Anisotropic hybridization dynamics in the quasi-one-dimensional Kondo lattice CeCo2Ga8 revealed by ultrafast optical spectroscopy

Ba-Lei Tan, Chen Zhang, Qi-Yi Wu, Guo-Hao Dong, Hao Liu, Bo Chen, Jiao-Jiao Song, Xin-Yi Tian, Ying Zhou, Hai-Yun Liu, Yu-Xia Duan, You-Guo Shi, Jian-Qiao Meng

Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044208.

PDF(13452 KB)
PDF(13452 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044208. DOI: 10.15302/frontphys.2025.044208
RESEARCH ARTICLE

Anisotropic hybridization dynamics in the quasi-one-dimensional Kondo lattice CeCo2Ga8 revealed by ultrafast optical spectroscopy

Author information +
History +

Abstract

We investigate the ultrafast dynamics of the quasi-one-dimensional Kondo lattice CeCo2Ga8 using optical pump-probe spectroscopy. Time-resolved pump-probe reflectivity measurements reveal a strong anisotropy in the photoinduced response, which is a direct consequence of the material’s unique electronic structure. The temperature dependence of the relaxation dynamics provides evidence for the formation of two distinct hybridization gaps that appear at different temperatures in the heavy fermion state. A direct gap of 2Δdir 50 meV that persists up to T 90 K, well above the coherence temperature T 20 K. We attribute this higher-temperature gap to the hybridization fluctuations. An indirect gap of 2Δ ind 14 meV opens closer to T, signifying the development of long-range coherence in the heavy fermion state. Furthermore, we find that the hybridization gap can be suppressed with increasing pump fluence, indicating a delicate interplay between photoexcitation and the coherent heavy fermion state. Our results provide insights into the interplay of Kondo physics and low dimensionality in CeCo2Ga8, and establish ultrafast optical spectroscopy as a sensitive probe of anisotropic hybridization in heavy fermion materials.

Graphical abstract

Keywords

hybridization / heavy fermion / ultrafast optical spectroscopy / quasi-one-dimensional

Cite this article

Download citation ▾
Ba-Lei Tan, Chen Zhang, Qi-Yi Wu, Guo-Hao Dong, Hao Liu, Bo Chen, Jiao-Jiao Song, Xin-Yi Tian, Ying Zhou, Hai-Yun Liu, Yu-Xia Duan, You-Guo Shi, Jian-Qiao Meng. Anisotropic hybridization dynamics in the quasi-one-dimensional Kondo lattice CeCo2Ga8 revealed by ultrafast optical spectroscopy. Front. Phys., 2025, 20(4): 044208 https://doi.org/10.15302/frontphys.2025.044208

References

[1]
Y. Yang, Heavy fermion quantum criticality: The party is just beginning, Sci. China Phys. Mech. Astron. 63(11), 117431 (2020)
CrossRef ADS Google scholar
[2]
L. Taillefer, How the heaviest electrons pair up, Nat. Phys. 9(8), 458 (2013)
CrossRef ADS Google scholar
[3]
Y. Haga, E. Yamamoto, Y. Tokiwa, D. Aoki, Y. Inada, R. Settai, T. Maehira, H. Yamagami, H. Harima, and Y. Ōnuki, Fermi surface study on uranium-based intermetallic compounds, J. Nucl. Sci. Technol. 39(Suppl. 3), 56 (2002)
CrossRef ADS Google scholar
[4]
A. Koitzsch, S. V. Borisenko, D. Inosov, J. Geck, V. B. Zabolotnyy, H. Shiozawa, M. Knupfer, J. Fink, B. Büchner, E. D. Bauer, J. L. Sarrao, and R. Follath, Observing the heavy fermions in CeCoIn5 by angle-resolved photoemission, Physica C 460−462, 666 (2007)
CrossRef ADS Google scholar
[5]
Q. Y. Chen, D. F. Xu, X. H. Niu, J. Jiang, R. Peng, H. C. Xu, C. H. P. Wen, Z. F. Ding, K. Huang, L. Shu, Y. J. Zhang, H. Lee, V. N. Strocov, M. Shi, F. Bisti, T. Schmitt, Y. B. Huang, P. Dudin, X. C. Lai, S. Kirchner, H. Q. Yuan, and D. L. Feng, Direct observation of how the heavy-fermion state develops in CeCoIn5, Phys. Rev. B 96(4), 045107 (2017)
CrossRef ADS arXiv Google scholar
[6]
Q. Y. Chen, D. F. Xu, X. H. Niu, R. Peng, H. C. Xu, C. H. P. Wen, X. Liu, L. Shu, S. Y. Tan, X. C. Lai, Y. J. Zhang, H. Lee, V. N. Strocov, F. Bisti, P. Dudin, J. X. Zhu, H. Q. Yuan, S. Kirchner, and D. L. Feng, Band dependent interlayer f-electron hybridization in CeRhIn5, Phys. Rev. Lett. 120(6), 066403 (2018)
CrossRef ADS arXiv Google scholar
[7]
S. Jang, J. D. Denlinger, J. W. Allen, V. S. Zapf, M. B. Maple, J. N. Kim, B. G. Jang, and J. H. Shim, Evolution of the Kondo lattice electronic structure above the transport coherence temperature, Proc. Natl. Acad. Sci. USA 117(38), 23467 (2020)
CrossRef ADS arXiv Google scholar
[8]
Y. Luo, C. Zhang, Q. Wu, F. Wu, J. Song, W. Xia, Y. Guo, J. A. Rusz, P. M. Oppeneer, T. Durakiewicz, Y. Zhao, H. Liu, S. Zhu, Y. Yuan, X. Tang, J. He, S. Tan, Y. B. Huang, Z. Sun, Y. Liu, H. Y. Liu, Y. Duan, and J. Meng, Three-dimensional and temperature-dependent electronic structure of the heavy-fermion compound CePt2In7 studied by angle-resolved photoemission spectroscopy, Phys. Rev. B 101(11), 115129 (2020)
CrossRef ADS arXiv Google scholar
[9]
P. Li, H. Ye, Y. Hu, Y. Fang, Z. Xiao, Z. Wu, Z. Shan, R. P. Singh, G. Balakrishnan, D. Shen, Y. Yang, C. Cao, N. C. Plumb, M. Smidman, M. Shi, J. Kroha, H. Q. Yuan, F. Steglich, and Y. Liu, Photoemission signature of the competition between magnetic order and Kondo effect in CeCoGe3, Phys. Rev. B 107(20), L201104 (2023)
CrossRef ADS arXiv Google scholar
[10]
F. Y. Wu, Q. Y. Wu, C. Zhang, Y. Luo, X. Q. Liu, Y. F. Xu, D. H. Lu, H. Makoto, H. Liu, Y. Z. Zhao, J. J. Song, Y. H. Yuan, H. Liu, J. He, Y. X. Duan, Y. F. Guo, and J. Q. Meng, Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6, Front. Phys. (Beijing) 18(5), 53304 (2023)
CrossRef ADS arXiv Google scholar
[11]
S. Chatterjee, J. P. Ruf, H. I. Wei, K. D. Finkelstein, D. G. Schlom, and K. M. Shen, Lifshitz transition from valence fluctuations in YbAl3, Nat. Commun. 8(1), 852 (2017)
CrossRef ADS arXiv Google scholar
[12]
Y. Z. Zhao, J. J. Song, Q. Y. Wu, H. Liu, C. Zhang, B. Chen, H. Y. Zhang, Z. H. Chen, Y. B. Huang, X. Q. Ye, Y. H. Yuan, Y. X. Duan, J. He, and J. Q. Meng, Experimental observation of the significant difference between surface and bulk Kondo processes in Kondo lattice YbCu2Si2, Sci. China Phys. Mech. Astron. 67(4), 247413 (2024)
CrossRef ADS Google scholar
[13]
X. Y. Ji, X. B. Luo, Q. Y. Chen, W. Feng, Q. Q. Hao, Q. Liu, Y. Zhang, Y. Liu, X. Y. Wang, S. Y. Tan, and X. C. Lai, Direct observation of coexisting Kondo hybridization and antiferromagnetic state in UAs2, Phys. Rev. B 106(12), 125120 (2022)
CrossRef ADS Google scholar
[14]
J. J. Song, C. Zhang, Q. Y. Wu, Y. Z. Zhao, J. Rusz, J. J. Joyce, K. S. Graham, P. S. Riseborough, C. G. Olson, H. Liu, B. Chen, Y. Yuan, Y. Duan, P. H. Tobash, E. D. Bauer, P. M. Oppeneer, T. Durakiewicz, and J. Q. Meng, Relocalization of uranium electrons in the antiferromagnetic heavy-fermion superconductor UPd2Al3: Insights from angle-resolved photoemission spectroscopy, Phys. Rev. B 109(20), 205114 (2024)
CrossRef ADS arXiv Google scholar
[15]
Y. P. Liu, Y. J. Zhang, J. J. Dong, H. Lee, Z. X. Wei, W. L. Zhang, C. Y. Chen, H. Q. Yuan, Y. Yang, and J. Qi, Hybridization dynamics in CeCoIn5 revealed by ultrafast optical spectroscopy, Phys. Rev. Lett. 124(5), 057404 (2020)
CrossRef ADS arXiv Google scholar
[16]
Y. Pei, Y. Wu, K. Hu, Z. Wei, Y. Yang, Y. Liu, and J. Qi, Hybridization-mediated quasiparticle and phonon dynamics in single crystal cerium films, Sci. China Phys. Mech. Astron. 67(4), 247412 (2024)
CrossRef ADS Google scholar
[17]
Y. Z. Zhao, Q. Y. Wu, C. Zhang, B. Chen, W. Xia, J. J. Song, Y. J. Yuan, H. Liu, F. Y. Wu, X. Q. Ye, H. Y. Zhang, H. Huang, H. Y. Liu, Y. X. Duan, Y. F. Guo, J. He, and J. Q. Meng, Coupling of optical phonons with Kondo effect and magnetic order in the antiferromagnetic Kondo-lattice compound CeAuSb2, Phys. Rev. B 108(7), 075115 (2023)
CrossRef ADS arXiv Google scholar
[18]
Y. F. Yang, Z. Fisk, H. O. Lee, J. D. Thompson, and D. Pines, Scaling the Kondo lattice, Nature 454(7204), 611 (2008)
CrossRef ADS Google scholar
[19]
J. Dong and Y. Yang, Development of long-range phase coherence on the Kondo lattice, Phys. Rev. B 106(16), L161114 (2022)
CrossRef ADS arXiv Google scholar
[20]
L. Wang, Z. Fu, J. Sun, M. Liu, W. Yi, C. Yi, Y. Luo, Y. Dai, G. Liu, Y. Matsushita, K. Yamaura, L. Lu, J. G. Cheng, Y. F. Yang, Y. G. Shi, and J. Luo, Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo2Ga8, npj Quantum Mater. 2, 36 (2017)
CrossRef ADS arXiv Google scholar
[21]
K. Cheng, L. Wang, Y. Xu, F. Yang, H. Zhu, J. Ke, X. Lu, Z. Xia, J. Wang, Y. Shi, Y. Yang, and Y. Luo, Realization of Kondo chain in CeCo2Ga8, Phys. Rev. Materials 3, 021402(R) (2019)
CrossRef ADS arXiv Google scholar
[22]
P. Zheng, C. Wang, Y. Xu, L. Wang, W. Wu, Y. Shi, Y. Yang, and J. Luo, Uniaxial hybridization in the quasi-one-dimensional Kondo lattice CeCo2Ga8, Phys. Rev. B 105(3), 035112 (2022)
CrossRef ADS Google scholar
[23]
M. D. Koterlin, B. S. Morokhivski, R. V. Lapunova, and O. M. Sichevich, New CeM2X8CeM2X8-type Condo lattices (M=Fe, Co; X=Al, Ga) (M=Fe, Co; X=Al, Ga), Fizika Tverdogo Tela 31(10), 297 (1989)
[24]
K. Cheng, B. Zhou, C. Wang, S. Zou, Y. Pan, X. He, J. Zhang, F. Lu, L. Wang, Y. Shi, and Y. Luo, Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8, Chin. Phys. B 31(6), 067104 (2022)
CrossRef ADS arXiv Google scholar
[25]
S. Zou,H. Zeng,Z. Wang,G. Dong,X. Guo, F. Lu,Z. Zhu,Y. Shi,Y. Luo, Abnormal planar Hall effect in quasi-1D Kondo chain CeCo2Ga8 and its implications for hybridization dynamics, arXiv: 2024)
arXiv
[26]
A. Bhattacharyya, D. Adroja, J. Lord, L. Wang, Y. Shi, K. Panda, H. Luo, and A. Strydom, Quantum fluctuations in the quasi-one-dimensional non-Fermi liquid system CeCo2Ga8 investigated using μSR, Phys. Rev. B 101(21), 214437 (2020)
CrossRef ADS arXiv Google scholar
[27]
C. Zhang, Q. Y. Wu, W. S. Hong, H. Liu, S. X. Zhu, J. J. Song, Y. Z. Zhao, F. Y. Wu, Z. T. Liu, S. Y. Liu, Y. H. Yuan, H. Huang, J. He, S. L. Li, H. Y. Liu, Y. X. Duan, H. Q. Luo, and J. Q. Meng, Ultrafast optical spectroscopy evidence of pseudogap and electron-phonon coupling in an iron-based superconductor KCa2Fe4As4F2, Sci. China Phys. Mech. Astron. 65(3), 237411 (2022)
CrossRef ADS arXiv Google scholar
[28]
Q. Y. Wu, C. Zhang, B. Z. Li, H. Liu, J. J. Song, B. Chen, H. Y. Liu, Y. X. Duan, J. He, J. Liu, G. H. Cao, J. Q. Meng, Interplay of electron-phonon coupling, and pseudogap , and superconductivity in CsCa2Fe4As4F2 studied using ultrafast optical spectroscopy, Phys. Rev. B 111(8), L081110 (2025)
CrossRef ADS arXiv Google scholar
[29]
V. V. Kabanov, J. Demsar, B. Podobnik, and D. Mihailovic, Quasiparticle relaxation dynamics in superconductors with different gap structures: Theory and experiments on YBa2Cu3O7−δ, Phys. Rev. B 59(2), 1497 (1999)
CrossRef ADS Google scholar
[30]
J. Demsar, R. Averitt, K. Ahn, M. Graf, S. Trugman, V. Kabanov, J. Sarrao, and A. Taylor, Quasiparticle relaxation dynamics in heavy fermion compounds, Phys. Rev. Lett. 91(2), 027401 (2003)
CrossRef ADS Google scholar
[31]
E. E. M. Chia, J. X. Zhu, H. J. Lee, N. Hur, N. O. Moreno, E. D. Bauer, T. Durakiewicz, R. D. Averitt, J. L. Sarrao, and A. J. Taylor, Quasiparticle relaxation across the spin-density-wave gap in the itinerant antiferromagnet UNiGa5, Phys. Rev. B 74, 140409(R) (2006)
CrossRef ADS Google scholar
[32]
J. Demsar, V. K. Thorsmolle, J. L. Sarrao, and A. J. Taylor, Photoexcited electron dynamics in Kondo insulators and heavy fermions, Phys. Rev. Lett. 96(3), 037401 (2006)
CrossRef ADS Google scholar
[33]
J. Demsar, J. L. Sarrao, and A. J. Taylor, Dynamics of photoexcited quasiparticles in heavy electron compounds, J. Phys.: Condens. Matter 18(16), R281 (2006)
CrossRef ADS Google scholar
[34]
See Supplemental Material for additional data analysis on CeCo2Ga8.
[35]
R. Chen, J. Liu, L. Shi, C. Wang, S. Zhang, and N. Wang, Possible orbital crossover in the ferromagnetic Kondo lattice compound CeAgSb2, Phys. Rev. B 99(20), 205107 (2019)
CrossRef ADS Google scholar
[36]
A. Rothwarf and B. Taylor, Measurement of recombination lifetimes in superconductors, Phys. Rev. Lett. 19(1), 27 (1967)
CrossRef ADS Google scholar
[37]
A. R. Pokharel, S. Y. Agustsson, V. V. Kabanov, F. Iga, T. Takabatake, H. Okamura, and J. Demsar, Robust hybridization gap in the Kondo insulator YbB12 probed by femtosecond optical spectroscopy, Phys. Rev. B 103(11), 115134 (2021)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.044208.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074436, U22A6005, and U2032204), the National Key Research and Development Program of China (Grant No. 2022YFA1604204), the Science and Technology Innovation Program of Hunan Province (No. 2022RC3068), and the Natural Science Foundation of Changsha (No. kq2208254).

RIGHTS & PERMISSIONS

2025 Higher Education Press
PDF(13452 KB)

Accesses

Citations

Detail

Sections
Recommended

/