First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions

Haiping LIN (林海平) , Janosch M. C. RAUBA , Kristian S. THYGESEN , Karsten W. JACOBSEN , Michelle Y. SIMMONS , Werner A. HOFER

Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 369 -379.

PDF (517KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 369 -379. DOI: 10.1007/s11467-010-0133-4
REVIEW ARTICLE

First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions

Author information +
History +
PDF (517KB)

Abstract

The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy (STM) techniques. The theoretical treatment of the STM operation has traditionally been based on the Bardeen and Tersoff–Hamann methods which take as input the single-particle wave functions and eigenvalues obtained from finite cluster or slabs models of the surface-tip interface. Here, we present a novel STM simulation scheme based on non-equilibrium Green’s functions (NEGF) and Wannier functions which is both accurate and very efficient. The main novelty of the scheme compared to the Bardeen and Tersoff–Hamann approaches is that the coupling to the infinite (macroscopic) electrodes is taken into account. As an illustrating example we apply the NEGF-STM method to the Si(001)-(2×1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff–Hamann methods.

Keywords

STM simulation / non-equilibrium Green’s function / Wannier function

Cite this article

Download citation ▾
Haiping LIN (林海平), Janosch M. C. RAUBA, Kristian S. THYGESEN, Karsten W. JACOBSEN, Michelle Y. SIMMONS, Werner A. HOFER. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions. Front. Phys., 2010, 5(4): 369-379 DOI:10.1007/s11467-010-0133-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49: 57

[2]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1983, 50: 120

[3]

J. A. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, Science, 2002, 298: 1381

[4]

C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541

[5]

H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature, 2000, 403: 512

[6]

S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett., 2000, 85: 2777

[7]

S.-W. Hla and K.-H. Rieder, Ann. Rev. Phys. Chem., 2003, 54: 307

[8]

M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A. Eriksson, and M. Y. Simmons, Nature Nanotechnology, 2010, 5: 502

[9]

J. Tersoff and D. R. Hamann, Phys. Rev. B, 1981, 31: 805

[10]

J. Tersoff and D. R. Hamann, Phys. Rev. Lett., 1985, 50: 1988

[11]

W. A. Hofer, G. Ritz, W. Hebenstreit, M. Schmid, P. Varga, J. Redinger, and R. Podloucky, Surf. Sci. Lett., 1998, 405: L514

[12]

J. Bardeen, Phys. Rev. Lett., 1961, 6: 57

[13]

W. A. Hofer and J. Redinger, Surf. Sci., 2000, 447: 51

[14]

K. S. Thygesen and K. W. Jacobsen, Chem. Phys., 2005, 319: 111

[15]

W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys., 2003, 75: 1287

[16]

Z. T. Deng, H. Lin, W. Ji, L. Gao, X. Lin, Z. H. Cheng, X. B. He, J. L. Lu, D. X. Shi, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 156102

[17]

A. Calzolari, N. Marzari, I. Souza, and M. B. Nardelli, Phys. Rev. B, 2004, 69: 035108

[18]

G. H. Wannier, Phys. Rev., 1937, 52: 191

[19]

N. Marzari and D. Vanderbilt, Phys. Rev. B, 1997, 56: 12847

[20]

K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett., 2005, 94: 026405

[21]

K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 72: 125119

[22]

K. S. Thygesen, Phys. Rev. B, 2006, 73: 035309

[23]

C. J. Chen, Introduction to Scanning Tunnelling Microscopy, New York: Oxford University Press, 1993

[24]

S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995

[25]

M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B, 1985, 31: 6207

[26]

K. Palotás and W. A. Hofer, J. Phys.: Condens. Matter, 2005, 17: 2705

[27]

A. S. Foster and W. A. Hofer, Scanning Probe Microscopy, Spring Series in NanoScience and Technology, Springer, 2006

[28]

W. A. Hofer and A. J. Fisher, Phys. Rev. Lett., 2003, 91: 036803

[29]

W. A. Hofer and A. Garcia-Lekue, Phys. Rev. B, 2005, 71: 085401

[30]

W. A. Hofer, A. Garcia-Lekue, and H. Brune, Chem. Phys. Lett., 2004, 397: 354

[31]

C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Journal of Physics C, 1971, 4: 916

[32]

T. E. Feuchtwang, Phys. Rev. B, 1974, B10: 4135

[33]

T. E. Feuchtwang, Phys. Rev. B, 1974, 10: 4121

[34]

T. E. Feuchtwang, Phys. Rev. B, 1976, 13: 517

[35]

Y. Meir and N. S. Wingreen, Phys. Rev. Lett., 1992, 68: 2512

[36]

H. Hauge and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Physics, Springer, 1996

[37]

F. Flores, F. Guinea, C. Tejedor, and E. Louis, Phys. Rev. B, 1983, 28: 4397

[38]

K. Flensberg and H. Bruus, Many-Body Quantum Theory in Condensed Matter Physics, Chapter 8, New York: Oxford University Press, 2004

[39]

S. Garcia-Gil, A. Garcia, N. Lorente, and P. Ordejon, Phys. Rev. B, 2009, 79: 075441

[40]

L. Liu, J. Yu, and J. W. Lyding, Appl. Phys. Lett., 2001, 78: 386

[41]

L. Liu, J. Yu, and J. W. Lyding, IEEE Trans. Nanotechnol., 2002, 1: 176

[42]

G. W. Brown, H. Grube, and M. E. Hawley, Phys. Rev. B, 2004, 70: 121301

[43]

L. Oberbeck, N. J. Curson, T. Hallam, M. Y. Simmons, and R. G. Clark, Thin Solid Films, 2004, 464: 23

[44]

J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Appl. Phys. Lett., 1994, 64: 2010

[45]

S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueβ, T. Hallam, L. Oberbeck, and R. G. Clark, Phys. Rev. Lett., 2003, 91: 136104

[46]

F. J. Ruess, L. Oberbeck, M. Y. Simmons, K. E. J. Goh, A. R. Hamilton, T. Hallam, S. R. Schofield, N. J. Curson, and R. G. Clark, Nano Lett., 2004, 4: 1969

[47]

A. Fuhrer, M. Fchsle, T. C. G. Reusch, B. Weber, and M. Y. Simmons, Nano Lett., 2009, 9: 707

[48]

J. L. O’Brien, S. R. Schofield, M. Y. Simmons, R. G. Clark, A. S. Dzurak, N. J. Curson, B. E. Kane, N. S. McAlpine, M. E. Hawley, and G. W. Brown, Phys. Rev. B, 2001, 64: 161401(R)

[49]

G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47: 558

[50]

G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49: 14251

[51]

G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6: 15

[52]

G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169

[53]

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 71: 035109

[54]

J. Enkovaara, , J. Phys.: Condens. Matter (in press)

[55]

W. A. Hofer, Progr. Surf. Sci., 2003, 71: 147

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (517KB)

1080

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/