Surface dynamics studied by time-dependent tunneling current
, ,
Surface dynamics studied by time-dependent tunneling current
Scanning tunneling microscopy (STM) is not only an excellent tool for the study of static geometric structures and electronic structures of surfaces due to its high spatial and energy resolution, but also a powerful tool for the study of surface dynamic behaviors, including surface diffusion, molecular rotation, and surface chemical reactions. Because of the limitation of the scanning speed, the video-STM technique cannot study the fast dynamic processes. Alternatively, a time-dependent tunneling current, I–t curve, method is employed in the research of fast dynamic processes. Usually, this method can detect about 1000 times faster dynamic processes than the traditional video-STM method. When placing the STM tip over a certain interesting position on the sample surface, the changing of tunneling current induced by the surface dynamic phenomena can be recorded as a function of time. In this article, we review the applications of the time-dependent tunneling current method to the studies of surface dynamic phenomena in recent years, especially on surface diffusion, molecular rotation, molecular switching, and chemical reaction.
scanning tunneling microscopy (STM) / surface dynamics / surface diffusion / molecular rotation / surface chemical reactions
[1] |
R. W. Roberts and L. E. St. Pierre, Science, 1965, 147: 1529
CrossRef
ADS
Google scholar
|
[2] |
K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, New York: Wiley, 2008
|
[3] |
G. Binnig and H. Rohrer, Helv. Phys. Acta, 1982, 55: 726
|
[4] |
I. Brodie, Surf. Sci., 1978, 70: 186
CrossRef
ADS
Google scholar
|
[5] |
H. Heinzelmann, F. Watanabe, and G. M. McClelland, Phys. Rev. Lett., 1993, 70: 3611
CrossRef
ADS
Google scholar
|
[6] |
I. M. Mikhailovskij, E. V. Sadanov, T. I. Mazilova, V. A. Ksenofontov, and O. A. Velicodnaja, Phys. Rev. B, 2009, 80: 165404
CrossRef
ADS
Google scholar
|
[7] |
T. T. Tsong and E. W. Müller, Phys. Rev., 1969, 181: 530
CrossRef
ADS
Google scholar
|
[8] |
T. T Tsong and E. W. Müller, Phys. Rev. Lett., 1970, 25: 911
CrossRef
ADS
Google scholar
|
[9] |
D. B. Joag, P. L. Kanitkar, M. M. Kanitkar, and V. M. Shukla, Bull. Mater. Sci., 1984, 6: 573
CrossRef
ADS
Google scholar
|
[10] |
E. Ganz, S. K. Theiss, I. S. Hwang, and J. Golovchenko, Phys. Revs. Lett., 1992, 68: 1567
CrossRef
ADS
Google scholar
|
[11] |
B. S. Swartzentruber, Phys. Rev. Lett., 1996, 76: 459
CrossRef
ADS
Google scholar
|
[12] |
K. D. Wang, C. Zhang, M.T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 036103
CrossRef
ADS
Google scholar
|
[13] |
B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev. Lett., 1998, 81: 1263
CrossRef
ADS
Google scholar
|
[14] |
G. Dujardin, R. E. Walkup, and P. Avouris, Science, 1992, 255: 1232
CrossRef
ADS
Google scholar
|
[15] |
R. Martel, P. Avouris, and I. W. Lyo, Science, 1996, 272: 385
CrossRef
ADS
Google scholar
|
[16] |
T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Walkup, Science, 1995, 268: 1590
CrossRef
ADS
Google scholar
|
[17] |
K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B. Y. K. Hu, F. Perez-Murano, and F. Grey, Phys. Rev. Lett., 1998, 80: 2618
CrossRef
ADS
Google scholar
|
[18] |
D. Riedel, M. L. Bocquet, H. Lesnard, M. Lastapis, N. Lorente, P. Sonnet, and G. Dujardin, J. Am. Chem. Soc., 2009, 131: 7344
CrossRef
ADS
Google scholar
|
[19] |
A. D. Zhao, Q. X. Li, L. Chen, H. J. Xiang, W. H. Wang, S. Pan, B. Wang, X. D. Xiao, J. L. Yang, J. G. Hou, and Q. S. Zhu, Science, 2005, 309: 1542
CrossRef
ADS
Google scholar
|
[20] |
R. Gomer, Rep. Prog. Phys., 1990, 53: 917
CrossRef
ADS
Google scholar
|
[21] |
E. G. Seebauer and C. E. Allen, Prog. Surf. Sci., 1995, 49: 265
CrossRef
ADS
Google scholar
|
[22] |
T. T. Tsong, Prog. Surf. Sci., 2000, 64: 199
CrossRef
ADS
Google scholar
|
[23] |
J. V. Barth, Surf. Sci. Rep., 2000, 40: 75
CrossRef
ADS
Google scholar
|
[24] |
T. Ala-Nissila, R. Ferrando, and S. C. Ying, Adv. Phys., 2002, 51: 949
CrossRef
ADS
Google scholar
|
[25] |
S. Arrhenius, Zeit. Phys. Chem., 1889, 4: 226
|
[26] |
A. Fick, Ann. Phys., 1855, 170: 59
|
[27] |
L. S. Darken, Trans. Am. Inst. Mineral. Met. Eng., 1948, 175: 184
|
[28] |
R. Lewis and R. Gomer, Nuovo Cimento, 1967, Suppl. I 5: 506
|
[29] |
R. Gomer, Appl. Phys. A, 1986, 39: 1
CrossRef
ADS
Google scholar
|
[30] |
J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, Phys. Rev. Lett., 1988, 61: 2778
CrossRef
ADS
Google scholar
|
[31] |
J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, J. Chem. Phys., 1990, 93: 9113
CrossRef
ADS
Google scholar
|
[32] |
V. J. Kwasniewski and L. D. Schmidt, Surf. Sci., 1992, 274: 329
CrossRef
ADS
Google scholar
|
[33] |
H. Froitzheim and M. Schulze, Surf. Sci., 1994, 320: 85
CrossRef
ADS
Google scholar
|
[34] |
X. D. Zhu, Th. Rasing, and Y. R. Shen, Phys. Rev. Lett., 1988, 61: 2883
CrossRef
ADS
Google scholar
|
[35] |
J. W. Ma, X. D. Xiao, N. J. DiNardo, and M. M. T. Loy, Phys. Rev. B, 1998, 58: 4977
CrossRef
ADS
Google scholar
|
[36] |
J. W. Ma, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 436: L661
CrossRef
ADS
Google scholar
|
[37] |
J. W. Ma, L. Cai, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 425: 131
CrossRef
ADS
Google scholar
|
[38] |
X. R. Wang, X. Xiao, and Z. Zhang, Surf. Sci., 2002, 512: L361
CrossRef
ADS
Google scholar
|
[39] |
G. Binnig, H. Fuchs, and E. Stoll, Surf. Sci., 1986, 169: L295
CrossRef
ADS
Google scholar
|
[40] |
M. L. Lozano and M. C. Tringides, Europhys. Lett., 1995, 30: 537
CrossRef
ADS
Google scholar
|
[41] |
S. Renisch, R. Schuster, J. Wintterlin, and G. Ertl, Phys. Rev. Lett., 1999, 82: 3839
CrossRef
ADS
Google scholar
|
[42] |
S. Horch, H. T. Lorensen, S. Helveg, E. Laegsgaard, I. Stensgaard, K. W. Jacobsen, J. K. Nøskov, and F. Besenbacher, Nature (London), 1999, 398: 134
CrossRef
ADS
Google scholar
|
[43] |
R. Schaub, E. Wahlstrom, A. Ronnau, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2003, 299: 377
CrossRef
ADS
Google scholar
|
[44] |
E. Wahlstrom, E. K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2004, 303: 511
CrossRef
ADS
Google scholar
|
[45] |
R. M. Trump, R. J. Hamers, and J. E. Demuth, Phys. Rev. B, 1986, 34: 1388
CrossRef
ADS
Google scholar
|
[46] |
P. Sobotík, P. Kocán, and I. Ošt’ádal, Surf. Sci., 2003, 537: L442
CrossRef
ADS
Google scholar
|
[47] |
K. D. Wang, G. Chen, C. Zhang, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2008, 101: 266107
CrossRef
ADS
Google scholar
|
[48] |
C. Zhang, G. Chen, K. D. Wang, H. W. Yang, T. Su, C. T. Chan, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 176104
CrossRef
ADS
Google scholar
|
[49] |
G. Chen, X. D. Xiao, Y. Kawazoe, X. G. Gong, and C. T. Chan, Phys. Rev. B, 2009, 79: 115301
CrossRef
ADS
Google scholar
|
[50] |
K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, Surf. Sci., 1985, 164: 367
CrossRef
ADS
Google scholar
|
[51] |
J. L. Li, J. F. Jia, X. J. Liang, X. Liu, J. Z. Wang, Q. K. Xue, Z. Q. Li, J. S. Tse, Z. Zhang, and S. B. Zhang, Phys. Rev. Lett., 2002, 88: 066101
CrossRef
ADS
Google scholar
|
[52] |
O. Custance, S. Brochard, I. Brihuega, E. Artacho, J. M. Soler, A. M. Baró and J. M. Gómez-Rodríguez, Phys. Rev. B, 2003, 67: 235410
CrossRef
ADS
Google scholar
|
[53] |
K. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, K. S. Nakayama, Q. K. Xue, E. G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S. B. Zhang, and T. Sakurai, Phys. Rev. Lett., 2003, 91: 126101
CrossRef
ADS
Google scholar
|
[54] |
C. M. Chang and C. M. Wei, Phys. Rev. B, 2003, 67: 033309
CrossRef
ADS
Google scholar
|
[55] |
P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864
CrossRef
ADS
Google scholar
|
[56] |
W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133
CrossRef
ADS
Google scholar
|
[57] |
K. Cho and E. Kaxiras, Europhys. Lett., 1997, 39: 287
CrossRef
ADS
Google scholar
|
[58] |
K. Cho and E. Kaxiras, Surf. Sci., 1998, 396: L261
CrossRef
ADS
Google scholar
|
[59] |
K. D. Wang, F. F. Ming, Q. Huang, X. Q. Zhang, and X. D. Xiao, Surf. Sci., 2010, 604: 322
CrossRef
ADS
Google scholar
|
[60] |
M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7245
CrossRef
ADS
Google scholar
|
[61] |
M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7255
CrossRef
ADS
Google scholar
|
[62] |
H. R. Siddiqui, X. Guo, I. Chorkendorff, and J. T. Yates Jr., Surf. Sci., 1987, 191: L813
CrossRef
ADS
Google scholar
|
[63] |
D. M. Collins and W. E. Spicer, Surf. Sci., 1977, 69: 85
CrossRef
ADS
Google scholar
|
[64] |
J. S. Luo, R. G. Tobin, D. K. Lambert, G. B. Fisher, and C. L. Dimaggio, Surf. Sci., 1992, 274: 53
CrossRef
ADS
Google scholar
|
[65] |
X. F. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J. L. Yang, and J. G. Hou, J. Chem. Phys., 2008, 129: 044703
CrossRef
ADS
Google scholar
|
[66] |
L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H.G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209
CrossRef
ADS
Google scholar
|
[67] |
Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101
CrossRef
ADS
Google scholar
|
[68] |
R. L. Carroll and C. B. Gorman, Angew. Chem. Int. Ed., 2002, 41: 4378
CrossRef
ADS
Google scholar
|
[69] |
J. A. Stroscio, F. Tavazza, J. N. Crain, R. J. Celotta, and A. M. Chaka, Science, 2006, 313: 948
CrossRef
ADS
Google scholar
|
[70] |
Y. F. Wang, X. Ge, G. Schull, R. Berndt, H. Tang, C. Bornholdt, F. Koehler, and Ra. Herges, J. Am. Chem. Soc., 2010, 132: 1196
CrossRef
ADS
Google scholar
|
[71] |
Y. F. Wang, J. Kroger, R. Berndt, and W. A. Hofer, J. Am. Chem. Soc., 2009, 131: 3639
CrossRef
ADS
Google scholar
|
[72] |
Y. F. Wang, X. Ge, G. Schull, R. Berndt, C. Bornholdt, F. Koehler, and R. J. Herges, J. Am. Chem. Soc., 2008, 130: 4218
CrossRef
ADS
Google scholar
|
[73] |
T. Komeda, Y. Kim, Y. Fujita, Y. Sainoo, and M. Kawai, J. Chem. Phys., 2004, 120: 15
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |