First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions

, Janosch M. C. RAUBA, Kristian S. THYGESEN, Karsten W. JACOBSEN, Michelle Y. SIMMONS, Werner A. HOFER

PDF(517 KB)
PDF(517 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 369-379. DOI: 10.1007/s11467-010-0133-4
REVIEW ARTICLE
REVIEW ARTICLE

First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions

Author information +
History +

Abstract

The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy (STM) techniques. The theoretical treatment of the STM operation has traditionally been based on the Bardeen and Tersoff–Hamann methods which take as input the single-particle wave functions and eigenvalues obtained from finite cluster or slabs models of the surface-tip interface. Here, we present a novel STM simulation scheme based on non-equilibrium Green’s functions (NEGF) and Wannier functions which is both accurate and very efficient. The main novelty of the scheme compared to the Bardeen and Tersoff–Hamann approaches is that the coupling to the infinite (macroscopic) electrodes is taken into account. As an illustrating example we apply the NEGF-STM method to the Si(001)-(2×1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff–Hamann methods.

Keywords

STM simulation / non-equilibrium Green’s function / Wannier function

Cite this article

Download citation ▾
, Janosch M. C. RAUBA, Kristian S. THYGESEN, Karsten W. JACOBSEN, Michelle Y. SIMMONS, Werner A. HOFER. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions. Front Phys Chin, 2010, 5(4): 369‒379 https://doi.org/10.1007/s11467-010-0133-4

References

[1]
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49: 57
CrossRef ADS Google scholar
[2]
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1983, 50: 120
CrossRef ADS Google scholar
[3]
J. A. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, Science, 2002, 298: 1381
CrossRef ADS Google scholar
[4]
C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541
CrossRef ADS Google scholar
[5]
H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature, 2000, 403: 512
CrossRef ADS Google scholar
[6]
S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett., 2000, 85: 2777
CrossRef ADS Google scholar
[7]
S.-W. Hla and K.-H. Rieder, Ann. Rev. Phys. Chem., 2003, 54: 307
CrossRef ADS Google scholar
[8]
M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A. Eriksson, and M. Y. Simmons, Nature Nanotechnology, 2010, 5: 502
CrossRef ADS Google scholar
[9]
J. Tersoff and D. R. Hamann, Phys. Rev. B, 1981, 31: 805
CrossRef ADS Google scholar
[10]
J. Tersoff and D. R. Hamann, Phys. Rev. Lett., 1985, 50: 1988
[11]
W. A. Hofer, G. Ritz, W. Hebenstreit, M. Schmid, P. Varga, J. Redinger, and R. Podloucky, Surf. Sci. Lett., 1998, 405: L514
CrossRef ADS Google scholar
[12]
J. Bardeen, Phys. Rev. Lett., 1961, 6: 57
CrossRef ADS Google scholar
[13]
W. A. Hofer and J. Redinger, Surf. Sci., 2000, 447: 51
CrossRef ADS Google scholar
[14]
K. S. Thygesen and K. W. Jacobsen, Chem. Phys., 2005, 319: 111
CrossRef ADS Google scholar
[15]
W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys., 2003, 75: 1287
CrossRef ADS Google scholar
[16]
Z. T. Deng, H. Lin, W. Ji, L. Gao, X. Lin, Z. H. Cheng, X. B. He, J. L. Lu, D. X. Shi, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 156102
CrossRef ADS Google scholar
[17]
A. Calzolari, N. Marzari, I. Souza, and M. B. Nardelli, Phys. Rev. B, 2004, 69: 035108
CrossRef ADS Google scholar
[18]
G. H. Wannier, Phys. Rev., 1937, 52: 191
CrossRef ADS Google scholar
[19]
N. Marzari and D. Vanderbilt, Phys. Rev. B, 1997, 56: 12847
CrossRef ADS Google scholar
[20]
K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett., 2005, 94: 026405
CrossRef ADS Google scholar
[21]
K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 72: 125119
CrossRef ADS Google scholar
[22]
K. S. Thygesen, Phys. Rev. B, 2006, 73: 035309
CrossRef ADS Google scholar
[23]
C. J. Chen, Introduction to Scanning Tunnelling Microscopy, New York: Oxford University Press, 1993
[24]
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
[25]
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B, 1985, 31: 6207
CrossRef ADS Google scholar
[26]
K. Palotás and W. A. Hofer, J. Phys.: Condens. Matter, 2005, 17: 2705
CrossRef ADS Google scholar
[27]
A. S. Foster and W. A. Hofer, Scanning Probe Microscopy, Spring Series in NanoScience and Technology, Springer, 2006
[28]
W. A. Hofer and A. J. Fisher, Phys. Rev. Lett., 2003, 91: 036803
CrossRef ADS Google scholar
[29]
W. A. Hofer and A. Garcia-Lekue, Phys. Rev. B, 2005, 71: 085401
CrossRef ADS Google scholar
[30]
W. A. Hofer, A. Garcia-Lekue, and H. Brune, Chem. Phys. Lett., 2004, 397: 354
CrossRef ADS Google scholar
[31]
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Journal of Physics C, 1971, 4: 916
[32]
T. E. Feuchtwang, Phys. Rev. B, 1974, B10: 4135
CrossRef ADS Google scholar
[33]
T. E. Feuchtwang, Phys. Rev. B, 1974, 10: 4121
CrossRef ADS Google scholar
[34]
T. E. Feuchtwang, Phys. Rev. B, 1976, 13: 517
CrossRef ADS Google scholar
[35]
Y. Meir and N. S. Wingreen, Phys. Rev. Lett., 1992, 68: 2512
CrossRef ADS Google scholar
[36]
H. Hauge and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Physics, Springer, 1996
[37]
F. Flores, F. Guinea, C. Tejedor, and E. Louis, Phys. Rev. B, 1983, 28: 4397
CrossRef ADS Google scholar
[38]
K. Flensberg and H. Bruus, Many-Body Quantum Theory in Condensed Matter Physics, Chapter 8, New York: Oxford University Press, 2004
[39]
S. Garcia-Gil, A. Garcia, N. Lorente, and P. Ordejon, Phys. Rev. B, 2009, 79: 075441
CrossRef ADS Google scholar
[40]
L. Liu, J. Yu, and J. W. Lyding, Appl. Phys. Lett., 2001, 78: 386
CrossRef ADS Google scholar
[41]
L. Liu, J. Yu, and J. W. Lyding, IEEE Trans. Nanotechnol., 2002, 1: 176
CrossRef ADS Google scholar
[42]
G. W. Brown, H. Grube, and M. E. Hawley, Phys. Rev. B, 2004, 70: 121301
CrossRef ADS Google scholar
[43]
L. Oberbeck, N. J. Curson, T. Hallam, M. Y. Simmons, and R. G. Clark, Thin Solid Films, 2004, 464: 23
CrossRef ADS Google scholar
[44]
J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Appl. Phys. Lett., 1994, 64: 2010
CrossRef ADS Google scholar
[45]
S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueβ, T. Hallam, L. Oberbeck, and R. G. Clark, Phys. Rev. Lett., 2003, 91: 136104
CrossRef ADS Google scholar
[46]
F. J. Ruess, L. Oberbeck, M. Y. Simmons, K. E. J. Goh, A. R. Hamilton, T. Hallam, S. R. Schofield, N. J. Curson, and R. G. Clark, Nano Lett., 2004, 4: 1969
CrossRef ADS Google scholar
[47]
A. Fuhrer, M. Fchsle, T. C. G. Reusch, B. Weber, and M. Y. Simmons, Nano Lett., 2009, 9: 707
CrossRef ADS Google scholar
[48]
J. L. O’Brien, S. R. Schofield, M. Y. Simmons, R. G. Clark, A. S. Dzurak, N. J. Curson, B. E. Kane, N. S. McAlpine, M. E. Hawley, and G. W. Brown, Phys. Rev. B, 2001, 64: 161401(R)
CrossRef ADS Google scholar
[49]
G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47: 558
CrossRef ADS Google scholar
[50]
G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49: 14251
CrossRef ADS Google scholar
[51]
G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6: 15
CrossRef ADS Google scholar
[52]
G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169
CrossRef ADS Google scholar
[53]
J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 2005, 71: 035109
CrossRef ADS Google scholar
[54]
J. Enkovaara, , J. Phys.: Condens. Matter (in press)
[55]
W. A. Hofer, Progr. Surf. Sci., 2003, 71: 147
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(517 KB)

Accesses

Citations

Detail

Sections
Recommended

/