A new form of liquid matter: Quantum droplets

Zhi-Huan Luo, Wei Pang, Bin Liu, Yong-Yao Li, Boris A. Malomed

PDF(2207 KB)
PDF(2207 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 32201. DOI: 10.1007/s11467-020-1020-2
REVIEW ARTICLE
REVIEW ARTICLE

A new form of liquid matter: Quantum droplets

Author information +
History +

Abstract

This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) selftrapped states in Bose–Einstein condensates (BECs), which are stabilized by effective self-repulsion induced by quantum fluctuations around the mean-field (MF) states [alias the Lee–Huang–Yang (LHY) effect]. The basic models are presented, taking special care of the dimension crossover, 2D→3D. Recently reported experimental results, which exhibit stable 3D and quasi-2D QDs in binary BECs, with the inter-component attraction slightly exceeding the MF self-repulsion in each component, and in single-component condensates of atoms carrying permanent magnetic moments, are presented in some detail. The summary of theoretical results is focused, chiefly, on 3D and quasi-2D QDs with embedded vorticity, as the possibility to stabilize such states is a remarkable prediction. Stable vortex states are presented both for QDs in free space, and for singular but physically relevant 2D modes pulled to the center by the inverse-square potential, with the quantum collapse suppressed by the LHY effect.

Keywords

quantum droplet / Bose–Einstein condensate / Lee–Huang–Yang correction / votex state

Cite this article

Download citation ▾
Zhi-Huan Luo, Wei Pang, Bin Liu, Yong-Yao Li, Boris A. Malomed. A new form of liquid matter: Quantum droplets. Front. Phys., 2021, 16(3): 32201 https://doi.org/10.1007/s11467-020-1020-2

References

[1]
B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, Spatiotemporal optical solitons, J. Optics B 7(5), R53 (2005); B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics, J. Phys. At. Mol. Opt. Phys. 49(17), 170502 (2016)
CrossRef ADS Google scholar
[2]
B. A. Malomed, Multidimensional solitons: Wellestablished results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507 (2016)
CrossRef ADS Google scholar
[3]
D. Mihalache, Multidimensional localized structures in optical and matter-wave media: A topical survey of recent literature, Rom. Rep. Phys. 69, 403 (2017)
[4]
Y. Kartashov, G. Astrakharchik, B. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1(3), 185 (2019)
CrossRef ADS Google scholar
[5]
B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)
CrossRef ADS Google scholar
[6]
M. W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, and D. S. Hall, Observation of Dirac monopoles in a synthetic magnetic field, Nature 505(7485), 657 (2014)
CrossRef ADS Google scholar
[7]
E. Radu and M. S. Volkov, Stationary ring solitons in field theory — knots and vortons, Phys. Rep. 468(4), 101 (2008)
CrossRef ADS Google scholar
[8]
K. Tiurev, T. Ollikainen, P. Kuopanportti, M. Nakahara, D. S. Hall, and M. Möttönen, Three-dimensional skyrmions in spin-2 Bose–Einstein condensates, New J. Phys. 20(5), 055011 (2018)
CrossRef ADS Google scholar
[9]
Y. V. Kartashov, B. A. Malomed, Y. Shnir, and L. Torner, Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity, Phys. Rev. Lett. 113(26), 264101 (2014)
CrossRef ADS Google scholar
[10]
I. I. Smalyukh, Review: Knots and other new topological effects in liquid crystals and colloids, Rep. Prog. Phys. 83(10), 106601 (2020)
CrossRef ADS Google scholar
[11]
V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Solitons: The Inverse Scattering Method, Moscow: Nauka Publishers, 1980; New York: Consultants Bureau, 1984 (English translation)
CrossRef ADS Google scholar
[12]
G. Fibich, The Nonlinear Schrdinger Equation: Singular Solutions and Optical Collapse, Heidelberg: Springer, 2015
CrossRef ADS Google scholar
[13]
D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
CrossRef ADS Google scholar
[14]
C. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
CrossRef ADS Google scholar
[15]
P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
CrossRef ADS Google scholar
[16]
G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets of atomic mixtures in free space? Phys. Rev. Lett. 120(23), 235301 (2018)
CrossRef ADS Google scholar
[17]
G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M. Inguscio, A. Gallemi, A. Recati, and M. Fattori, Collisions of self-bound quantum droplets,Phys. Rev. Lett. 122(9), 090401 (2019)
CrossRef ADS Google scholar
[18]
C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Research 1(3), 033155 (2019)
CrossRef ADS Google scholar
[19]
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
CrossRef ADS Google scholar
[20]
H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, Observing the Rosenzweig instability of a quantum ferrofluid, Nature 530(7589), 194 (2016)
CrossRef ADS Google scholar
[21]
I. Ferrier-Barbut, M. Schmitt, M. Wenzel, H. Kadau, and T. Pfau, Liquid quantum droplets of ultracold magnetic atoms, J. Phys. B 49(21), 214004 (2016)
CrossRef ADS Google scholar
[22]
M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)
CrossRef ADS Google scholar
[23]
F. Böttcher, M. Wenzel, J. N. Schmidt, M. Guo, T. Langen, I. Ferrier-Barbut, T. Pfau, R. Bombín, J. Sánchez- Baena, J. Boronat, and F. Mazzanti, Dilute dipolar quantum droplets beyond the extended Gross–Pitaevskii equation, Phys. Rev. Research 1(3), 033088 (2019)
CrossRef ADS Google scholar
[24]
I. Ferrier-Barbut, M. Wenzel, F. Böttcher, T. Langen, M. Isoard, S. Stringari, and T. Pfau, Scissors mode of dipolar quantum droplets of dysprosium atoms, Phys. Rev. Lett. 120(16), 160402 (2018)
CrossRef ADS Google scholar
[25]
I. Ferrier-Barbut, M. Wenzel, M. Schmitt, F. Böttcher, and T. Pfau, Onset of a modulational instability in trapped dipolar Bose–Einstein condensates, Phys. Rev. A 97(1), 011604 (2018)
CrossRef ADS Google scholar
[26]
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wachtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
CrossRef ADS Google scholar
[27]
M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, and T. Pfau, Striped states in a many-body system of tilted dipoles, Phys. Rev. A 96(5), 053630 (2017)
CrossRef ADS Google scholar
[28]
L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett. 122(13), 130405 (2019)
CrossRef ADS Google scholar
[29]
F. Böttcher, J. N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and T. Pfau, Transient supersolid properties in an array of dipolar quantum droplets, Phys. Rev. X 9(1), 011051 (2019)
CrossRef ADS Google scholar
[30]
L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, and F. Ferlaino, Long-lived and transient supersolid behaviors in dipolar quantum gases, Phys. Rev. X 9(2), 021012 (2019)
CrossRef ADS Google scholar
[31]
M. Guo, F. Böttcher, J. Hertkorn, J. N. Schmidt, M. Wenzel, H. P. Büchler, T. Langen, and T. Pfau, The low-energy goldstone mode in a trapped dipolar supersolid, Nature 574(7778), 386 (2019)
CrossRef ADS Google scholar
[32]
L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C. Gabbanini, G. Modugno, A. Recati, and S. Stringari, Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas, Nature 574(7778), 382 (2019)
CrossRef ADS Google scholar
[33]
G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark, L. Chomaz, and F. Ferlaino, Excitation spectrum of a trapped dipolar supersolid and its experimental evidence, Phys. Rev. Lett. 123(5), 050402 (2019)
CrossRef ADS Google scholar
[34]
J. Hertkorn, F. Böttcher, M. Guo, J. N. Schmidt, T. Langen, H. P. Büchler, and T. Pfau, Fate of the amplitude mode in a trapped dipolar supersolid, Phys. Rev. Lett. 123(19), 193002 (2019)
CrossRef ADS Google scholar
[35]
T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its lowtemperature properties, Phys. Rev. 106(6), 1135 (1957)
CrossRef ADS Google scholar
[36]
X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
CrossRef ADS Google scholar
[37]
E. Shamriz, Z. Chen, and B. A. Malomed, Suppression of the quasi-two-dimensional quantum collapse in the attraction field by the Lee–Huang–Yang effect, Phys. Rev. A 101(6), 063628 (2020)
CrossRef ADS Google scholar
[38]
V. P. Mineev, The theory of the solution of two near-ideal Bose gases, Zh. Eksp. Teor. Fiz. 67, 263 (1974) [Sov. Phys. - JETP 40, 132 (1974)
[39]
T. Mithun, A. Maluckov, K. Kasamatsu, B. Malomed, and A. Khare, Modulational instability, inter-component asymmetry, and formation of quantum droplets in onedimensional binary Bose gases, Symmetry (Basel) 12(1), 174 (2020)
CrossRef ADS Google scholar
[40]
Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
CrossRef ADS Google scholar
[41]
Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018)
CrossRef ADS Google scholar
[42]
D. S. Petrov and G. E. Astrakharchik, Ultradilute lowdimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
CrossRef ADS Google scholar
[43]
S. Pilati, J. Boronat, J. Casulleras, and S. Giorgini, Quantum Monte Carlo simulation of a two-dimensional Bose gas, Phys. Rev. A 71(2), 023605 (2005)
CrossRef ADS Google scholar
[44]
G. E. Astrakharchik and B. A. Malomed, Dynamics of onedimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
CrossRef ADS Google scholar
[45]
P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
CrossRef ADS Google scholar
[46]
N. M. Hugenholtz and D. Pines, Ground-state energy and excitation spectrum of a Systemv of interacting bosons, Phys. Rev. 116(3), 489 (1959)
CrossRef ADS Google scholar
[47]
T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98(5), 051604 (2018)
CrossRef ADS Google scholar
[48]
C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno, and A. Simoni, Feshbach resonances in ultracold 39 K, New J. Phys. 9(7), 223 (2007)
CrossRef ADS Google scholar
[49]
K. L. Pan, C. K. Law, and B. Zhou, Experimental and mechanistic description of merging and bouncing in headon binary droplet collision, J. Appl. Phys. 103(6), 064901 (2008)
CrossRef ADS Google scholar
[50]
A. Burchianti, C. D’Errico, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, A dual-species Bose–Einstein condensate with attractive interspecies interactions, Cond. Matter 5(1), 21 (2020)
CrossRef ADS Google scholar
[51]
A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macri, Vortices in self-bound dipolar droplets, Phys. Rev. A 98(2), 023618 (2018)
CrossRef ADS Google scholar
[52]
Kh. I. Pushkarov, D. I. Pushkarov, and I. V. Tomov, Selfaction of light beams in nonlinear media: Soliton solutions, Opt. Quant. Lectr. 11(6), 471 (1979)
CrossRef ADS Google scholar
[53]
Kh. I. Pushkarov and D. I. Pushkarov, Soliton solutiuons in some non-linear Schrdinger-like equations, Rep. Math. Phys. 17(1), 37 (1980)
CrossRef ADS Google scholar
[54]
M. Brtka, A. Gammal, and B. A. Malomed, Hidden vorticity in binary Bose–Einstein condensates, Phys. Rev. A 82(5), 053610 (2010)
CrossRef ADS Google scholar
[55]
Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and crossinteractions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
CrossRef ADS Google scholar
[56]
H. Sakaguchi, B. Li, and B. A. Malomed, Creation of twodimensional composite solitons in spin–orbit-coupled selfattractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
CrossRef ADS Google scholar
[57]
Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum droplet clusters, Phys. Rev. Lett. 122(19), 193902 (2019)
CrossRef ADS Google scholar
[58]
M. N. Tengstrand, P. Stürmer, E. Ö. Karabulut, and S. M. Reimann, Rotating binary Bose–Einstein condensates and vortex clusters in quantum droplets, Phys. Rev. Lett. 123(16), 160405 (2019)
CrossRef ADS Google scholar
[59]
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Moscow: Nauka Publishers, 1974
[60]
H. Sakaguchi and B. A. Malomed, Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas, Phys. Rev. A 83(1), 013607 (2011)
CrossRef ADS Google scholar
[61]
G. E. Astrakharchik and B. A. Malomed, Quantum versus mean-field collapse in a many-body system, Phys. Rev. A 92(4), 043632 (2015)
CrossRef ADS Google scholar
[62]
F. K. Abdullaev, A. Gammal, L. Tomio, and T. Frederico, Stability of trapped Bose–Einstein condensates, Phys. Rev. A 63, 043604 (2001)
CrossRef ADS Google scholar
[63]
E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, Coherence, correlations, and collisions: What one learns about Bose–Einstein condensates from their decay, Phys. Rev. Lett. 79(3), 337 (1997)
CrossRef ADS Google scholar
[64]
N. B. Jørgensen, G. M. Bruun, and J. J. Arlt, Dilute fluid governed by quantum fluctuations, Phys. Rev. Lett. 121(17), 173403 (2018)
CrossRef ADS Google scholar
[65]
H. Sakaguchi and B. A. Malomed, Singular solitons, Phys. Rev. E 101(1), 012211 (2020)
CrossRef ADS Google scholar
[66]
A. Cappellaro, T. Macrì, G. F. Bertacco, and L. Salasnich, Equation of state and self-bound droplet in Rabi-coupled Bose mixtures, Sci. Rep. 7(1), 13358 (2017)
CrossRef ADS Google scholar
[67]
M. Tylutki, G. E. Astrakharchik, B. A. Malomed, and D. S. Petrov, Collective excitations of a one-dimensional quantum droplet, Phys. Rev. A 101, 051601(R) (2020)
CrossRef ADS Google scholar
[68]
S. K. Adhikari, Statics and dynamics of a self-bound matter-wave quantum ball, Phys. Rev. A 95(2), 023606 (2017)
CrossRef ADS Google scholar
[69]
S. Gautam and S. K. Adhikari, Self-trapped quantum balls in binary Bose–Einstein condensates, J. Phys. At. Mol. Opt. Phys. 52(5), 055302 (2019)
CrossRef ADS Google scholar
[70]
X. Cui, Spin–orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures, Phys. Rev. A 98(2), 023630 (2018)
CrossRef ADS Google scholar
[71]
B. J. DeSalvo, K. Patel, J. Johansen, and C. Chin, Observation of a degenerate Fermi gas trapped by a Bose–Einstein condensate, Phys. Rev. Lett. 119(23), 233401 (2017)
CrossRef ADS Google scholar
[72]
S. K. Adhikari, Fermionic bright soliton in a boson–fermion mixture, Phys. Rev. A 72(5), 053608 (2005)
CrossRef ADS Google scholar
[73]
S. K. Adhikari, A self-bound matter-wave boson–fermion quantum ball, Laser Phys. Lett. 15(9), 095501 (2018)
CrossRef ADS Google scholar
[74]
Z. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)
CrossRef ADS Google scholar
[75]
L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattices, Nonlinear Dyn. 102, 303 (2020)
CrossRef ADS Google scholar
[76]
Y. Zheng, S. Chen, Z. Huang, S. Dai, B. Liu. Liu, Y. LI, and S. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021)
CrossRef ADS Google scholar
[77]
B. A. Malomed, The family of quantum droplets keeps expanding, Front. Phys. 16, 22504 (2021)
CrossRef ADS Google scholar
[78]
F. Bottcher, J. N. Sčhmidt, J. Hertkorn, K. S. H. Ng, S. D. Graham, M. Guo, T. Langen, and T. Pfau, New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids, arXiv: 2007.06391 (2020)
CrossRef ADS Google scholar
[79]
C. Staudinger, F. Mazzanti, and R. E. Zillich, Self-bound Bose mixtures, Phys. Rev. A 98(2), 023633 (2018)
CrossRef ADS Google scholar
[80]
S. Gautam and S. K. Adhikari, Limitation of the Lee– Huang–Yang interaction in forming a self-bound state in Bose–Einstein condensates, Ann. Phys. 409, 167917 (2019)
CrossRef ADS Google scholar
[81]
R. Driben, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, Soliton gyroscopes in media with spatially growing repulsive nonlinearity, Phys. Rev. Lett. 112(2), 020404 (2014)
CrossRef ADS Google scholar
[82]
R. N. Bisset, L. A. Peña Ardila, and L. Santos, Quantum droplets of dipolar mixtures, arXiv: 2007.00404 (2020)
[83]
J. C. Smith, D. Baillie, and P. B. Blakie, Quantum droplet states of a binary magnetic gas, arXiv: 2007.00366 (2020)
[84]
Z. Lin, X. Xu, Z. Chen, Z. Yan, Z. Mai, and B. Liu, Twodimensional vortex quantum droplets get thick, Commun. Nonlinear Sci. Numer. Simulat. 93, 105536 (2021)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Education Press
AI Summary AI Mindmap
PDF(2207 KB)

Accesses

Citations

Detail

Sections
Recommended

/