First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions
, Janosch M. C. RAUBA, Kristian S. THYGESEN, Karsten W. JACOBSEN, Michelle Y. SIMMONS, Werner A. HOFER
First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions
The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy (STM) techniques. The theoretical treatment of the STM operation has traditionally been based on the Bardeen and Tersoff–Hamann methods which take as input the single-particle wave functions and eigenvalues obtained from finite cluster or slabs models of the surface-tip interface. Here, we present a novel STM simulation scheme based on non-equilibrium Green’s functions (NEGF) and Wannier functions which is both accurate and very efficient. The main novelty of the scheme compared to the Bardeen and Tersoff–Hamann approaches is that the coupling to the infinite (macroscopic) electrodes is taken into account. As an illustrating example we apply the NEGF-STM method to the Si(001)-(2×1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff–Hamann methods.
STM simulation / non-equilibrium Green’s function / Wannier function
[1] |
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49: 57
CrossRef
ADS
Google scholar
|
[2] |
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1983, 50: 120
CrossRef
ADS
Google scholar
|
[3] |
J. A. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, Science, 2002, 298: 1381
CrossRef
ADS
Google scholar
|
[4] |
C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541
CrossRef
ADS
Google scholar
|
[5] |
H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature, 2000, 403: 512
CrossRef
ADS
Google scholar
|
[6] |
S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett., 2000, 85: 2777
CrossRef
ADS
Google scholar
|
[7] |
S.-W. Hla and K.-H. Rieder, Ann. Rev. Phys. Chem., 2003, 54: 307
CrossRef
ADS
Google scholar
|
[8] |
M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A. Eriksson, and M. Y. Simmons, Nature Nanotechnology, 2010, 5: 502
CrossRef
ADS
Google scholar
|
[9] |
J. Tersoff and D. R. Hamann, Phys. Rev. B, 1981, 31: 805
CrossRef
ADS
Google scholar
|
[10] |
J. Tersoff and D. R. Hamann, Phys. Rev. Lett., 1985, 50: 1988
|
[11] |
W. A. Hofer, G. Ritz, W. Hebenstreit, M. Schmid, P. Varga, J. Redinger, and R. Podloucky, Surf. Sci. Lett., 1998, 405: L514
CrossRef
ADS
Google scholar
|
[12] |
J. Bardeen, Phys. Rev. Lett., 1961, 6: 57
CrossRef
ADS
Google scholar
|
[13] |
W. A. Hofer and J. Redinger, Surf. Sci., 2000, 447: 51
CrossRef
ADS
Google scholar
|
[14] |
K. S. Thygesen and K. W. Jacobsen, Chem. Phys., 2005, 319: 111
CrossRef
ADS
Google scholar
|
[15] |
W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys., 2003, 75: 1287
CrossRef
ADS
Google scholar
|
[16] |
Z. T. Deng, H. Lin, W. Ji, L. Gao, X. Lin, Z. H. Cheng, X. B. He, J. L. Lu, D. X. Shi, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 156102
CrossRef
ADS
Google scholar
|
[17] |
A. Calzolari, N. Marzari, I. Souza, and M. B. Nardelli, Phys. Rev. B, 2004, 69: 035108
CrossRef
ADS
Google scholar
|
[18] |
G. H. Wannier, Phys. Rev., 1937, 52: 191
CrossRef
ADS
Google scholar
|
[19] |
N. Marzari and D. Vanderbilt, Phys. Rev. B, 1997, 56: 12847
CrossRef
ADS
Google scholar
|
[20] |
K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett., 2005, 94: 026405
CrossRef
ADS
Google scholar
|
[21] |
K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 72: 125119
CrossRef
ADS
Google scholar
|
[22] |
K. S. Thygesen, Phys. Rev. B, 2006, 73: 035309
CrossRef
ADS
Google scholar
|
[23] |
C. J. Chen, Introduction to Scanning Tunnelling Microscopy, New York: Oxford University Press, 1993
|
[24] |
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
|
[25] |
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B, 1985, 31: 6207
CrossRef
ADS
Google scholar
|
[26] |
K. Palotás and W. A. Hofer, J. Phys.: Condens. Matter, 2005, 17: 2705
CrossRef
ADS
Google scholar
|
[27] |
A. S. Foster and W. A. Hofer, Scanning Probe Microscopy, Spring Series in NanoScience and Technology, Springer, 2006
|
[28] |
W. A. Hofer and A. J. Fisher, Phys. Rev. Lett., 2003, 91: 036803
CrossRef
ADS
Google scholar
|
[29] |
W. A. Hofer and A. Garcia-Lekue, Phys. Rev. B, 2005, 71: 085401
CrossRef
ADS
Google scholar
|
[30] |
W. A. Hofer, A. Garcia-Lekue, and H. Brune, Chem. Phys. Lett., 2004, 397: 354
CrossRef
ADS
Google scholar
|
[31] |
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Journal of Physics C, 1971, 4: 916
|
[32] |
T. E. Feuchtwang, Phys. Rev. B, 1974, B10: 4135
CrossRef
ADS
Google scholar
|
[33] |
T. E. Feuchtwang, Phys. Rev. B, 1974, 10: 4121
CrossRef
ADS
Google scholar
|
[34] |
T. E. Feuchtwang, Phys. Rev. B, 1976, 13: 517
CrossRef
ADS
Google scholar
|
[35] |
Y. Meir and N. S. Wingreen, Phys. Rev. Lett., 1992, 68: 2512
CrossRef
ADS
Google scholar
|
[36] |
H. Hauge and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Physics, Springer, 1996
|
[37] |
F. Flores, F. Guinea, C. Tejedor, and E. Louis, Phys. Rev. B, 1983, 28: 4397
CrossRef
ADS
Google scholar
|
[38] |
K. Flensberg and H. Bruus, Many-Body Quantum Theory in Condensed Matter Physics, Chapter 8, New York: Oxford University Press, 2004
|
[39] |
S. Garcia-Gil, A. Garcia, N. Lorente, and P. Ordejon, Phys. Rev. B, 2009, 79: 075441
CrossRef
ADS
Google scholar
|
[40] |
L. Liu, J. Yu, and J. W. Lyding, Appl. Phys. Lett., 2001, 78: 386
CrossRef
ADS
Google scholar
|
[41] |
L. Liu, J. Yu, and J. W. Lyding, IEEE Trans. Nanotechnol., 2002, 1: 176
CrossRef
ADS
Google scholar
|
[42] |
G. W. Brown, H. Grube, and M. E. Hawley, Phys. Rev. B, 2004, 70: 121301
CrossRef
ADS
Google scholar
|
[43] |
L. Oberbeck, N. J. Curson, T. Hallam, M. Y. Simmons, and R. G. Clark, Thin Solid Films, 2004, 464: 23
CrossRef
ADS
Google scholar
|
[44] |
J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Appl. Phys. Lett., 1994, 64: 2010
CrossRef
ADS
Google scholar
|
[45] |
S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueβ, T. Hallam, L. Oberbeck, and R. G. Clark, Phys. Rev. Lett., 2003, 91: 136104
CrossRef
ADS
Google scholar
|
[46] |
F. J. Ruess, L. Oberbeck, M. Y. Simmons, K. E. J. Goh, A. R. Hamilton, T. Hallam, S. R. Schofield, N. J. Curson, and R. G. Clark, Nano Lett., 2004, 4: 1969
CrossRef
ADS
Google scholar
|
[47] |
A. Fuhrer, M. Fchsle, T. C. G. Reusch, B. Weber, and M. Y. Simmons, Nano Lett., 2009, 9: 707
CrossRef
ADS
Google scholar
|
[48] |
J. L. O’Brien, S. R. Schofield, M. Y. Simmons, R. G. Clark, A. S. Dzurak, N. J. Curson, B. E. Kane, N. S. McAlpine, M. E. Hawley, and G. W. Brown, Phys. Rev. B, 2001, 64: 161401(R)
CrossRef
ADS
Google scholar
|
[49] |
G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47: 558
CrossRef
ADS
Google scholar
|
[50] |
G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49: 14251
CrossRef
ADS
Google scholar
|
[51] |
G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6: 15
CrossRef
ADS
Google scholar
|
[52] |
G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169
CrossRef
ADS
Google scholar
|
[53] |
J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 71: 035109
CrossRef
ADS
Google scholar
|
[54] |
J. Enkovaara,
|
[55] |
W. A. Hofer, Progr. Surf. Sci., 2003, 71: 147
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |