Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays

, Mario THOMANN, Jeanette SCHMIDLIN, Silvan ROTH, Martin MORSCHER, Thomas GREBER

PDF(249 KB)
PDF(249 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 387-392. DOI: 10.1007/s11467-010-0137-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays

Author information +
History +

Abstract

Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium or ruthenium these superstructures have unit cells with ~3-nm lattice constant. They are corrugated and contain sub-units, which behave like traps for molecules or quantum dots, which are small enough to become operational at room temperature. For graphene on Rh(111) we emphasize a new structural element of small extra hills within the corrugation landscape. For the case of molecules like water it is shown that new phases assemble on such templates, and that they can be used as “nano-laboratories” where many individual processes are studied in parallel. Furthermore, it is shown that the h-BN/Rh(111) nanomesh displays a strong scanning tunneling microscopy-induced luminescence contrast within the 3 nm unit cell which is a way to address trapped molecules and/or quantum dots.

Keywords

hexagonal boron nitride / graphene / nano-template / quantum dot / nano-ice / nanomesh / electroluminescence

Cite this article

Download citation ▾
, Mario THOMANN, Jeanette SCHMIDLIN, Silvan ROTH, Martin MORSCHER, Thomas GREBER. Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays. Front Phys Chin, 2010, 5(4): 387‒392 https://doi.org/10.1007/s11467-010-0137-0

References

[1]
A. K. Geim and K. S. Novoselov, Nature Mater., 2007, 6: 183
CrossRef ADS Google scholar
[2]
C. Oshima and A. Nagashima, J. Phys.: Condens. Matter, 1997, 9: 1
CrossRef ADS Google scholar
[3]
T. Greber, Handbook of Nanophysics: Functional Nanomaterials, London: Taylor & Francis Books, 2010
[4]
H. Dil, J. Lobo-Checa, R. Laskowski, P. Blaha, S. Berner, J. Osterwalder, and T. Greber, Science, 2008, 319: 1824
CrossRef ADS Google scholar
[5]
T. Brugger, S. Günther, B. Wang, J. H. Dil, M. L. Bocquet, J. Osterwalder, J. Wintterlin, and T. Greber, Phys. Rev. B, 2009, 79: 045407
CrossRef ADS Google scholar
[6]
T. Greber, e-J. Surf. Sci. Nanotech., 2010, 8: 62
CrossRef ADS Google scholar
[7]
M. Morscher, M. Corso, T. Greber, and J. Osterwalder, Sur. Sci., 2006, 600: 3280
CrossRef ADS Google scholar
[8]
T. Greber, M. Corso, and J. Osterwalder, Sur. Sci., 2009, 603: 1373
CrossRef ADS Google scholar
[9]
A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett., 2006, 97: 215501
CrossRef ADS Google scholar
[10]
M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Science, 2004, 303: 217
CrossRef ADS Google scholar
[11]
S. Berner, M. Corso, R. Widmer, O. Groening, R. Laskowski, P. Blaha, K. Schwarz, A. Goriachko, H. Over, S. Gsell, , Angew. Chem. Int. Ed., 2007, 46: 5115
CrossRef ADS Google scholar
[12]
H. G. Zhang, H. Hu, Y. Pan, J. H. Mao, M. Gao, H. M. Guo, S. X. Du, T. Greber, and H. J. Gao, J. Phys.: Condens. Matter, 2010, 22: 302001
CrossRef ADS Google scholar
[13]
A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, Phys. Rev. B, 2008, 78: 073401
CrossRef ADS Google scholar
[14]
W. Auwärter, T. J. Kreutz, T. Greber, and J. Osterwalder, Sur. Sci., 1999, 429: 229
CrossRef ADS Google scholar
[15]
G. B. Grad, P. Blaha, K. Schwarz, W. Aüwarter, and T. Greber, Phys. Rev. B, 2003, 68: 085404
CrossRef ADS Google scholar
[16]
I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 2007, 78: 013705
[17]
F. Müller, H. Sachdev, S. Hüfner, A. J. Pollard, E. W. Perkins, J. C. Russell, P. H. Beton, S. Gsell, M. Fischer, M. Schreck, , Small, 2009, 5: 2291
CrossRef ADS Google scholar
[18]
M. Iannuzzi, Private Communication
[19]
H. F. Ma, T. Brugger, S. Berner, Y. Ding, M. Iannuzzi, J. Hutter, J. Osterwalder, and T. Greber, ChemPhysChem, 2010, 11: 399
CrossRef ADS Google scholar
[20]
A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner, , Angew. Chem. Int. Edit., 2010, 49: 1794
CrossRef ADS Google scholar
[21]
J. H. Mao, H. G. Zhang, Y. H. Jiang, Y. Pan, M. Gao, W. D. Xiao, and H. J. Gao, J. Am. Chem. Soc., 2009, 131: 14136
CrossRef ADS Google scholar
[22]
J. Zhang, V. Sessi, C. H. Michaelis, I. Brihuega, J. Honolka, K. Kern, R. Skomski, X. Chen, G. Rojas, and A. Enders, Phys. Rev. B, 2008, 78: 165430
CrossRef ADS Google scholar
[23]
Y. Pan, M. Gao, L. Huang, F. Liu, and H. J. Gao, Appl. Phys. Lett., 2009, 95: 093106
CrossRef ADS Google scholar
[24]
A. Goriachko, Y. B. He, M. Knapp, H. Over, M. Corso, T. Brugger, S. Berner, J. Osterwalder, and T. Greber, Langmuir, 2007, 23: 2928
CrossRef ADS Google scholar
[25]
R. Laskowski, P. Blaha, T. Gallauner, and K. Schwarz, Phys. Rev. Lett., 2007, 98: 106802
CrossRef ADS Google scholar
[26]
J. K. Gimzewski, B. Reihl, J. H. Coombs, and R. R. Schlittler, Z. Phys. B: Condens. Matter, 1988, 72: 497
CrossRef ADS Google scholar
[27]
S. W. Wu, N. Ogawa, and W. Ho, Science, 2006, 312: 1362
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(249 KB)

Accesses

Citations

Detail

Sections
Recommended

/