Intermediate structures in two-dimensional molecular self-assembly

Karl-Heinz ERNST

PDF(325 KB)
PDF(325 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 340-346. DOI: 10.1007/s11467-010-0106-7
MINI-REVIEW ARTICLE
MINI-REVIEW ARTICLE

Intermediate structures in two-dimensional molecular self-assembly

Author information +
History +

Abstract

We discuss the occurrence of transition structures observed in molecular self-assembly at surfaces. The increasing surface coverage transitions from low coverage structures to high coverage structures are a common phenomenon. However, often observed and not perfectly understood is the formation of intermediate structures, sometimes with lower lateral density than the initial phase. We will present different examples from our recent work and discuss the possible mechanisms of intermediate phase formation. In addition, we present intermediate structures occurring due to temperature-controlled reversible phase transitions.

Keywords

scanning tunnelling microscopy (STM) / polymorphism / corannulene / heptahelicene / chirality

Cite this article

Download citation ▾
Karl-Heinz ERNST. Intermediate structures in two-dimensional molecular self-assembly. Front Phys Chin, 2010, 5(4): 340‒346 https://doi.org/10.1007/s11467-010-0106-7

References

[1]
J. D. Dunitz and J. Bernstein, Acc. Chem. Res., 1995, 28: 193
CrossRef ADS Google scholar
[2]
J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter, and J. Morris, Pharm. Res., 2001, 18: 859
CrossRef ADS Google scholar
[3]
R. Hilfiker (Ed.), Polymorphism in the Pharmaceutical Industry, Weinheim: Wiley-VCH, 2006
[4]
I. Weissbuch, L. Addadi, M. Lahav, and L. Leiserowitz, Science1991, 253: 637
CrossRef ADS Google scholar
[5]
L. Addadi and S. Weiner, Proc. Natl. Acad. Sci., 1985, 82: 4110
CrossRef ADS Google scholar
[6]
G. Ertl, Angew. Chem. Int. Ed., 2008, 47: 3524
CrossRef ADS Google scholar
[7]
K.-H. Ernst, Top. Curr. Chem., 2006, 265: 209
CrossRef ADS Google scholar
[8]
S. De Feyter and F. De Schryver, Chem. Soc. Rev., 2003, 32: 139
CrossRef ADS Google scholar
[9]
M. J. Buerger, Elementary Crystallography: An Introduction to the Fundamental Geometrical Features of Crystals, New York: Wiley, 1956
[10]
D. Shechtmann, I. Blech, D. Cratias, and J.W. Cahn, Phys. Rev. Lett., 1984, 53: 1951
CrossRef ADS Google scholar
[11]
D. R. Nelson, Phys. Rev. B, 1983, 28: 5515
CrossRef ADS Google scholar
[12]
I. Hargittai (Ed.), Fivefold Symmetry, Singapore: World Scientific, 1992
[13]
R. Lück, Mater. Sci. Eng. A, 2000, 294-296: 263
CrossRef ADS Google scholar
[14]
K. E. Plass, A. L. Grzesiak, and A. J. Matzger, Acc. Chem. Res., 2007, 40: 287
CrossRef ADS Google scholar
[15]
T. Bauert, L. Merz, D. Bandera, M. Parschau, J. S. Siegel, and K.-H. Ernst, J. Am. Chem. Soc., 2009, 131: 3460
CrossRef ADS Google scholar
[16]
M. Parschau, R. Fasel, K.-H. Ernst, O. Gröning, L. Brandenberger, R. Schillinger, T. Greber, A. P. Seitsonen, Y. T. Wu, and J. S. Siegel, Angew. Chem. Int. Ed., 2007, 46: 8258
CrossRef ADS Google scholar
[17]
L. Merz, M. Parschau, L. Zoppi, K. K. Baldridge, J. S. Siegel, and K.-H. Ernst, Angew. Chem. Int. Ed., 2009, 48: 1966
CrossRef ADS Google scholar
[18]
L. Merz, T. Bauert, M. Parschau, G. Koller, J. S. Siegel, and K.-H. Ernst, Chem. Commun., 2009: 5871
CrossRef ADS Google scholar
[19]
L. Merz, M. Parschau, J. S. Siegel, and K.-H. Ernst, Chimia, 2009, 63: 214
CrossRef ADS Google scholar
[20]
Y. T. Wu and J. S. Siegel, Chem. Rev., 2006, 106: 4843
CrossRef ADS Google scholar
[21]
A. I. Kitajgorodskij, Acta. Cryst., 1965, 18: 585
CrossRef ADS Google scholar
[22]
J. D. Dunitz and R. M. Ibberson, Angew. Chem. Int. Ed., 2008, 47: 4208
CrossRef ADS Google scholar
[23]
L. Merz and K.-H. Ernst, Surface Sci., 2010, 604: 1049
CrossRef ADS Google scholar
[24]
K.-H. Ernst, M. Böhringer, C. F. McFadden, P. Hug, U. Müller, and U. Ellerbeck, Nanotechnology, 1999, 10: 355
CrossRef ADS Google scholar
[25]
K.-H. Ernst, M. Neuber, M. Grunze, and U. Ellerbeck, J. Am. Chem. Soc., 2001, 123: 493
CrossRef ADS Google scholar
[26]
K.-H. Ernst, Y. Kuster, R. Fasel, C. F. McFadden, and U. Ellerbeck, Surf. Sci., 2003, 530: 195
CrossRef ADS Google scholar
[27]
R. Fasel, M. Parschau, and K.-H. Ernst, Angew. Chem. Int. Ed., 2003, 42: 5178
CrossRef ADS Google scholar
[28]
M. Parschau, U. Ellerbeck, and K.-H. Ernst, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010, 354: 240
CrossRef ADS Google scholar
[29]
K.-H. Ernst, Y. Kuster, R. Fasel, M. Müller, and U. Ellerbeck, Chirality, 2001, 13: 675
CrossRef ADS Google scholar
[30]
R. Fasel, M. Parschau, and K.-H. Ernst, Nature, 2006, 439-449
CrossRef ADS Google scholar
[31]
M. M. Green, M. P. Reidy, R. J. Johnson, G. Darling, D. J. O’Leary, and G. Wilson, J. Am. Chem. Soc., 1989, 111: 6452
CrossRef ADS Google scholar
[32]
M. Parschau, S. Romer, and K.-H. Ernst, J. Am. Chem. Soc., 2004, 124: 15398
CrossRef ADS Google scholar
[33]
M. Parschau, T. Kampen, and K.-H. Ernst, Chem. Phys. Lett., 2005, 407: 433
CrossRef ADS Google scholar
[34]
K.-H. Ernst, Curr. Opin. Colloid Interface Sci., 2007, 13: 54
CrossRef ADS Google scholar
[35]
M. M. Green, B. A. Garetz, B. Munoz, H. Chang, S. Hoke, and R. G. Cooks, J. Am. Chem. Soc., 1995, 117: 4181
CrossRef ADS Google scholar
[36]
S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, Nature Chem., 2009, 1: 409
CrossRef ADS Google scholar
[37]
M. Parschau, R. Fasel, and K.-H. Ernst, Cryst. Growth & Des., 2008, 8: 1890
CrossRef ADS Google scholar
[38]
H. Yanagi, D. Schlettwein, H. Nakayama, and T. Nishino, Phys. Rev. B, 2000, 61: 1959
CrossRef ADS Google scholar
[39]
S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H.-J. Güntherodt, and T. A. Jung, Chem. Phys. Lett., 2001, 348: 175
CrossRef ADS Google scholar
[40]
S. Berner, M. de Wild, L. Ramoino, S. Ivan, A. Baratoff, H.-J. Güntherodt, H. Suzuki, and T. A. Jung, Phys. Rev. B, 2003, 68: 115410
CrossRef ADS Google scholar
[41]
H. Yanagi, K. Ikuta, H. Mukai, and T. Shibutani, Nano Lett., 2002, 2: 951
CrossRef ADS Google scholar
[42]
S. Mannsfeld, H. Reichhard, and T. Fritz, Surf. Sci., 2003, 525: 215
CrossRef ADS Google scholar
[43]
N. Jiang, Y. Wang, Q. Liu, Y. Zhang, K.-H. Ernst, and H. J. Gao, Phys. Chem. Chem. Phys., 2010, 12: 1318
CrossRef ADS Google scholar
[44]
K.-H. Ernst, D. Schlatterbeck, and K. Christmann, Phys. Chem. Chem. Phys. 1999, 1: 4105
CrossRef ADS Google scholar
[45]
B. Behzadi, D. Ferri, A. Baiker, and K.-H. Ernst, Appl. Surf. Sci., 2007, 253: 3480
CrossRef ADS Google scholar
[46]
M. Parschau, B. Behzadi, S. Romer, and K.-H. Ernst, Surf. Interface Anal., 2006, 38: 1607
CrossRef ADS Google scholar
[47]
T. J. Seiders, E. L. Elliott, G. H. Grube, and J. S. Siegel, J. Am. Chem. Soc., 1999, 121: 7804
CrossRef ADS Google scholar
[48]
A. Sudharkar and T. J. Katz, Tetrahedron Lett., 1986, 27: 2231
CrossRef ADS Google scholar
[49]
T. Bürgi, A. Urakawa, B. Behzadi, K.-H. Ernst, and A. Baiker, New J. Chem., 2004, 28: 332
CrossRef ADS Google scholar
[50]
R. Fasel, A. Cossy, K.-H. Ernst, F. Baumberger, T. Greber, and J. Osterwalder, J. Chem. Phys., 2001, 115: 1020
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(325 KB)

Accesses

Citations

Detail

Sections
Recommended

/