Intermediate structures in two-dimensional molecular self-assembly

Karl-Heinz ERNST

Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 340 -346.

PDF (325KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 340 -346. DOI: 10.1007/s11467-010-0106-7
MINI-REVIEW ARTICLE

Intermediate structures in two-dimensional molecular self-assembly

Author information +
History +
PDF (325KB)

Abstract

We discuss the occurrence of transition structures observed in molecular self-assembly at surfaces. The increasing surface coverage transitions from low coverage structures to high coverage structures are a common phenomenon. However, often observed and not perfectly understood is the formation of intermediate structures, sometimes with lower lateral density than the initial phase. We will present different examples from our recent work and discuss the possible mechanisms of intermediate phase formation. In addition, we present intermediate structures occurring due to temperature-controlled reversible phase transitions.

Keywords

scanning tunnelling microscopy (STM) / polymorphism / corannulene / heptahelicene / chirality

Cite this article

Download citation ▾
Karl-Heinz ERNST. Intermediate structures in two-dimensional molecular self-assembly. Front. Phys., 2010, 5(4): 340-346 DOI:10.1007/s11467-010-0106-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. D. Dunitz and J. Bernstein, Acc. Chem. Res., 1995, 28: 193

[2]

J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter, and J. Morris, Pharm. Res., 2001, 18: 859

[3]

R. Hilfiker (Ed.), Polymorphism in the Pharmaceutical Industry, Weinheim: Wiley-VCH, 2006

[4]

I. Weissbuch, L. Addadi, M. Lahav, and L. Leiserowitz, Science1991, 253: 637

[5]

L. Addadi and S. Weiner, Proc. Natl. Acad. Sci., 1985, 82: 4110

[6]

G. Ertl, Angew. Chem. Int. Ed., 2008, 47: 3524

[7]

K.-H. Ernst, Top. Curr. Chem., 2006, 265: 209

[8]

S. De Feyter and F. De Schryver, Chem. Soc. Rev., 2003, 32: 139

[9]

M. J. Buerger, Elementary Crystallography: An Introduction to the Fundamental Geometrical Features of Crystals, New York: Wiley, 1956

[10]

D. Shechtmann, I. Blech, D. Cratias, and J.W. Cahn, Phys. Rev. Lett., 1984, 53: 1951

[11]

D. R. Nelson, Phys. Rev. B, 1983, 28: 5515

[12]

I. Hargittai (Ed.), Fivefold Symmetry, Singapore: World Scientific, 1992

[13]

R. Lück, Mater. Sci. Eng. A, 2000, 294-296: 263

[14]

K. E. Plass, A. L. Grzesiak, and A. J. Matzger, Acc. Chem. Res., 2007, 40: 287

[15]

T. Bauert, L. Merz, D. Bandera, M. Parschau, J. S. Siegel, and K.-H. Ernst, J. Am. Chem. Soc., 2009, 131: 3460

[16]

M. Parschau, R. Fasel, K.-H. Ernst, O. Gröning, L. Brandenberger, R. Schillinger, T. Greber, A. P. Seitsonen, Y. T. Wu, and J. S. Siegel, Angew. Chem. Int. Ed., 2007, 46: 8258

[17]

L. Merz, M. Parschau, L. Zoppi, K. K. Baldridge, J. S. Siegel, and K.-H. Ernst, Angew. Chem. Int. Ed., 2009, 48: 1966

[18]

L. Merz, T. Bauert, M. Parschau, G. Koller, J. S. Siegel, and K.-H. Ernst, Chem. Commun., 2009: 5871

[19]

L. Merz, M. Parschau, J. S. Siegel, and K.-H. Ernst, Chimia, 2009, 63: 214

[20]

Y. T. Wu and J. S. Siegel, Chem. Rev., 2006, 106: 4843

[21]

A. I. Kitajgorodskij, Acta. Cryst., 1965, 18: 585

[22]

J. D. Dunitz and R. M. Ibberson, Angew. Chem. Int. Ed., 2008, 47: 4208

[23]

L. Merz and K.-H. Ernst, Surface Sci., 2010, 604: 1049

[24]

K.-H. Ernst, M. Böhringer, C. F. McFadden, P. Hug, U. Müller, and U. Ellerbeck, Nanotechnology, 1999, 10: 355

[25]

K.-H. Ernst, M. Neuber, M. Grunze, and U. Ellerbeck, J. Am. Chem. Soc., 2001, 123: 493

[26]

K.-H. Ernst, Y. Kuster, R. Fasel, C. F. McFadden, and U. Ellerbeck, Surf. Sci., 2003, 530: 195

[27]

R. Fasel, M. Parschau, and K.-H. Ernst, Angew. Chem. Int. Ed., 2003, 42: 5178

[28]

M. Parschau, U. Ellerbeck, and K.-H. Ernst, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010, 354: 240

[29]

K.-H. Ernst, Y. Kuster, R. Fasel, M. Müller, and U. Ellerbeck, Chirality, 2001, 13: 675

[30]

R. Fasel, M. Parschau, and K.-H. Ernst, Nature, 2006, 439-449

[31]

M. M. Green, M. P. Reidy, R. J. Johnson, G. Darling, D. J. O’Leary, and G. Wilson, J. Am. Chem. Soc., 1989, 111: 6452

[32]

M. Parschau, S. Romer, and K.-H. Ernst, J. Am. Chem. Soc., 2004, 124: 15398

[33]

M. Parschau, T. Kampen, and K.-H. Ernst, Chem. Phys. Lett., 2005, 407: 433

[34]

K.-H. Ernst, Curr. Opin. Colloid Interface Sci., 2007, 13: 54

[35]

M. M. Green, B. A. Garetz, B. Munoz, H. Chang, S. Hoke, and R. G. Cooks, J. Am. Chem. Soc., 1995, 117: 4181

[36]

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, Nature Chem., 2009, 1: 409

[37]

M. Parschau, R. Fasel, and K.-H. Ernst, Cryst. Growth & Des., 2008, 8: 1890

[38]

H. Yanagi, D. Schlettwein, H. Nakayama, and T. Nishino, Phys. Rev. B, 2000, 61: 1959

[39]

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H.-J. Güntherodt, and T. A. Jung, Chem. Phys. Lett., 2001, 348: 175

[40]

S. Berner, M. de Wild, L. Ramoino, S. Ivan, A. Baratoff, H.-J. Güntherodt, H. Suzuki, and T. A. Jung, Phys. Rev. B, 2003, 68: 115410

[41]

H. Yanagi, K. Ikuta, H. Mukai, and T. Shibutani, Nano Lett., 2002, 2: 951

[42]

S. Mannsfeld, H. Reichhard, and T. Fritz, Surf. Sci., 2003, 525: 215

[43]

N. Jiang, Y. Wang, Q. Liu, Y. Zhang, K.-H. Ernst, and H. J. Gao, Phys. Chem. Chem. Phys., 2010, 12: 1318

[44]

K.-H. Ernst, D. Schlatterbeck, and K. Christmann, Phys. Chem. Chem. Phys. 1999, 1: 4105

[45]

B. Behzadi, D. Ferri, A. Baiker, and K.-H. Ernst, Appl. Surf. Sci., 2007, 253: 3480

[46]

M. Parschau, B. Behzadi, S. Romer, and K.-H. Ernst, Surf. Interface Anal., 2006, 38: 1607

[47]

T. J. Seiders, E. L. Elliott, G. H. Grube, and J. S. Siegel, J. Am. Chem. Soc., 1999, 121: 7804

[48]

A. Sudharkar and T. J. Katz, Tetrahedron Lett., 1986, 27: 2231

[49]

T. Bürgi, A. Urakawa, B. Behzadi, K.-H. Ernst, and A. Baiker, New J. Chem., 2004, 28: 332

[50]

R. Fasel, A. Cossy, K.-H. Ernst, F. Baumberger, T. Greber, and J. Osterwalder, J. Chem. Phys., 2001, 115: 1020

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (325KB)

1042

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/