Surface dynamics studied by time-dependent tunneling current

Qin LIU (刘琴) , Ke-dong WANG (王克东) , Xu-dong XIAO (肖旭东)

Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 357 -368.

PDF (567KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 357 -368. DOI: 10.1007/s11467-010-0108-5
MINI-REVIEW ARTICLE

Surface dynamics studied by time-dependent tunneling current

Author information +
History +
PDF (567KB)

Abstract

Scanning tunneling microscopy (STM) is not only an excellent tool for the study of static geometric structures and electronic structures of surfaces due to its high spatial and energy resolution, but also a powerful tool for the study of surface dynamic behaviors, including surface diffusion, molecular rotation, and surface chemical reactions. Because of the limitation of the scanning speed, the video-STM technique cannot study the fast dynamic processes. Alternatively, a time-dependent tunneling current, I–t curve, method is employed in the research of fast dynamic processes. Usually, this method can detect about 1000 times faster dynamic processes than the traditional video-STM method. When placing the STM tip over a certain interesting position on the sample surface, the changing of tunneling current induced by the surface dynamic phenomena can be recorded as a function of time. In this article, we review the applications of the time-dependent tunneling current method to the studies of surface dynamic phenomena in recent years, especially on surface diffusion, molecular rotation, molecular switching, and chemical reaction.

Keywords

scanning tunneling microscopy (STM) / surface dynamics / surface diffusion / molecular rotation / surface chemical reactions

Cite this article

Download citation ▾
Qin LIU (刘琴), Ke-dong WANG (王克东), Xu-dong XIAO (肖旭东). Surface dynamics studied by time-dependent tunneling current. Front. Phys., 2010, 5(4): 357-368 DOI:10.1007/s11467-010-0108-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. W. Roberts and L. E. St. Pierre, Science, 1965, 147: 1529

[2]

K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, New York: Wiley, 2008

[3]

G. Binnig and H. Rohrer, Helv. Phys. Acta, 1982, 55: 726

[4]

I. Brodie, Surf. Sci., 1978, 70: 186

[5]

H. Heinzelmann, F. Watanabe, and G. M. McClelland, Phys. Rev. Lett., 1993, 70: 3611

[6]

I. M. Mikhailovskij, E. V. Sadanov, T. I. Mazilova, V. A. Ksenofontov, and O. A. Velicodnaja, Phys. Rev. B, 2009, 80: 165404

[7]

T. T. Tsong and E. W. Müller, Phys. Rev., 1969, 181: 530

[8]

T. T Tsong and E. W. Müller, Phys. Rev. Lett., 1970, 25: 911

[9]

D. B. Joag, P. L. Kanitkar, M. M. Kanitkar, and V. M. Shukla, Bull. Mater. Sci., 1984, 6: 573

[10]

E. Ganz, S. K. Theiss, I. S. Hwang, and J. Golovchenko, Phys. Revs. Lett., 1992, 68: 1567

[11]

B. S. Swartzentruber, Phys. Rev. Lett., 1996, 76: 459

[12]

K. D. Wang, C. Zhang, M.T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 036103

[13]

B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev. Lett., 1998, 81: 1263

[14]

G. Dujardin, R. E. Walkup, and P. Avouris, Science, 1992, 255: 1232

[15]

R. Martel, P. Avouris, and I. W. Lyo, Science, 1996, 272: 385

[16]

T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Walkup, Science, 1995, 268: 1590

[17]

K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B. Y. K. Hu, F. Perez-Murano, and F. Grey, Phys. Rev. Lett., 1998, 80: 2618

[18]

D. Riedel, M. L. Bocquet, H. Lesnard, M. Lastapis, N. Lorente, P. Sonnet, and G. Dujardin, J. Am. Chem. Soc., 2009, 131: 7344

[19]

A. D. Zhao, Q. X. Li, L. Chen, H. J. Xiang, W. H. Wang, S. Pan, B. Wang, X. D. Xiao, J. L. Yang, J. G. Hou, and Q. S. Zhu, Science, 2005, 309: 1542

[20]

R. Gomer, Rep. Prog. Phys., 1990, 53: 917

[21]

E. G. Seebauer and C. E. Allen, Prog. Surf. Sci., 1995, 49: 265

[22]

T. T. Tsong, Prog. Surf. Sci., 2000, 64: 199

[23]

J. V. Barth, Surf. Sci. Rep., 2000, 40: 75

[24]

T. Ala-Nissila, R. Ferrando, and S. C. Ying, Adv. Phys., 2002, 51: 949

[25]

S. Arrhenius, Zeit. Phys. Chem., 1889, 4: 226

[26]

A. Fick, Ann. Phys., 1855, 170: 59

[27]

L. S. Darken, Trans. Am. Inst. Mineral. Met. Eng., 1948, 175: 184

[28]

R. Lewis and R. Gomer, Nuovo Cimento, 1967, Suppl. I 5: 506

[29]

R. Gomer, Appl. Phys. A, 1986, 39: 1

[30]

J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, Phys. Rev. Lett., 1988, 61: 2778

[31]

J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, J. Chem. Phys., 1990, 93: 9113

[32]

V. J. Kwasniewski and L. D. Schmidt, Surf. Sci., 1992, 274: 329

[33]

H. Froitzheim and M. Schulze, Surf. Sci., 1994, 320: 85

[34]

X. D. Zhu, Th. Rasing, and Y. R. Shen, Phys. Rev. Lett., 1988, 61: 2883

[35]

J. W. Ma, X. D. Xiao, N. J. DiNardo, and M. M. T. Loy, Phys. Rev. B, 1998, 58: 4977

[36]

J. W. Ma, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 436: L661

[37]

J. W. Ma, L. Cai, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 425: 131

[38]

X. R. Wang, X. Xiao, and Z. Zhang, Surf. Sci., 2002, 512: L361

[39]

G. Binnig, H. Fuchs, and E. Stoll, Surf. Sci., 1986, 169: L295

[40]

M. L. Lozano and M. C. Tringides, Europhys. Lett., 1995, 30: 537

[41]

S. Renisch, R. Schuster, J. Wintterlin, and G. Ertl, Phys. Rev. Lett., 1999, 82: 3839

[42]

S. Horch, H. T. Lorensen, S. Helveg, E. Laegsgaard, I. Stensgaard, K. W. Jacobsen, J. K. Nøskov, and F. Besenbacher, Nature (London), 1999, 398: 134

[43]

R. Schaub, E. Wahlstrom, A. Ronnau, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2003, 299: 377

[44]

E. Wahlstrom, E. K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2004, 303: 511

[45]

R. M. Trump, R. J. Hamers, and J. E. Demuth, Phys. Rev. B, 1986, 34: 1388

[46]

P. Sobotík, P. Kocán, and I. Ošt’ádal, Surf. Sci., 2003, 537: L442

[47]

K. D. Wang, G. Chen, C. Zhang, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2008, 101: 266107

[48]

C. Zhang, G. Chen, K. D. Wang, H. W. Yang, T. Su, C. T. Chan, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 176104

[49]

G. Chen, X. D. Xiao, Y. Kawazoe, X. G. Gong, and C. T. Chan, Phys. Rev. B, 2009, 79: 115301

[50]

K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, Surf. Sci., 1985, 164: 367

[51]

J. L. Li, J. F. Jia, X. J. Liang, X. Liu, J. Z. Wang, Q. K. Xue, Z. Q. Li, J. S. Tse, Z. Zhang, and S. B. Zhang, Phys. Rev. Lett., 2002, 88: 066101

[52]

O. Custance, S. Brochard, I. Brihuega, E. Artacho, J. M. Soler, A. M. Baró and J. M. Gómez-Rodríguez, Phys. Rev. B, 2003, 67: 235410

[53]

K. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, K. S. Nakayama, Q. K. Xue, E. G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S. B. Zhang, and T. Sakurai, Phys. Rev. Lett., 2003, 91: 126101

[54]

C. M. Chang and C. M. Wei, Phys. Rev. B, 2003, 67: 033309

[55]

P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864

[56]

W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133

[57]

K. Cho and E. Kaxiras, Europhys. Lett., 1997, 39: 287

[58]

K. Cho and E. Kaxiras, Surf. Sci., 1998, 396: L261

[59]

K. D. Wang, F. F. Ming, Q. Huang, X. Q. Zhang, and X. D. Xiao, Surf. Sci., 2010, 604: 322

[60]

M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7245

[61]

M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7255

[62]

H. R. Siddiqui, X. Guo, I. Chorkendorff, and J. T. Yates Jr., Surf. Sci., 1987, 191: L813

[63]

D. M. Collins and W. E. Spicer, Surf. Sci., 1977, 69: 85

[64]

J. S. Luo, R. G. Tobin, D. K. Lambert, G. B. Fisher, and C. L. Dimaggio, Surf. Sci., 1992, 274: 53

[65]

X. F. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J. L. Yang, and J. G. Hou, J. Chem. Phys., 2008, 129: 044703

[66]

L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H.G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209

[67]

Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101

[68]

R. L. Carroll and C. B. Gorman, Angew. Chem. Int. Ed., 2002, 41: 4378

[69]

J. A. Stroscio, F. Tavazza, J. N. Crain, R. J. Celotta, and A. M. Chaka, Science, 2006, 313: 948

[70]

Y. F. Wang, X. Ge, G. Schull, R. Berndt, H. Tang, C. Bornholdt, F. Koehler, and Ra. Herges, J. Am. Chem. Soc., 2010, 132: 1196

[71]

Y. F. Wang, J. Kroger, R. Berndt, and W. A. Hofer, J. Am. Chem. Soc., 2009, 131: 3639

[72]

Y. F. Wang, X. Ge, G. Schull, R. Berndt, C. Bornholdt, F. Koehler, and R. J. Herges, J. Am. Chem. Soc., 2008, 130: 4218

[73]

T. Komeda, Y. Kim, Y. Fujita, Y. Sainoo, and M. Kawai, J. Chem. Phys., 2004, 120: 15

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (567KB)

1124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/