Cover illustration
The ability to move individual atoms with the tip of a scanning microscope is a powerful first step towards building complex molecular machines at the atomic scale. For practical applications of such molecular machinery, it must be possible to construct it easily and at low cost, on a large-scale. The key satisfying these requirements is to find molecular systems that assemble themselves into the desired shapes and functions on tailor-made surfaces. Prof. Hong-jun GAO and his[Detail] ...
We discuss the occurrence of transition structures observed in molecular self-assembly at surfaces. The increasing surface coverage transitions from low coverage structures to high coverage structures are a common phenomenon. However, often observed and not perfectly understood is the formation of intermediate structures, sometimes with lower lateral density than the initial phase. We will present different examples from our recent work and discuss the possible mechanisms of intermediate phase formation. In addition, we present intermediate structures occurring due to temperature-controlled reversible phase transitions.
This mini-review summarizes the recent advances in chemical synthesis and assembly of monodisperse magnetic nanoparticles for magnetic applications. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses and assemblies of monodisperse Fe, CoFe, FePt and SmCo5 nanoparticles. The review further outlines the structural and magnetic properties of these nanoparticles for magnetic information and energy storage applications.
Scanning tunneling microscopy (STM) is not only an excellent tool for the study of static geometric structures and electronic structures of surfaces due to its high spatial and energy resolution, but also a powerful tool for the study of surface dynamic behaviors, including surface diffusion, molecular rotation, and surface chemical reactions. Because of the limitation of the scanning speed, the video-STM technique cannot study the fast dynamic processes. Alternatively, a time-dependent tunneling current,
The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy (STM) techniques. The theoretical treatment of the STM operation has traditionally been based on the Bardeen and Tersoff–Hamann methods which take as input the single-particle wave functions and eigenvalues obtained from finite cluster or slabs models of the surface-tip interface. Here, we present a novel STM simulation scheme based on non-equilibrium Green’s functions (NEGF) and Wannier functions which is both accurate and very efficient. The main novelty of the scheme compared to the Bardeen and Tersoff–Hamann approaches is that the coupling to the infinite (macroscopic) electrodes is taken into account. As an illustrating example we apply the NEGF-STM method to the Si(001)-(2×1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff–Hamann methods.
The motion of single molecules on surfaces plays an important role in nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this article, we review the recent progress on single molecular rotors self-assembled on Au(111) surfaces. We focus on the motion of single phthalocyanine molecules on the reconstructed Au(111) surface based on the most recent results obtained by scanning tunneling microscopy (STM). An ordered array of single molecular rotors with large scale is self-assembled on Au(111) surface. Combined with first principle calculations, the mechanism of the surface-supported molecular rotor is investigated. Based on these results, phthalocyanine molecules on Au (111) are a promising candidate system for the development of adaptive molecular device structures.
Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of
Nature produces ferromagnetic materials based on nearest neighbor exchange interaction between atomic spins. For artificially fabricated nanomagnets, it is those “small” magnetic energies, e.g. anisotropy, dipolar interaction and indirect exchange interaction that play crucial roles against the thermal fluctuation. We have developed strong capabilities to grow nanodot assemblies in ultrahigh vacuum with controllable size and density on/in both metallic and insulating templates. Based on our novel synthesis capability, we have studied artificial nanomagnets with tunable coupling strength via dimensionality control of the mediating electrons in one-dimensional (1-D), 2-D, and 3-D. We show that such kind of dimensional confinement provides a unique way to induce novel magnetic properties and to gain control of them. The research outlined in this work provides the science base to understand, modify, and manipulate the magnetic properties through dimensional confinement.
One-dimensional (1-D) semiconductor nanostructures can effectively transport electrons and photons, and are considered to be promising building blocks for future optoelectronic nanodevices. In this review, we present our recent efforts to integrate optical techniques and