica, Phys. Rep.409, 1 (2005)

[150]

E. S. Swanson, The new heavy mesons: A status report, Phys. Rep.429, 243 (2006)

[151]

M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys.61, 455 (2008)

[152]

E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. experimental facts versus QCD inspired concepts, Phys. Rep.454, 1 (2007)

[153]

E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys.82, 1095 (2010)

[154]

N. Brambilla, , Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C71, 1534 (2011)

[155]

H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hiddencharm pentaquark and tetraquark states, Phys. Rep.639, 1 (2016)

[156]

A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP2016(6), 062C01 (2016)

[157]

R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavyquark QCD exotica, Prog. Part. Nucl. Phys.93, 143 (2017)

[158]

A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark Resonances, Phys. Rep.668, 1 (2017)

[159]

F.-K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys.90(1), 015004 (2018)

[160]

Y. Dong, A. Faessler, and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys.94, 282 (2017)

[161]

A. Ali, J. Sören Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys.97, 123 (2017)

[162]

S. L Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.90(1), 015003 (2018)

[163]

M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018)

[164]

C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A33(21), 1830018 (2018)

[165]

W. Altmannshofer, , The Belle II Physics Book, PTEP2019(12), 123C01 (2019) [Erratum: PTEP2020, 029201 (2020)]

[166]

A. Cerri, , Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC Volume 7, pp 867–1158 (2019)

[167]

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep.873, 1 (2020)

[168]

Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys.107, 237 (2019)

[169]

Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: A guide for practitioners, J. Phys. G47(5), 053001 (2020)

[170]

T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D72, 054026 (2005)

[171]

F.-K. Guo and Ulf-G. Meißner, Where is the χc0(2P)? Phys. Rev. D86, 091501 (2012)

[172]

M. Aghasyan, , Search for muoproduction of X(3872) at COMPASS and indication of a new state (3872), Phys. Lett. B 783, 334 (2018)

[173]

A. Ali, , First measurement of near-threshold J/ψ exclusive photoproduction off the proton, Phys. Rev. Lett. 123(7), 072001 (2019)

[174]

R. Aaij, , Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+→J/ψφK+ decays, Phys. Rev. Lett.118(2), 022003 (2017)

[175]

R. Aaij, , Observation of J/ψp resonances consistent with pentaquark states in Λb0→J/ψK−p decays, Phys. Rev. Lett.115, 072001 (2015)

[176]

R. Aaij, , Observation of a narrow pentaquark state, Pc (4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett.122(22), 222001 (2019)

[177]

R. Mizuk, , Observation of a new structure near 10.75 GeV in the energy dependence of the e+e→Y(nS+π (n = 1, 2, 3) cross sections, JHEP10, 220 (2019)

[178]

E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: The model, Phys. Rev. D17, 3090 (1978) [Erratum: Phys. Rev. D21, 313 (1980)]

[179]

E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: Comparison with experiment, Phys. Rev. D21, 203 (1980)

[180]

B. Gittelman, K. M. Hanson, D. Larson, E. Loh, A. Silverman, and G. Theodosiou, Photoproduction of the ψ(3100) meson at 11 GeV, Phys. Rev. Lett.35, 1616 (1975)

[181]

U. Camerini, J.G. Learned, R. Prepost, C. M. Spencer, D. E. Wiser, W. Ash, R. L. Anderson, D. Ritson, D. Sherden, and C. K. Sinclair, Photoproduction of the ψ particles, Phys. Rev. Lett.35, 483 (1975)

[182]

M. E. Binkley, , J/ψ photoproduction from 60 GeV/c to 300 GeV/c, Phys. Rev. Lett.48, 73 (1982)

[183]

B. H. Denby, , Inelastic and elastic photoproduction of J/ψ(3097), Phys. Rev. Lett.52, 795 (1984)

[184]

P. L. Frabetti, , A measurement of elastic J/ψ photoproduction cross-section at Fermilab E687, Phys. Lett. B316, 197 (1993)

[185]

C. Adloff, , Elastic photoproduction of J/ψ and Y mesons at HERA, Phys. Lett. B483, 23 (2000)

[186]

S. Chekanov, , Exclusive photoproduction of J/ψ mesons at HERA, Eur. Phys. J. C24, 345 (2002)

[187]

M. S. Atiya, , Evidence for the high-energy photoproduction of charmed mesons, Phys. Rev. Lett.43, 414 (1979)

[188]

A. R. Clark, , Cross-section measurements for charm production by muons and photons, Phys. Rev. Lett.45, 682 (1980)

[189]

J. J. Aubert, , Production of charmed particles in 250-GeV µ+-iron interactions, Nucl. Phys. B213, 31 (1983)

[190]

M. I. Adamovich, , Cross-sections and some features of charm photoproduction at γ energies of 20 GeV to 70 GeV, Phys. Lett. B187, 437 (1987)

[191]

O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψ-p scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94(7), 074001 (2016)

[192]

M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, Ulf-G Meißner, J. A. Oller, and Q. Wang, interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett.124(7), 072001 (2020)

[193]

J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N and Λ resonances with hidden charm above 4 GeV, Phys. Rev. Lett.105, 232001 (2010)

[194]

W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou,ΣcD¯ and ΛcD states in a chiral quark model, Phys. Rev. C84, 015203 (2011)

[195]

Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C36, 6 (2012)

[196]

J.-J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in coupled-channel models, Phys. Rev. C85, 044002 (2012)

[197]

C. W. Xiao, J. Nieves, and E. Oset, Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons, Phys. Rev. D88, 056012 (2013)

[198]

T. Uchino, W.-H. Liang, and E. Oset, Baryon states with hidden charm in the extended local hidden gauge approach, Eur. Phys. J. A 52(3), 43 (2016)

[199]

M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett.115(12), 122001 (2015)

[200]

X. Cao and J.-P. Dai, Confronting pentaquark photoproduction with new LHCb observations, Phys. Rev. D100(5), 054033 (2019)

[201]

Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D95(11), 114017 (2017)

[202]

Y.-H. Lin and B.-S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures, Phys. Rev. D100(5), 056005 (2019)

[203]

Y. Dong, P. Shen, F. Huang, and Z. Zhang, Selected strong decays of pentaquark State Pc(4312) in a chiral constituent quark model, Eur. Phys. J. C80(4), 341 (2020)

[204]

Y. Huang, J.-J. Xie, J. He, X. Chen, and H.-F. Zhang, Photoproduction of hidden-charm states in the γp→D¯*0Λc+ reaction near threshold, Chin. Phys. C40(12), 124104 (2016)

[205]

J.-J. Wu, T. S. H. Lee, and B.-S. Zou, Nucleon resonances with hidden charm in γp reactions, Phys. Rev. C100(3), 035206 (2019)

[206]

J. Breitweg, , Measurement of elastic Upsilon photoproduction at HERA, Phys. Lett. B437, 432 (1998)

[207]

S. Chekanov, , Exclusive photoproduction of upsilon mesons at HERA, Phys. Lett. B680, 4 (2009)

[208]

CMS Collaboration, Measurement of exclusive Y photoproduction in pPb collisions at SNN= 5.02 TeV (2016),

[209]

J. J. Aubert, , Observation of wrong sign trimuon events in 250-GeV muon–nucleon interactions, Phys. Lett. B106, 419 (1981)

[210]

C. Adloff, , Measurement of open beauty production at HERA, Phys. Lett. B467, 156 (1999) [Erratum: Phys. Lett. B518, 331 (2001)]

[211]

L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52(6), 158 (2016)

[212]

S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Photoproduction of charm near threshold, Phys. Lett. B498, 23 (2001)

[213]

E. Martynov, E. Predazzi, and A. Prokudin, A universal regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C 26, 271 (2002)

[214]

E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003)

[215]

Y. Xu, Y. Xie, R. Wang, and X. Chen, Estimation of Y(1S) production in ep process near threshold,Eur. Phys. J. C80(3), 283 (2020)

[216]

F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D92(7), 071502 (2015)

[217]

X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B757m, 231 (2016)

[218]

Q. Wang, C. Hanhart, and Q. Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett.111(13), 132003 (2013)

[219]

Q. Wang, C. Hanhart, and Q. Zhao, Systematic study of the singularity mechanism in heavy quarkonium decays, Phys. Lett. B725(1–3), 106 (2013)

[220]

A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, and A. P. Szczepaniak. Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B772, 200 (2017)

[221]

A. P. Szczepaniak, Triangle singularities and XYZ quarkonium peaks, Phys. Lett. B747, 410 (2015)

[222]

M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, and J. Nieves, Zc(3900): What has been really seen? Phys. Lett. B755, 337 (2016)

[223]

Q.-R. Gong, J.-L. Pang, Y.-F. Wang, and H.-Q. Zheng, The Zc(3900) peak does not come from the “triangle singularity” Eur. Phys. J. C78(4), 276 (2018)

[224]

F.-K. Guo, Triangle singularities and charmonium-like XYZ states, Nucl. Phys. Rev.37(3), 406 (2020)

[225]

S. X. Nakamura and K. Tsushima, Zc(4430) and Zc(4200) as triangle singularities, Phys. Rev. D100(5), 051502 (2019)

[226]

S. X. Nakamura, Triangle singularities in B¯0→χc1K−π+ relevant to Z1(4050) and Z2(4250), Phys. Rev. D100(1), 011504 (2019)

[227]

C Adolph, , Search for exclusive photoproduction of Zc±(3900) at COMPASS, Phys. Lett. B742, 330 (2015)

[228]

X.-H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D77, 094005 (2008)

[229]

J. He and X. Liu, Discovery potential for charmoniumlike state Y (3940) by the meson photoproduction, Phys. Rev. D80, 114007 (2009)

[230]

G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, Phys. Rev. C83, 065203 (2011)

[231]

Q.-Y. Lin, X. Liu, and H.-S. Xu, Charged charmoniumlike state Zc(3900)±, Phys. Rev. D88, 114009 (2013)

[232]

Q.-Y. Lin, X. Liu, and H.-S. Xu, Probing charmoniumlike state X(3915) through meson photoproduction, Phys. Rev. D89(3), 034016 (2014)

[233]

Y. Huang, J. He, H.-F. Zhang, and X.-R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G41(11), 115004 (2014)

[234]

Q. Wang, X.-H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc+(4380) and Pc+(4450), Phys. Rev. D92, 034022 (2015)

[235]

X.-Y. Wang, X.-R. Chen, and A. Guskov, Photoproduction of the charged charmoniumlike Zc+(4200), Phys. Rev. D92(9), 094017 (2015)

[236]

V. Kubarovsky and M. B. Voloshin, Formation of hiddencharm pentaquarks in photonnucleon collisions, Phys. Rev. D92(3), 031502 (2015)

[237]

M. Karliner and J. L. Rosner, Photoproduction of exotic baryon resonances, Phys. Lett. B752, 329 (2016)

[238]

A. N. H. Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ photoproduction off protons, Phys. Rev. D94(3), 034002 (2016)

[239]

Z. E. Meziani, , A search for the LHCb charmed “Pentaquark” using photo-production of J/ψ at threshold in hall C at Jefferson Lab, 9 (2016)

[240]

S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017:017 (2018)

[241]

E. Ya. Paryev and Yu. T. Kiselev, The role of hiddencharm pentaquark resonance Pc+(4450) in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A978, 201 (2018)

[242]

X.-Y. Wang, X.-R. Chen, and J. He, Possibility to study pentaquark states Pc(4312), Pc(4440), and Pc(4457) in γp→J/ψp reaction, Phys. Rev. D99(11), 114007 (2019)

[243]

V. P. Gonçalves and M. M. Jaime, Photoproduction of pentaquark states at the LHC, Phys. Lett. B805, 135447 (2020)

[244]

X.-Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and π−p scatterings, Phys. Rev. D101(3), 034032 (2020)

[245]

X. Cao, F.-K. Guo, Y.-T. Liang, J.-J. Wu, J.-J. Xie, Y.-P. Xie, Z. Yang, and B.-S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D101(7), 074010 (2020)

[246]

D. Winney, C. Fanelli, A. Pilloni, A. N. H. Blin, C. Fernández-Ramírez, M. Albaladejo, V. Mathieu, V. I. Mokeev, and A. P. Szczepaniak, Double polarization observables in pentaquark photoproduction, Phys. Rev. D100(3), 034019 (2019)

[247]

Y.-P. Xie, X. Cao, Y.-T. Liang, and X. Chen, Pentaquark Pc electroproduction in J/ψ+p channel in electron–proton collisions, arXiv: 2003.11729 [hep-ph] (2020)

[248]

E. Ya. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 [nucl-th] (2020)

[249]

Z. Yang, X. Cao, Y.-T. Liang, and J.-J. Wu, Identify the hidden charm pentaquark signal from non-resonant background in electron–proton scattering, Chin. Phys. C44(8), 084102 (2020)

[250]

M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak, XYZ spectroscopy at electron–hadron facilities: Exclusive processes, Phys. Rev. D102, 114010 (2020)

[251]

J.-J. Wu and B. S. Zou, Prediction of super-heavy N∗ and Λ∗ resonances with hidden beauty, Phys. Lett. B709, 70 (2012)

[252]

Y.-H. Lin, C.-W. Shen, and B.-S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018)

[253]

G. Yang, J. Ping, and J. Segovia, Hidden-bottom pentaquarks, Phys. Rev. D99(1), 014035 (2019)

[254]

J. Ferretti, E. Santopinto, M. N. Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hiddencharm and bottom pentaquarks and LHCb Pc(4380) and Pc (4450) states, Phys. Lett. B789, 562 (2019)

[255]

H. Huang and J. Ping, Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D99(1), 014010 (2019)

[256]

H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C76(11), 624 (2016)

[257]

C.-W. Shen, D. Rönchen, Ulf-G. Meißner, and B.-S. Zou, Exploratory study of possible resonances in heavy meson — heavy baryon coupled-channel interactions, Chin. Phys. C42(2), 023106 (2018)

[258]

C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A49, 139 (2013)

[259]

R. Aaij, (LHCb Collaboration), Study of the lineshape of the χc1(3872) state, Phys. Rev. D102, 092005

[260]

R. Aaij, (LHCb Collaboration), Study of the ψ2(3823) and χc1(3872) states in B+→(Jψπ+π−)K+ decays, JHEP08, 123 (2020)

[261]

R. Aaij, , Determination of the X(3872) meson quantum numbers, Phys. Rev. Lett.110, 222001 (2013)

[262]

S. K. Choi, , Observation of a narrow charmonium — like state in exclusive B±→K±π+π−J/ψ decays, Phys. Rev. Lett.91, 262001 (2003)

[263]

M. Ablikim, , Observation of a charged charmoniumlike structure in e+e−→π+π−J/ψ⁢  at⁢ s= 4.26GeV, Phys. Rev. Lett.110, 252001 (2013)

[264]

Z. Q. Liu, , Study of e+e−→π+π−J/ψ and observation of a charged charmoniumlike state at Belle, Phys. Rev. Lett.110, 252002 (2013) [Erratum: Phys. Rev. Lett.111, 019901 (2013)]

[265]

T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Zc±(3900) and evidence for the neutral Zc0(3900) in e+e−→ππJ/ψ⁢   at s= 4170 MeV, Phys. Lett. B727, 366 (2013)

[266]

V. M. Abazov, , Properties of Zc±(3900) produced in pp‾ collision, Phys. Rev. D100, 012005 (2019)

[267]

M. Ablikim, , Determination of the spin and parity of the Zc(3900), Phys. Rev. Lett.119(7), 072001 (2017)

[268]

M. Ablikim, , Observation of Zc(3900)0 in e+e−→π0π0J/ψ, Phys. Rev. Lett.115(11), 112003 (2015)

[269]

M. Lomnitz and S. Klein, Exclusive vector meson production at an electron–ion collider, Phys. Rev. C99(1), 015203 (2019)

[270]

Z. Yang, X. Yao, F.-K. Guo, and T. Mehen, Leptoproduction of hidden-charm exotic hadrons (2020) (in preparation)

[271]

C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, and C. Sabelli, Is the X(3872) production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett.103, 162001 (2009)

[272]

P. Artoisenet and E. Braaten, Estimating the production rate of loosely-bound hadronic molecules using event generators, Phys. Rev. D83, 014019 (2011)

[273]

F.-K. Guo, Ulf-G. Meißner, and W. Wang, Production of charged heavy quarkonium-like states at the LHC and the tevatron, Commun. Theor. Phys.61, 354 (2014)

[274]

F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, Production of the bottom analogs and the spin partner of the X(3872) at hadron colliders, Eur. Phys. J. C74(9), 3063 (2014)

[275]

M. Albaladejo, F.-K. Guo, C. Hanhart, Ulf-G. Meißner, J. Nieves, A. Nogga, and Z. Yang, Note on X(3872) production at hadron colliders and its molecular structure, Chin. Phys. C 41(12), 121001 (2017)

[276]

T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP05, 026 (2006)

[277]

M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. S. Sánchez, L.-S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett.122(24), 242001 (2019)

[278]

M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett.78B, 443 (1978)

[279]

C. D. Roberts, Perspective on the origin of hadron masses, Few Body Syst.58(1), 5 (2017)

[280]

C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C78(2), 120 (2018)

[281]

X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett.74, 1071 (1995)

[282]

X.-D. Ji, Breakup of hadron masses and energymomentum tensor of QCD, Phys. Rev. D52, 271 (1995)

[283]

Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett.121(21), 212001 (2018)

[284]

Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D94(5), 054503 (2016)

[285]

A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco, Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett.116(25), 252001 (2016)

[286]

G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and A. Sternbeck, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D93(9), 094504 (2016)

[287]

Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP12, 008 (2018)

[288]

K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP01, 120 (2019)

[289]

X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)

[290]

S. Rodini, A. Metz, and B. Pasquini, Mass sum rules of the electron in quantum electrodynamics, JHEP09, 067 (2020)

[291]

A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, Phys. Rev. D102(11), 114042 (2021)

[292]

B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012. 09443v1 [hep-ph]

[293]

J. Carlson, A. Jaffe, and A. Wiles (Eds.), The Millenium Prize Problems, American Mathematical Society, Providence, 2006

[294]

D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi130, 105 (1996)

[295]

D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C9,459 (1999)

[296]

R. Boussarie and Y. Hatta, QCD analysis of nearthreshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D101(11), 114004 (2020)

[297]

J. M. Laget and R. Mendez-Galain, Exclusive photoproduction and electroproduction of vector mesons at large momentum transfer, Nucl. Phys. A581, 397 (1995)

[298]

T. Horn and C. D. Roberts, The pion: An enigma within the Standard Model, J. Phys. G43(7), 073001 (2016)

[299]

J. Volmer, , Measurement of the charged pion electromagnetic form-factor, Phys. Rev. Lett.86, 1713 (2001)

[300]

T. Horn, , Determination of the charged pion form factor at Q2= 1.60 and 2.45 (GeV/c)2, Phys. Rev. Lett.97, 192001 (2006)

[301]

V. Tadevosyan, , Determination of the pion charge form-factor for Q2=0.60−1.60 GeV2, Phys. Rev. C75, 055205 (2007)

[302]

T. Horn, , Scaling study of the pion electroproduction cross sections and the pion form factor, Phys. Rev. C 78, 058201 (2008)

[303]

G. M. Huber, , Charged pion form-factor between Q2= 0.60GeV2 and 2.45 GeV2(II): Determination of, and results for, the pion form-factor, Phys. Rev. C78, 045203 (2008)

[304]

H. P. Blok, , Charged pion form factor between Q2=0.60 and 2.45 GeV2(I): Measurements of the cross section for the 1H(e, e′π+)n reaction, Phys. Rev. C78, 045202 (2008)

[305]

J. Badier, , Measurement of the K−/π− structure function ratio using the Drell–Yan process, Phys. Lett.93B, 354 (1980)

[306]

J. Badier, , Experimental determination of the π meson structure functions by the Drell–Yan mechanism, Z. Phys. C18, 281 (1983)

[307]

B. Betev, , Observation of anomalous scaling violation in muon pair production by 194 GeV/cπ tungsten interactions, Z. Phys. C28, 15 (1985)

[308]

S. Falciano, , Angular distributions of muon pairs produced by 194 GeV/c negative pions, Z. Phys. C31, 513 (1986)

[309]

M. Guanziroli, , Angular distributions of muon pairs produced by negative pions on deuterium and tungsten, Z. Phys. C37, 545 (1988)

[310]

J. S. Conway, , Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D39, 92 (1989)

[311]

J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K20 meson, Phys. Rev. Lett.13, 138 (1964)

[312]

A. C. Aguilar, , Pion and kaon structure at the electron–ion collider, Eur. Phys. J. A55(10), 190 (2019)

[313]

C. D. Roberts and S. M. Schmidt, Reflections upon the emergence of hadronic mass, arXiv: 2006.08782 (2020)

[314]

S. Chekanov, , Leading neutron production in e+p collisions at HERA, Nucl. Phys. B637, 3 (2002)

[315]

F. D. Aaron, , Measurement of leading neutron production in deep-inelastic scattering at HERA, Eur. Phys. J. C68, 381 (2010)

[316]

S.-X. Qin, C. Chen, C. Mezrag, and C. D. Roberts, Offshell persistence of composite pions and kaons, Phys. Rev. C97(1), 015203 (2018)

[317]

G. M. Huber, D. Gaskell, , Jefferson Lab Experiment E12-06-101 (2006)

[318]

T. Horn, G. M. Huber, , Scaling study of the L/Tseparated pion electroproduction cross section at 11 GeV, approved Jefferson Lab 12 GeV Experiment E12-07-105 (2007)

[319]

D. Adikaram, , Measurement of Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment E12-15-006 (2015)

[320]

J. Annand, , Measurement of kaon structure function through tagged deep inelastic scattering (TDIS), approved Jefferson Lab experiment C12-15-006A (2017)

[321]

D. Gaskell, , Jefferson Lab Experiment E12-19-006 (2019)

[322]

M. Guidal, J. M. Laget, and M. Vanderhaeghen, Pseudoscalar meson photoproduction at high-energies: From the Regge regime to the hard scattering regime, Phys. Lett. B400, 6 (1997)

[323]

M. Vanderhaeghen, M. Guidal, and J. M. Laget, Regge description of charged pseudoscalar meson electroproduction above the resonance region, Phys. Rev. C57, 1454 (1998)

[324]

T. K. Choi, K. J. Kong, and B. G. Yu, Pion and proton form factors in the Regge description of electroproduction p(e, e′π+)n, J. Korean Phys. Soc.67(7), 1089 (2015)

[325]

R. J. Perry, A. Kizilersü, and A. W. Thomas, An improved hadronic model for pion electroproduction, Phys. Lett. B807, 135581 (2020)

[326]

M. Gluck, E. Reya, and I. Schienbein, Pionic parton distributions revisited, Eur. Phys. J. C10, 313 (1999)

[327]

G. P. Lepage and S. J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B87, 359 (1979)

[328]

G. P. Lepage and S. J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157 (1980)

[329]

S. J. Brodsky, Light cone quantized QCD and novel hadron phenomenology, in: QCD light cone physics and hadron phenomenology, Proceedings, 10th Nuclear Summer School and Symposium, NuSS’97, Seoul, Korea, June 23–28, 1997, pp 1–64 (1997)

[330]

V. N. Gribov and L. N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15, 438 (1972) [Yad. Fiz.15, 781 (1972)]

[331]

G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B126, 298 (1977)

[332]

Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]

[333]

R. D. Field, Applications of Perturbative QCD, Volume 77 (1989)

[334]

D. Drijard, , Observation of charmed d meson production in pp collisions, Phys. Lett. B81, 250 (1979)

[335]

K. L. Giboni, , Diffractive production of the charmed baryon Λc+ at the CERN ISR, Phys. Lett. B85, 437 (1979)

[336]

W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, Evidence for Λc+ in inclusive pp→Λ°π+π+π−+X and pp→(K−π+p) +X at s= 53-GeV and 62-GeV, Phys. Lett. B85, 443 (1979)

[337]

D. Drijard, , Charmed baryon production at the cern intersecting storage rings, Phys. Lett. B85, 452 (1979)

[338]

H.M. Georgi, S. L. Glashow, M. E. Machacek, and D. V Nanopoulos, Charmed particles from two-gluon annihilation in proton proton collisions, Ann. Phys.114, 273 (1978)

[339]

S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B93, 451 (1980)

[340]

S. J. Brodsky, C. Peterson, and N. Sakai, Intrinsic heavy quark states, Phys. Rev. D23, 2745 (1981)

[341]

S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt, A review of the intrinsic heavy quark content of the nucleon, Adv. High Energy Phys.2015, 231547 (2015)

[342]

J. J. Aubert, , An experimental limit on the intrinsic charm component of the nucleon, Phys. Lett. B110, 73 (1982)

[343]

B. W. Harris, J. Smith, and R. Vogt, Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO, Nucl. Phys. B461, 181 (1996)

[344]

V. M. Abazov, , Measurement of γ+b+X and γ+c+Xproduction cross sections in pp‾ collisions at s= 1.96 TeV, Phys. Rev. Lett.102, 192002 (2009)

[345]

E. M Aitala, , Asymmetries in the production of Λc+ and Λc− baryons in 500-GeV/c π–nucleon interactions, Phys. Lett. B495, 42 (2000)

[346]

E. M. Aitala, , Differential cross-sections, charge production asymmetry, and spin density matrix elements for D∗±(2010) produced in 500-GeV/c π−–nucleon interactions, Phys. Lett. B539, 218 (2002)

[347]

C.-H. Chang, J.-P. Ma, C.-F. Qiao, and X.-G. Wu, Hadronic production of the doubly charmed baryon Ξcc+ with intrinsic charm, J. Phys. G34, 845 (2007)

[348]

G. Chen, X.-G. Wu, and S. Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D100(5), 054022 (2019)

[349]

G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, and H.-B. Fu, Hadronic production of Ξcc at a fixed-target experiment at the LHC, Phys. Rev. D89(7), 074020 (2014)

[350]

C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC: A generator for hadronic production of the double heavy baryons Ξcc,Ξbc ⁢ and⁢   Ξbb, Comput. Phys. Commun.177, 467 (2007)

[351]

C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc,Ξbc and Ξbb, Comput. Phys. Commun.181, 1144 (2010)

[352]

X.-Y. Wang and X.-G. Wu, GENXICC2.1: An improved version of genxicc for hadronic production of doubly heavy baryons, Comput. Phys. Commun.184, 1070 (2013)

[353]

X.-G. Wu, BCVEGPY and GENXICC for the hadronic production of the doubly heavy mesons and baryons, J. Phys. Conf. Ser.523, 012042 (2014)

[354]

S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rep.522, 239 (2013)

[355]

C. Hadjidakis, , A fixed-target programme at the LHC: Physics case and projected performances for heavyion, hadron, spin and astroparticle studies, Phys. Rep.911, 1 (2018)

[356]

J. P. Lansberg, , A fixed-target experiment at the LHC (AFTER@LHC): Luminosities, target polarisation and a selection of physics studies, PoS QNP2012, 049 (2012)

[357]

J. P. Lansberg, , Prospects for a fixed-target experiment at the LHC: AFTER@LHC, PoS ICHEP2012: 547 (2013)

[358]

J. P. Lansberg, , AFTER@LHC: A precision machine to study the interface between particle and nuclear physics, EPJ Web Conf.66, 11023 (2014)

[359]

G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D51, 1125 (1995)

[360]

R. Aaij, , Observation of the doubly charmed baryon Ξcc++, Phys. Rev. Lett.119(11), 112001 (2017)

[361]

R. Aaij, , Search for the doubly charmed baryon Ξcc+, Sci. China Phys. Mech. Astron.63(2), 221062 (2020)

[362]

M. Mattson, , First observation of the doubly charmed baryon Ξcc+, Phys. Rev. Lett. 89, 112001 (2002)

[363]

A. Ocherashvili, , Confirmation of the double charm baryon Ξcc+(3520) via its decay to pD+K−, Phys. Lett. B628, 18 (2005)

[364]

H.-W. Lin, , Parton distributions and lattice QCD calculations: A community white paper, Prog. Part. Nucl. Phys.100, 107 (2018)

[365]

S. Aoki, , FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C80(2), 113 (2020)

[366]

C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. V. Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett.119(14), 142002 (2017)

[367]

J. Liang, Y.-B. Yang, T. Draper, M. Gong, and K.-F. Liu, Quark spins and anomalous ward identity, Phys. Rev. D98(7), 074505 (2018)

[368]

H.-W. Lin, R. Gupta, B. Yoon, Y.-C. Jang, and T. Bhattacharya, Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. D98(9), 094512 (2018)

[369]

D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Evidence for polarization of gluons in the proton, Phys. Rev. Lett.113(1), 012001 (2014)

[370]

Y.-B. Yang, R. S. Sufian, A. Alexandru, T. Draper, M. J. Glatzmaier, K.-F. Liu, and Y. Zhao, Glue spin and helicity in the proton from lattice QCD, Phys. Rev. Lett.118(10), 102001 (2017)

[371]

Y.-B. Yang, A lattice story of proton spin, PoS LATTICE2018: 017 (2019)

[372]

R. L. Jaffe and A. Manohar, The G(1) problem: fact and fantasy on the spin of the proton, Nucl. Phys. B337, 509 (1990)

[373]

M. Deka, , Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D91(1), 014505 (2015)

[374]

C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos, and G. Spanoudes, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D101(9), 094513 (2020)

[375]

M. Engelhardt, J. Green, N. Hasan, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, and S. Syritsyn, Quark orbital angular momentum in the proton evaluated using a direct derivative method, PoS LATTICE2018:115 (2018)

[376]

M. Engelhardt, Quark orbital dynamics in the proton from Lattice QCD — from Ji to Jaffe–Manohar orbital angular momentum, Phys. Rev. D95(9), 094505 (2017)

[377]

X. Ji, Parton physics on a euclidean lattice, Phys. Rev. Lett.110, 262002 (2013)

[378]

Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D98(7), 074021 (2018)

[379]

A. Radyushkin, Nonperturbative evolution of parton quasi-distributions, Phys. Lett. B767, 314 (2017)

[380]

X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, largemomentum effective theory, arXiv: 2004.03543 (2020)

[381]

H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao, Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett.121(24), 242003 (2018)

[382]

C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett.121(11), 112001 (2018)

[383]

C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D98(9), 091503 (2018)

[384]

J. Liang, M. Sun, Y.-B. Yang, T. Draper, and K.-F. Liu, Ratio of strange to u/d momentum fraction in disconnected insertions, Phys. Rev. D102(3), 034514 (2020)

[385]

J.-W. Chen, H.-W. Lin, and J.-H. Zhang, Pion generalized parton distribution from lattice QCD, Nucl. Phys. B952, 114940 (2020)

[386]

X. Ji, Y. Liu, and Y.-S. Liu, Transverse-momentumdependent PDFs from large-momentum effective theory, arXiv: 1911.03840 (2019)

[387]

P. Shanahan, M. Wagman, and Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD, Phys. Rev. D102, 014511

[388]

Q.-A. Zhang, , Lattice-QCD calculations of TMD soft function through large-momentum effective theory, arXi: 2005.14572, (2020)

[389]

A. C. Benvenuti, , Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B189(4), 483 (1987)

[390]

W. Detmold, M.Illa, D. J. Murphy, P. Oare, K. Orginos, P. E. Shanahan, M. L. Wagman, and F. Winter, Lattice QCD constraints on the parton distribution functions of 3He, arXiv: 2009.05522 (2020)

[391]

T. Yamazaki, Y. Kuramashi, and A. Ukawa, Helium nuclei in quenched lattice QCD, Phys. Rev. D81, 111504 (2010)

[392]

T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki, Systematics of the HAL QCD potential at low energies in lattice QCD, Phys. Rev. D99(1), 014514 (2019)

[393]

M. Luscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B354, 531 (1991)

[394]

L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and D. G. Richards, Excited and exotic charmonium spectroscopy from lattice QCD, JHEP07, 126 (2012)

[395]

S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Study of the Zc+ channel using lattice QCD, Phys. Rev. D91(1), 014504 (2015)

[396]

Y. Chen, , Low-energy scattering of the (DD‾∗)± system and the resonance-like structure Zc(3900), Phys. Rev. D89(9), 094506 (2014)

[397]

Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki, Fate of the tetraquark candidate Zc(3900) from lattice QCD, Phys. Rev. Lett.117(24), 242001 (2016)

[398]

M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator, Phys. Rev. C68, 015203 (2003)

[399]

P. O. Bowman, Urs M. Heller, D. B. Leinweber, M. B. Parappilly, A. G. Williams, and J.-B. Zhang, Unquenched quark propagator in Landau gauge, Phys. Rev. D71, 054507 (2005)

[400]

M. S. Bhagwat and P. C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators, AIP Conf. Proc.842(1), 225 (2006)

[401]

P. Maris, C. D. Roberts, and P. C. Tandy, Pion mass and decay constant, Phys. Lett. B420, 267 (1998)

[402]

S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Ward–Green–Takahashi identities and the axial-vector vertex, Phys. Lett. B733, 202 (2014)

[403]

D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations, Phys. Rev. D93(9), 096010 (2016)

[404]

C. D. Roberts, Three lectures on hadron physics, J. Phys. Conf. Ser.706(2), 022003 (2016)

[405]

G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic threequark bound states, Prog. Part. Nucl. Phys.91, 1 (2016)

[406]

V. D. Burkert and C. D. Roberts, Roper resonance: Toward a solution to the fifty year puzzle, Rev. Mod. Phys.91(1), 011003 (2019)

[407]

S.-X. Qin and C. D. Roberts, Impressions of the continuum bound state problem in QCD, arXiv: 2008.07629 (2020)

[408]

Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C. D Roberts, J. Rodríguez-Quintero, J. Segovia, and S. Zafeiropoulos, Effective charge from lattice QCD, Chin. Phys. C44(8), 083102 (2020)

[409]

C. D Roberts, Insights into the origin of mass, in: 27th International Nuclear Physics Conference (INPC 2019) Glasgow, Scotland, United Kingdom, July 29–August 2, 2019 (2019)

[410]

A. V. Efremov and A. V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD, Phys. Lett.94B, 245 (1980)

[411]

F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and Peter C. Tandy. Exposing strangeness: Projections for kaon electromagnetic form factors, Phys. Rev. D96(3), 034024 (2017)

[412]

Z. F. Ezawa, Wide-angle scattering in softened field theory, Nuovo Cim. A23, 271 (1974)

[413]

G. R. Farrar and D. R. Jackson, Pion and nucleon structure functions near x = 1, Phys. Rev. Lett.35, 1416 (1975)

[414]

E. L. Berger and S. J. Brodsky, Quark structure functions of mesons and the Drell–Yan process, Phys. Rev. Lett.42, 940 (1979)

[415]

R. J. Holt and C. D. Roberts, Distribution functions of the nucleon and pion in the valence region, Rev. Mod. Phys.82, 2991 (2010)

[416]

M. B. Hecht, C. D. Roberts, and S. M. Schmidt, Valence quark distributions in the pion, Phys. Rev. C63, 025213 (2001)

[417]

K. Wijesooriya, P. E.Reimer, and R. J.Holt, The pion parton distribution function in the valence region, Phys. Rev. C72, 065203 (2005)

[418]

M. Aicher, A. Schafer, and W. Vogelsang, Soft-gluon resummation and the valence parton distribution function of the pion, Phys. Rev. Lett.105, 252003 (2010)

[419]

M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Drawing insights from pion parton distributions, Chin. Phys.44(3), 031002 (2020)

[420]

M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D101(5), 054014 (2020)

[421]

P. C. Barry, N. Sato, W. Melnitchouk, and C.-R. Ji, First Monte Carlo global QCD analysis of pion parton distributions, Phys. Rev. Lett.121(15), 152001 (2018)

[422]

J.-H. Zhang, J.-W. Chen, L. Jin, H.-W Lin, A. Schäfer, and Y. Zhao, First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function, Phys. Rev. D100(3), 034505 (2019)

[423]

M. Oehm, C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou, B. Kostrzewa, F. Steffens, C. Urbach, and S. Zafeiropoulos, 〈x〉 and 〈x2〉 of the pion PDF from lattice QCD with Nf= 2+ 1+ 1 dynamical quark flavors, Phys. Rev. D99(1), 014508 (2019)

[424]

N. Karthik, T. Izubichi, L. Jin, C. Kallidonis, S. Mukherjee, P. Petreczky, C. Shugert, and S. Syritsyn, Renormalized quasi parton distribution function of pion, PoS LATTICE2018:109 (2019)

[425]

R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and D. G. Richards, Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D99(7), 074507 (2019)

[426]

L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, and P. C. Tandy, Imaging dynamical chiral symmetry breaking: Pion wave function on the light front, Phys. Rev. Lett.110(13), 132001 (2013)

[427]

P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling, Parton distributions for the pion extracted from Drell–Yan and prompt photon experiments, Phys. Rev. D45, 2349 (1992)

[428]

B. Adams, , Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS, arXiv: 1808.00848V6 (2018)

[429]

W.-C. Chang, J.-C. Peng, S. Platchkov, and T. Sawada, Constraining gluon density of pions at large x by pioninduced J/ψ production, Phys. Rev. D102, 054024

[430]

J. T. Londergan, G. Q. Liu, E. N. Rodionov, and A. W. Thomas, Probing the pion sea with π-D Drell–Yan processes, Phys. Lett. B361, 110 (1995)

[431]

Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon parton distributions: Revealing Higgs modulation of emergent mass, arXiv: 2006.14075 (2020)

[432]

Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon and pion parton distributions, Eur. Phys. J. C80(11), 1064 (2020)

[433]

X. Chen, F.-K. Guo, C. D. Roberts, and R. Wang, Selected science opportunities for the EicC, Few Body Syst.61(4), 43 (2020)

[434]

Q.-W. Wang, S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation, Phys. Rev. D98(5), 054019 (2018)

[435]

C. D. Roberts, R. J. Holt, and S. M. Schmidt, Nucleon spin structure at very high x, Phys. Lett. B727, 249 (2013)

[436]

C. Mezrag, L. Chang, H. Moutarde, C. D. Roberts, J. Rodríguez-Quintero, F. Sabatié, and S. M. Schmidt, Sketching the pion’s valence-quark generalised parton distribution, Phys. Lett. B741, 190 (2015)

[437]

C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, From Bethe–Salpeter wave functions to generalised parton distributions, Few Body Syst.57(9), 729 (2016)

[438]

N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities, Phys. Lett. B780, 287 (2018)

[439]

S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong, Pion and kaon valence-quark parton quasidistributions, Phys. Rev. D97(9), 094014 (2018)

[440]

C. Shi and I. C. Cloët, Intrinsic transverse motion of the pion’s valence quarks, Phys. Rev. Lett.122(8), 082301 (2019)

[441]

R. D. Field and R. P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B136, 1 (1978)

[442]

I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin, , Polarized proton collider at RHIC, Nuclear Instruments and Methods in Physics Research Section A499(2–3), 392 (2003)

[443]

L. J. Mao, J. C. Yang, J. W. Xia, X. D. Yang, Y. J. Yuan, J. Li, X. M. Ma, T. L. Yan, D. Y. Yin, W. P. Chai, , Electron cooling system in the booster synchrotron of the HIAF project, Nuclear Instruments and Methods in Physics Research Section A786, 91 (2015)

[444]

A. Zelenski, Review of polarized ion sources, Review of Scientific Instruments81(2), 02B308 (2010)

[445]

E. Tsentalovich, J. Bessuille, E. Ihloff, J. Kelsey, R. Redwine, and C. Vidal, High intensity polarized electron source, Nuclear Instruments and Methods in Physics Research Section A947, 162734 (2019)

[446]

D. W. Higinbotham, Electron spin precession at CEBAF, AIP Conf. Proc.1149(1), 751 (2009)

[447]

U. Fano, Remarks on the classical and quantummechanical treatment of partial polarization, JOSA39(10), 859 (1949)

[448]

J. R. Johnson, R. Prepost, D. E. Wiser, J. J. Murray, R. F. Schwitters, and C. K. Sinclair, Beam polarization measurements at the spear storage ring, Nuclear Instruments and Methods in Physics Research204(2–3), 261 (1983)

[449]

S. Abeyratne, A. Accardi, S. Ahmed, D. Barber, J. Bisognano, A. Bogacz, A. Castilla, P. Chevtsov, S. Corneliussen, W. Deconinck, , Science requirements and conceptual design for a polarized medium energy electron–ion collider at Jefferson lab, arXiv: 1209.0757 (2012)

[450]

K. Akai and Y. Morita, New design of crab cavity for superkekb, in: Proceedings of the 2005 Particle Accelerator Conference, pp 1129–1131, IEEE (2005)

[451]

T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun.135, 238 (2001)

[452]

N. Minafra, Beam impedance optimization of the TOTEM roman pots, in: 6th International Particle Accelerator Conference, p. MOPJE064 (2015)

[453]

M. Steigerwald, MeV Mott polarimetry at Jefferson lab, AIP Conf. Proc.570(1), 935 (2001)

[454]

M. Hauger, , A high precision polarimeter, Nucl. Instrum. Meth. A462, 382 (2001)

[455]

J. A. Magee, A. Narayan, D. Jones, R. Beminiwattha, J. C. Cornejo, , A novel comparison of moller and compton electron–beam polarimeters, Phys. Lett. B766, 339 (2017)

[456]

I. Nakagawa, I. Alekseev, A. Bravar, G. Bunce, S. Dhawan, K. O. Eyser, R. Gill, W. Haeberli, H. Huang, O. Jinnouchi, Y. Makdisi, A. Nass, H. Okada, E. Stephenson, D. Svirida, T. Wise, J. Wood, and A. Zelenski, Polarization measurements of RHIC‐pp RUN05 using CNI pC‐polarimeter, AIP Conf. Proc.915(1), 912 (2007)

[457]

I. G. Alekseev, A. Bravar, G. Bunce, , Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target, Phys. Rev. D79, 094014 (2009)

[458]

G. Contin, The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance, Nucl. Instrum. Meth. A831, 7 (2016)

[459]

R. Dupré, S. Stepanyan, M. Hattawy, N. Baltzell, K. Hafidi, M. Battaglieri, S. Bueltmann, A. Celentano, R. De Vita, A. El Alaoui, L. El Fassi, H. Fenker, K. Kosheleva, S. Kuhn, P. Musico, S. Minutoli, M. Oliver, Y. Perrin, B. Torayev, and E. Voutier, A radial time projection chamber for α detection in CLAS at Jlab, Nuclear Instruments and Methods in Physics Research Section A898, 90 (2018)

[460]

F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research Section A805, 2 (2016), Special issue in memory of G. F. Knoll

[461]

W. Erni, , Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) straw tube tracker, Eur. Phys. J. A49, 25 (2013)

[462]

M. Ablikim, , Design and construction of the BESIII detector, Nuclear Instruments and Methods in Physics Research Section A614(3), 345 (2010)

[463]

Y.Van Haarlem, , The GlueX central drift chamber: design and performance, Nucl. Instrum. Meth. A622, 142 (2010)

[464]

J. Smyrski. Overview of the panda experiment, Physic Procedia 37, 85 (2012), Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011)

[465]

L. Barion, , RICH detectors development for hadron identification at EIC: design, prototyping and reconstruction algorithm, JINST15(02), C02040 (2020)

[466]

I. Adam, , The dirc particle identification system for the BaBar experiment, Nuclear Instruments and Methods in Physics Research Section A538(1), 281 (2005)

[467]

A. Ali, F. Barbosa, J. Bessuille, E. Chudakov, R. Dzhygadlo, C. Fanelli, J. Frye, J. Hardin, A. Hurley, G. Kalicy, J. Kelsey, W. Li, M. Patsyuk, C. Schwarz, J. Schwiening, M. Shepherd, J. R. Stevens, T. Whitlatch, M. Williams, and Y. Yang, The Gluex DIRC program, Journal of Instrumentation15(04), C04054 (2020)

RIGHTS & PERMISSIONS

The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (11129KB)

7853

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/