[1] S. R. Broadbent and J. M. Hammersley, Percolation processes,
Proc. Camb. Philos. Soc , 1957, 53(03): 629
10.1017/S0305004100032680
[2] D. Stauffer and A. Aharony, Introduction to Percolation Theory,
2nd Ed.,
London:
Taylor & Francis, 1994
[3] G. R. Grimmett, Percolation,
2nd Ed.,
Berlin:
Springer, 1999
[4] B. Bollobás and O. Riordan, Percolation,
Cambridge:
Cambridge University Press, 2006
10.1017/CBO9781139167383
[5] B. Nienhuis, Coulomb gas formulation of two-dimensional phase transitions, in:
Phase Transition and Critical Phenomena ,
Vol. 11, edited by C. Domb, M. Green, and J. L. Lebowitz,
London:
Academic Press, 1987
[6] J. L. Cardy, Conformal invariance, in:
Phase Transition and Critical Phenomena ,
Vol. 11, edited by C. Domb, M. Green, and J. L. Lebowitz,
London:
Academic Press, 1987
[7] S. Smirnov and W. Werner, Critical exponents for twodimensional percolation,
Math. Res. Lett. , 2001, 8(6): 729
10.4310/MRL.2001.v8.n6.a4
[8] J. W. Essam, Percolation and cluster size, in: Phase Transition and Critical Phenomena,
Vol. 2, edited by C. Domb and M. S. Green,
New York:
Academic Press, 1972
[9] X. Feng, Y. Deng, and H. W. J.Bl?te, Percolation transitions in two dimensions,
Phys. Rev. E , 2008, 78(3): 031136– and references therein
10.1103/PhysRevE.78.031136
[10] C. Ding, Z. Fu, W. Guo, and F. Y. Wu, Critical frontier of the Potts and percolation models on riangular-type and kagome-type lattices (II): Numerical analysis,
Phys. Rev. E , 2010, 81(6): 061111– and references therein
10.1103/PhysRevE.81.061111
[11] G. Toulouse, Perspectives from the theory of phase transitions,
Nuovo Cimento Soc. Ital. Fis. B , 1974, 23(1): 234
10.1007/BF02737507
[12] M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation models,
J. Stat. Phys. , 1984, 36(1-2): 107
10.1007/BF01015729
[13] T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions,
Commun. Math. Phys. , 1990, 128(2): 333
10.1007/BF02108785
[14] J. Wang, Z. Zhou, W. Zhang, T. M. Garoni, and Y. Deng, Bond and site percolation in three dimensions,
Phys. Rev. E , 2013, 87(5): 052107
10.1103/PhysRevE.87.052107
[15] Y. Deng and H. W. J.Bl?te, Simultaneous analysis of several models in the three-dimensional Ising universality class,
Phys. Rev. E , 2003, 68(3): 036125
10.1103/PhysRevE.68.036125
[16] Y. Deng and H. W. J.Bl?te, Monte Carlo study of the sitepercolation model in two and three dimensions,
Phys. Rev. E , 2005, 72(1): 016126
10.1103/PhysRevE.72.016126
[17] S. C. van der Marck, Calculation of percolation thresholds in high dimensions for FCC, BCC and diamond lattices,
Int. J. Mod. Phys. C , 1998, 09(04): 529
10.1142/S0129183198000431
[18] A. Silverman and J. Adler, Site-percolation threshold for a diamond lattice with diatomic substitution,
Phys. Rev. B , 1990, 42(2): 1369
10.1103/PhysRevB.42.1369
[19] V. A. Vyssotsky, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, Critical percolation probabilities (Bond problem),
Phys. Rev. , 1961, 123: 1566
10.1103/PhysRev.123.1566
[20] C. D. Lorenz and R. M. Ziff, Universality of the excess number of clusters and the crossing probability function in threedimensional percolation,
J. Phys. A , 1998, 31(40): 8147
10.1088/0305-4470/31/40/009
[21] C. D. Lorenz and R. M. Ziff, Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices,
Phys. Rev. E , 1998, 57(1): 230
10.1103/PhysRevE.57.230
[22] R. M. Bradley, P. N. Strenski, and J. M. Debierre, Surfaces of percolation clusters in three dimensions,
Phys. Rev. B , 1991, 44(1): 76
10.1103/PhysRevB.44.76
[23] D. S. Gaunt and M. F. Sykes, Series study of random percolation in three dimensions,
J. Phys. A , 1983, 16(4): 783
10.1088/0305-4470/16/4/016
[24] R. M. Ziff, S. R. Finch, and V. S. Adamchik, Universality of finite-size corrections to the number of critical percolation clusters,
Phys. Rev. Lett. , 1997, 79(18): 3447
10.1103/PhysRevLett.79.3447