Simultaneous analysis of three-dimensional percolation models

Xiao Xu1, Junfeng Wang1,2, Jian-Ping Lv3(), Youjin Deng1()

PDF(326 KB)
PDF(326 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (1) : 113-119. DOI: 10.1007/s11467-013-0403-z

Simultaneous analysis of three-dimensional percolation models

  • Xiao Xu1, Junfeng Wang1,2, Jian-Ping Lv3(), Youjin Deng1()
Author information +
History +

Abstract

We simulate the bond and site percolation models on several three-dimensional lattices, including the diamond, body-centered cubic, and face-centered cubic lattices. As on the simple-cubic lattice [Phys. Rev. E, 2013, 87(5): 052107], it is observed that in comparison with dimensionless ratios based on cluster-size distribution, certain wrapping probabilities exhibit weaker finite-size corrections and are more sensitive to the deviation from percolation threshold pc, and thus provide a powerful means for determining pc. We analyze the numerical data of the wrapping probabilities simultaneously such that universal parameters are shared by the aforementioned models, and thus significantly improved estimates of pc are obtained.

Graphical abstract

Keywords

percolation models / Monto Carlo simulation / simultaneous fit

Cite this article

Download citation ▾
Xiao Xu, Junfeng Wang, Jian-Ping Lv, Youjin Deng. Simultaneous analysis of three-dimensional percolation models. Front. Phys., 2014, 9(1): 113‒119 https://doi.org/10.1007/s11467-013-0403-z

References

[1] S. R. Broadbent and J. M. Hammersley, Percolation processes, Proc. Camb. Philos. Soc , 1957, 53(03): 62910.1017/S0305004100032680
[2] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Ed., London: Taylor & Francis, 1994
[3] G. R. Grimmett, Percolation, 2nd Ed., Berlin: Springer, 1999
[4] B. Bollobás and O. Riordan, Percolation, Cambridge: Cambridge University Press, 200610.1017/CBO9781139167383
[5] B. Nienhuis, Coulomb gas formulation of two-dimensional phase transitions, in: Phase Transition and Critical Phenomena , Vol. 11, edited by C. Domb, M. Green, and J. L. Lebowitz, London: Academic Press, 1987
[6] J. L. Cardy, Conformal invariance, in: Phase Transition and Critical Phenomena , Vol. 11, edited by C. Domb, M. Green, and J. L. Lebowitz, London: Academic Press, 1987
[7] S. Smirnov and W. Werner, Critical exponents for twodimensional percolation, Math. Res. Lett. , 2001, 8(6): 72910.4310/MRL.2001.v8.n6.a4
[8] J. W. Essam, Percolation and cluster size, in: Phase Transition and Critical Phenomena, Vol. 2, edited by C. Domb and M. S. Green, New York: Academic Press, 1972
[9] X. Feng, Y. Deng, and H. W. J.Bl?te, Percolation transitions in two dimensions, Phys. Rev. E , 2008, 78(3): 031136– and references therein10.1103/PhysRevE.78.031136
[10] C. Ding, Z. Fu, W. Guo, and F. Y. Wu, Critical frontier of the Potts and percolation models on riangular-type and kagome-type lattices (II): Numerical analysis, Phys. Rev. E , 2010, 81(6): 061111– and references therein10.1103/PhysRevE.81.061111
[11] G. Toulouse, Perspectives from the theory of phase transitions, Nuovo Cimento Soc. Ital. Fis. B , 1974, 23(1): 23410.1007/BF02737507
[12] M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation models, J. Stat. Phys. , 1984, 36(1-2): 10710.1007/BF01015729
[13] T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions, Commun. Math. Phys. , 1990, 128(2): 33310.1007/BF02108785
[14] J. Wang, Z. Zhou, W. Zhang, T. M. Garoni, and Y. Deng, Bond and site percolation in three dimensions, Phys. Rev. E , 2013, 87(5): 05210710.1103/PhysRevE.87.052107
[15] Y. Deng and H. W. J.Bl?te, Simultaneous analysis of several models in the three-dimensional Ising universality class, Phys. Rev. E , 2003, 68(3): 03612510.1103/PhysRevE.68.036125
[16] Y. Deng and H. W. J.Bl?te, Monte Carlo study of the sitepercolation model in two and three dimensions, Phys. Rev. E , 2005, 72(1): 01612610.1103/PhysRevE.72.016126
[17] S. C. van der Marck, Calculation of percolation thresholds in high dimensions for FCC, BCC and diamond lattices, Int. J. Mod. Phys. C , 1998, 09(04): 52910.1142/S0129183198000431
[18] A. Silverman and J. Adler, Site-percolation threshold for a diamond lattice with diatomic substitution, Phys. Rev. B , 1990, 42(2): 136910.1103/PhysRevB.42.1369
[19] V. A. Vyssotsky, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, Critical percolation probabilities (Bond problem), Phys. Rev. , 1961, 123: 156610.1103/PhysRev.123.1566
[20] C. D. Lorenz and R. M. Ziff, Universality of the excess number of clusters and the crossing probability function in threedimensional percolation, J. Phys. A , 1998, 31(40): 814710.1088/0305-4470/31/40/009
[21] C. D. Lorenz and R. M. Ziff, Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices, Phys. Rev. E , 1998, 57(1): 23010.1103/PhysRevE.57.230
[22] R. M. Bradley, P. N. Strenski, and J. M. Debierre, Surfaces of percolation clusters in three dimensions, Phys. Rev. B , 1991, 44(1): 7610.1103/PhysRevB.44.76
[23] D. S. Gaunt and M. F. Sykes, Series study of random percolation in three dimensions, J. Phys. A , 1983, 16(4): 78310.1088/0305-4470/16/4/016
[24] R. M. Ziff, S. R. Finch, and V. S. Adamchik, Universality of finite-size corrections to the number of critical percolation clusters, Phys. Rev. Lett. , 1997, 79(18): 344710.1103/PhysRevLett.79.3447
AI Summary AI Mindmap
PDF(326 KB)

Accesses

Citations

Detail

Sections
Recommended

/