Surface dynamics studied by time-dependent tunneling current

, ,

PDF(567 KB)
PDF(567 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 357-368. DOI: 10.1007/s11467-010-0108-5
MINI-REVIEW ARTICLE
MINI-REVIEW ARTICLE

Surface dynamics studied by time-dependent tunneling current

Author information +
History +

Abstract

Scanning tunneling microscopy (STM) is not only an excellent tool for the study of static geometric structures and electronic structures of surfaces due to its high spatial and energy resolution, but also a powerful tool for the study of surface dynamic behaviors, including surface diffusion, molecular rotation, and surface chemical reactions. Because of the limitation of the scanning speed, the video-STM technique cannot study the fast dynamic processes. Alternatively, a time-dependent tunneling current, I–t curve, method is employed in the research of fast dynamic processes. Usually, this method can detect about 1000 times faster dynamic processes than the traditional video-STM method. When placing the STM tip over a certain interesting position on the sample surface, the changing of tunneling current induced by the surface dynamic phenomena can be recorded as a function of time. In this article, we review the applications of the time-dependent tunneling current method to the studies of surface dynamic phenomena in recent years, especially on surface diffusion, molecular rotation, molecular switching, and chemical reaction.

Keywords

scanning tunneling microscopy (STM) / surface dynamics / surface diffusion / molecular rotation / surface chemical reactions

Cite this article

Download citation ▾
, , . Surface dynamics studied by time-dependent tunneling current. Front Phys Chin, 2010, 5(4): 357‒368 https://doi.org/10.1007/s11467-010-0108-5

References

[1]
R. W. Roberts and L. E. St. Pierre, Science, 1965, 147: 1529
CrossRef ADS Google scholar
[2]
K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, New York: Wiley, 2008
[3]
G. Binnig and H. Rohrer, Helv. Phys. Acta, 1982, 55: 726
[4]
I. Brodie, Surf. Sci., 1978, 70: 186
CrossRef ADS Google scholar
[5]
H. Heinzelmann, F. Watanabe, and G. M. McClelland, Phys. Rev. Lett., 1993, 70: 3611
CrossRef ADS Google scholar
[6]
I. M. Mikhailovskij, E. V. Sadanov, T. I. Mazilova, V. A. Ksenofontov, and O. A. Velicodnaja, Phys. Rev. B, 2009, 80: 165404
CrossRef ADS Google scholar
[7]
T. T. Tsong and E. W. Müller, Phys. Rev., 1969, 181: 530
CrossRef ADS Google scholar
[8]
T. T Tsong and E. W. Müller, Phys. Rev. Lett., 1970, 25: 911
CrossRef ADS Google scholar
[9]
D. B. Joag, P. L. Kanitkar, M. M. Kanitkar, and V. M. Shukla, Bull. Mater. Sci., 1984, 6: 573
CrossRef ADS Google scholar
[10]
E. Ganz, S. K. Theiss, I. S. Hwang, and J. Golovchenko, Phys. Revs. Lett., 1992, 68: 1567
CrossRef ADS Google scholar
[11]
B. S. Swartzentruber, Phys. Rev. Lett., 1996, 76: 459
CrossRef ADS Google scholar
[12]
K. D. Wang, C. Zhang, M.T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 036103
CrossRef ADS Google scholar
[13]
B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev. Lett., 1998, 81: 1263
CrossRef ADS Google scholar
[14]
G. Dujardin, R. E. Walkup, and P. Avouris, Science, 1992, 255: 1232
CrossRef ADS Google scholar
[15]
R. Martel, P. Avouris, and I. W. Lyo, Science, 1996, 272: 385
CrossRef ADS Google scholar
[16]
T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Walkup, Science, 1995, 268: 1590
CrossRef ADS Google scholar
[17]
K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B. Y. K. Hu, F. Perez-Murano, and F. Grey, Phys. Rev. Lett., 1998, 80: 2618
CrossRef ADS Google scholar
[18]
D. Riedel, M. L. Bocquet, H. Lesnard, M. Lastapis, N. Lorente, P. Sonnet, and G. Dujardin, J. Am. Chem. Soc., 2009, 131: 7344
CrossRef ADS Google scholar
[19]
A. D. Zhao, Q. X. Li, L. Chen, H. J. Xiang, W. H. Wang, S. Pan, B. Wang, X. D. Xiao, J. L. Yang, J. G. Hou, and Q. S. Zhu, Science, 2005, 309: 1542
CrossRef ADS Google scholar
[20]
R. Gomer, Rep. Prog. Phys., 1990, 53: 917
CrossRef ADS Google scholar
[21]
E. G. Seebauer and C. E. Allen, Prog. Surf. Sci., 1995, 49: 265
CrossRef ADS Google scholar
[22]
T. T. Tsong, Prog. Surf. Sci., 2000, 64: 199
CrossRef ADS Google scholar
[23]
J. V. Barth, Surf. Sci. Rep., 2000, 40: 75
CrossRef ADS Google scholar
[24]
T. Ala-Nissila, R. Ferrando, and S. C. Ying, Adv. Phys., 2002, 51: 949
CrossRef ADS Google scholar
[25]
S. Arrhenius, Zeit. Phys. Chem., 1889, 4: 226
[26]
A. Fick, Ann. Phys., 1855, 170: 59
[27]
L. S. Darken, Trans. Am. Inst. Mineral. Met. Eng., 1948, 175: 184
[28]
R. Lewis and R. Gomer, Nuovo Cimento, 1967, Suppl. I 5: 506
[29]
R. Gomer, Appl. Phys. A, 1986, 39: 1
CrossRef ADS Google scholar
[30]
J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, Phys. Rev. Lett., 1988, 61: 2778
CrossRef ADS Google scholar
[31]
J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, J. Chem. Phys., 1990, 93: 9113
CrossRef ADS Google scholar
[32]
V. J. Kwasniewski and L. D. Schmidt, Surf. Sci., 1992, 274: 329
CrossRef ADS Google scholar
[33]
H. Froitzheim and M. Schulze, Surf. Sci., 1994, 320: 85
CrossRef ADS Google scholar
[34]
X. D. Zhu, Th. Rasing, and Y. R. Shen, Phys. Rev. Lett., 1988, 61: 2883
CrossRef ADS Google scholar
[35]
J. W. Ma, X. D. Xiao, N. J. DiNardo, and M. M. T. Loy, Phys. Rev. B, 1998, 58: 4977
CrossRef ADS Google scholar
[36]
J. W. Ma, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 436: L661
CrossRef ADS Google scholar
[37]
J. W. Ma, L. Cai, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 425: 131
CrossRef ADS Google scholar
[38]
X. R. Wang, X. Xiao, and Z. Zhang, Surf. Sci., 2002, 512: L361
CrossRef ADS Google scholar
[39]
G. Binnig, H. Fuchs, and E. Stoll, Surf. Sci., 1986, 169: L295
CrossRef ADS Google scholar
[40]
M. L. Lozano and M. C. Tringides, Europhys. Lett., 1995, 30: 537
CrossRef ADS Google scholar
[41]
S. Renisch, R. Schuster, J. Wintterlin, and G. Ertl, Phys. Rev. Lett., 1999, 82: 3839
CrossRef ADS Google scholar
[42]
S. Horch, H. T. Lorensen, S. Helveg, E. Laegsgaard, I. Stensgaard, K. W. Jacobsen, J. K. Nøskov, and F. Besenbacher, Nature (London), 1999, 398: 134
CrossRef ADS Google scholar
[43]
R. Schaub, E. Wahlstrom, A. Ronnau, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2003, 299: 377
CrossRef ADS Google scholar
[44]
E. Wahlstrom, E. K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2004, 303: 511
CrossRef ADS Google scholar
[45]
R. M. Trump, R. J. Hamers, and J. E. Demuth, Phys. Rev. B, 1986, 34: 1388
CrossRef ADS Google scholar
[46]
P. Sobotík, P. Kocán, and I. Ošt’ádal, Surf. Sci., 2003, 537: L442
CrossRef ADS Google scholar
[47]
K. D. Wang, G. Chen, C. Zhang, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2008, 101: 266107
CrossRef ADS Google scholar
[48]
C. Zhang, G. Chen, K. D. Wang, H. W. Yang, T. Su, C. T. Chan, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 176104
CrossRef ADS Google scholar
[49]
G. Chen, X. D. Xiao, Y. Kawazoe, X. G. Gong, and C. T. Chan, Phys. Rev. B, 2009, 79: 115301
CrossRef ADS Google scholar
[50]
K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, Surf. Sci., 1985, 164: 367
CrossRef ADS Google scholar
[51]
J. L. Li, J. F. Jia, X. J. Liang, X. Liu, J. Z. Wang, Q. K. Xue, Z. Q. Li, J. S. Tse, Z. Zhang, and S. B. Zhang, Phys. Rev. Lett., 2002, 88: 066101
CrossRef ADS Google scholar
[52]
O. Custance, S. Brochard, I. Brihuega, E. Artacho, J. M. Soler, A. M. Baró and J. M. Gómez-Rodríguez, Phys. Rev. B, 2003, 67: 235410
CrossRef ADS Google scholar
[53]
K. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, K. S. Nakayama, Q. K. Xue, E. G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S. B. Zhang, and T. Sakurai, Phys. Rev. Lett., 2003, 91: 126101
CrossRef ADS Google scholar
[54]
C. M. Chang and C. M. Wei, Phys. Rev. B, 2003, 67: 033309
CrossRef ADS Google scholar
[55]
P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864
CrossRef ADS Google scholar
[56]
W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133
CrossRef ADS Google scholar
[57]
K. Cho and E. Kaxiras, Europhys. Lett., 1997, 39: 287
CrossRef ADS Google scholar
[58]
K. Cho and E. Kaxiras, Surf. Sci., 1998, 396: L261
CrossRef ADS Google scholar
[59]
K. D. Wang, F. F. Ming, Q. Huang, X. Q. Zhang, and X. D. Xiao, Surf. Sci., 2010, 604: 322
CrossRef ADS Google scholar
[60]
M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7245
CrossRef ADS Google scholar
[61]
M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7255
CrossRef ADS Google scholar
[62]
H. R. Siddiqui, X. Guo, I. Chorkendorff, and J. T. Yates Jr., Surf. Sci., 1987, 191: L813
CrossRef ADS Google scholar
[63]
D. M. Collins and W. E. Spicer, Surf. Sci., 1977, 69: 85
CrossRef ADS Google scholar
[64]
J. S. Luo, R. G. Tobin, D. K. Lambert, G. B. Fisher, and C. L. Dimaggio, Surf. Sci., 1992, 274: 53
CrossRef ADS Google scholar
[65]
X. F. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J. L. Yang, and J. G. Hou, J. Chem. Phys., 2008, 129: 044703
CrossRef ADS Google scholar
[66]
L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H.G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209
CrossRef ADS Google scholar
[67]
Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101
CrossRef ADS Google scholar
[68]
R. L. Carroll and C. B. Gorman, Angew. Chem. Int. Ed., 2002, 41: 4378
CrossRef ADS Google scholar
[69]
J. A. Stroscio, F. Tavazza, J. N. Crain, R. J. Celotta, and A. M. Chaka, Science, 2006, 313: 948
CrossRef ADS Google scholar
[70]
Y. F. Wang, X. Ge, G. Schull, R. Berndt, H. Tang, C. Bornholdt, F. Koehler, and Ra. Herges, J. Am. Chem. Soc., 2010, 132: 1196
CrossRef ADS Google scholar
[71]
Y. F. Wang, J. Kroger, R. Berndt, and W. A. Hofer, J. Am. Chem. Soc., 2009, 131: 3639
CrossRef ADS Google scholar
[72]
Y. F. Wang, X. Ge, G. Schull, R. Berndt, C. Bornholdt, F. Koehler, and R. J. Herges, J. Am. Chem. Soc., 2008, 130: 4218
CrossRef ADS Google scholar
[73]
T. Komeda, Y. Kim, Y. Fujita, Y. Sainoo, and M. Kawai, J. Chem. Phys., 2004, 120: 15
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(567 KB)

Accesses

Citations

Detail

Sections
Recommended

/