Corrugated single layer templates for molecules: From
, Mario THOMANN, Jeanette SCHMIDLIN, Silvan ROTH, Martin MORSCHER, Thomas GREBER
Corrugated single layer templates for molecules: From
Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium or ruthenium these superstructures have unit cells with ~3-nm lattice constant. They are corrugated and contain sub-units, which behave like traps for molecules or quantum dots, which are small enough to become operational at room temperature. For graphene on Rh(111) we emphasize a new structural element of small extra hills within the corrugation landscape. For the case of molecules like water it is shown that new phases assemble on such templates, and that they can be used as “nano-laboratories” where many individual processes are studied in parallel. Furthermore, it is shown that the h-BN/Rh(111) nanomesh displays a strong scanning tunneling microscopy-induced luminescence contrast within the 3 nm unit cell which is a way to address trapped molecules and/or quantum dots.
hexagonal boron nitride / graphene / nano-template / quantum dot / nano-ice / nanomesh / electroluminescence
[1] |
A. K. Geim and K. S. Novoselov, Nature Mater., 2007, 6: 183
CrossRef
ADS
Google scholar
|
[2] |
C. Oshima and A. Nagashima, J. Phys.: Condens. Matter, 1997, 9: 1
CrossRef
ADS
Google scholar
|
[3] |
T. Greber, Handbook of Nanophysics: Functional Nanomaterials, London: Taylor & Francis Books, 2010
|
[4] |
H. Dil, J. Lobo-Checa, R. Laskowski, P. Blaha, S. Berner, J. Osterwalder, and T. Greber, Science, 2008, 319: 1824
CrossRef
ADS
Google scholar
|
[5] |
T. Brugger, S. Günther, B. Wang, J. H. Dil, M. L. Bocquet, J. Osterwalder, J. Wintterlin, and T. Greber, Phys. Rev. B, 2009, 79: 045407
CrossRef
ADS
Google scholar
|
[6] |
T. Greber, e-J. Surf. Sci. Nanotech., 2010, 8: 62
CrossRef
ADS
Google scholar
|
[7] |
M. Morscher, M. Corso, T. Greber, and J. Osterwalder, Sur. Sci., 2006, 600: 3280
CrossRef
ADS
Google scholar
|
[8] |
T. Greber, M. Corso, and J. Osterwalder, Sur. Sci., 2009, 603: 1373
CrossRef
ADS
Google scholar
|
[9] |
A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett., 2006, 97: 215501
CrossRef
ADS
Google scholar
|
[10] |
M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Science, 2004, 303: 217
CrossRef
ADS
Google scholar
|
[11] |
S. Berner, M. Corso, R. Widmer, O. Groening, R. Laskowski, P. Blaha, K. Schwarz, A. Goriachko, H. Over, S. Gsell,
CrossRef
ADS
Google scholar
|
[12] |
H. G. Zhang, H. Hu, Y. Pan, J. H. Mao, M. Gao, H. M. Guo, S. X. Du, T. Greber, and H. J. Gao, J. Phys.: Condens. Matter, 2010, 22: 302001
CrossRef
ADS
Google scholar
|
[13] |
A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, Phys. Rev. B, 2008, 78: 073401
CrossRef
ADS
Google scholar
|
[14] |
W. Auwärter, T. J. Kreutz, T. Greber, and J. Osterwalder, Sur. Sci., 1999, 429: 229
CrossRef
ADS
Google scholar
|
[15] |
G. B. Grad, P. Blaha, K. Schwarz, W. Aüwarter, and T. Greber, Phys. Rev. B, 2003, 68: 085404
CrossRef
ADS
Google scholar
|
[16] |
I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 2007, 78: 013705
|
[17] |
F. Müller, H. Sachdev, S. Hüfner, A. J. Pollard, E. W. Perkins, J. C. Russell, P. H. Beton, S. Gsell, M. Fischer, M. Schreck,
CrossRef
ADS
Google scholar
|
[18] |
M. Iannuzzi, Private Communication
|
[19] |
H. F. Ma, T. Brugger, S. Berner, Y. Ding, M. Iannuzzi, J. Hutter, J. Osterwalder, and T. Greber, ChemPhysChem, 2010, 11: 399
CrossRef
ADS
Google scholar
|
[20] |
A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner,
CrossRef
ADS
Google scholar
|
[21] |
J. H. Mao, H. G. Zhang, Y. H. Jiang, Y. Pan, M. Gao, W. D. Xiao, and H. J. Gao, J. Am. Chem. Soc., 2009, 131: 14136
CrossRef
ADS
Google scholar
|
[22] |
J. Zhang, V. Sessi, C. H. Michaelis, I. Brihuega, J. Honolka, K. Kern, R. Skomski, X. Chen, G. Rojas, and A. Enders, Phys. Rev. B, 2008, 78: 165430
CrossRef
ADS
Google scholar
|
[23] |
Y. Pan, M. Gao, L. Huang, F. Liu, and H. J. Gao, Appl. Phys. Lett., 2009, 95: 093106
CrossRef
ADS
Google scholar
|
[24] |
A. Goriachko, Y. B. He, M. Knapp, H. Over, M. Corso, T. Brugger, S. Berner, J. Osterwalder, and T. Greber, Langmuir, 2007, 23: 2928
CrossRef
ADS
Google scholar
|
[25] |
R. Laskowski, P. Blaha, T. Gallauner, and K. Schwarz, Phys. Rev. Lett., 2007, 98: 106802
CrossRef
ADS
Google scholar
|
[26] |
J. K. Gimzewski, B. Reihl, J. H. Coombs, and R. R. Schlittler, Z. Phys. B: Condens. Matter, 1988, 72: 497
CrossRef
ADS
Google scholar
|
[27] |
S. W. Wu, N. Ogawa, and W. Ho, Science, 2006, 312: 1362
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |