
Recent advances in growth, characterization, and application of two-dimensional multiferroic materials
Dahua Ren, Yao Wen, Hui Zeng, Xiaoqiang Feng, Teng Zhang, Yuan Zhang, Liushun Wang, Qiang Li, Ming Du, Zhangyang Zhou, Jinqiao Yi, Jun He
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044302.
Recent advances in growth, characterization, and application of two-dimensional multiferroic materials
Since the successful experimental fabrication of two-dimensional (2D) monolayer van der Waals (vdW) NiI2 material, which belongs to type II multiferroics, there has been a surge of interest in the research on 2D multiferroics. Furthermore, 2D multiferroics exhibit multiple ferroic orders, expanding their applications to high-density data storage, low-power multistate memories, spintronics, nanoelectronics, and actuators, among others. The coupling of magnetoelectricity, magnetoelasticity, piezoelectricity, and magneto−valley effects in 2D multiferroics offers technological advancements for multifunctional devices. Therefore, this review focuses on recent progress in ferromagnetic−ferroelectric materials as well as ferromagnetic-ferroelastic materials, and explores their categorization, growth methods, and characterization techniques. Finally, potential research challenges, along with prospects and application scenarios for 2D multiferroic materials, are outlined.
two-dimensional materials / multiferroic materials / magnetoelectric coupling
[1] |
W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
CrossRef
ADS
Google scholar
|
[2] |
N. A. Spaldin and R. Ramesh, Advances in magnetoelectric multiferroics, Nat. Mater. 18(3), 203 (2019)
CrossRef
ADS
Google scholar
|
[3] |
Z. Wang,G. Xu,X. Jiang,L. Yang,Q. Gao, C. Li,D. Li,D. Liu,B. Cui, 2D multiferroics in As‐substituted bilayer α‐In2Se3 with enhanced magnetic moments for next-generation nonvolatile memory device, Adv. Electron. Mater. 10, 2300642 (2024)
|
[4] |
Y. Gao, M. Gao, and Y. Lu, Two-dimensional multiferroics, Nanoscale 13(46), 19324 (2021)
CrossRef
ADS
Google scholar
|
[5] |
C. He,J. Zhang,L. Gong,P. Yu, Room-temperature ferroelectricity in van der Waals SnP2S6, Front. Phys. (Beijing) 19(4), 43202 (2024)
|
[6] |
H. Wang,Y. Wen,H. Zeng,Z. Xiong,Y. Tu, H. Zhu,R. Cheng,L. Yin,J. Jiang,B. Zhai, C. Liu,C. Shan,J. He, 2D ferroic materials for nonvolatile memory applications, Adv. Mater. 2305044 (2024), doi: 10.1002/adma.202305044
|
[7] |
B. Behera, B. C. Sutar, and N. R. Pradhan, Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity, Emergent Mater. 4(4), 847 (2021)
CrossRef
ADS
Google scholar
|
[8] |
M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Tunnel junctions with multiferroic barriers, Nat. Mater. 6(4), 296 (2007)
CrossRef
ADS
Google scholar
|
[9] |
N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields, Nature 429(6990), 392 (2004)
CrossRef
ADS
Google scholar
|
[10] |
M. Tokunaga, M. Akaki, T. Ito, S. Miyahara, A. Miyake, H. Kuwahara, and N. Furukawa, Magnetic control of transverse electric polarization in BiFeO3, Nat. Commun. 6(1), 5878 (2015)
CrossRef
ADS
Google scholar
|
[11] |
T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426(6962), 55 (2003)
CrossRef
ADS
Google scholar
|
[12] |
X. Wang, Z. Shang, C. Zhang, J. Kang, T. Liu, X. Wang, S. Chen, H. Liu, W. Tang, Y. J. Zeng, J. Guo, Z. Cheng, L. Liu, D. Pan, S. Tong, B. Wu, Y. Xie, G. Wang, J. Deng, T. Zhai, H. X. Deng, J. Hong, and J. Zhao, Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6, Nat. Commun. 14(1), 840 (2023)
CrossRef
ADS
Google scholar
|
[13] |
Q. Song, C. A. Occhialini, E. Ergeçen, B. Ilyas, D. Amoroso, P. Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana, S. Picozzi, N. Gedik, and R. Comin, Evidence for a single-layer van der Waals multiferroic, Nature 602(7898), 601 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
A. Cong and K. Shen, Soft magnons in van der Waals multiferroic NiI2, Phys. Rev. B 109(22), 224419 (2024)
CrossRef
ADS
Google scholar
|
[15] |
M. Cheng,J. Yang,X. Li,H. Li,R. Du, J. Shi,J. He, Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: three strategies, Front. Phys., 17(6), 63601 (2022)
|
[16] |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
S. Li,K. Wei,Q. Liu,Y. Tang,T. Jiang, Twistronics and moiré excitonic physics in van der Waals heterostructures, Front. Phys., 19(4), 42501 (2024)
|
[18] |
C. Gong, E. M. Kim, Y. Wang, G. Lee, and X. Zhang, Multiferroicity in atomic van der Waals heterostructures, Nat. Commun. 10(1), 2657 (2019)
CrossRef
ADS
Google scholar
|
[19] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
Y. Wen, Z. Liu, Y. Zhang, C. Xia, B. Zhai, X. Zhang, G. Zhai, C. Shen, P. He, R. Cheng, L. Yin, Y. Yao, M. Getaye Sendeku, Z. Wang, X. Ye, C. Liu, C. Jiang, C. Shan, Y. Long, and J. He, Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3, Nano Lett. 20(5), 3130 (2020)
CrossRef
ADS
Google scholar
|
[21] |
Z. Gao, B. Xin, J. Chen, Z. Liu, R. Yao, W. Ai, Y. He, L. Xu, T. H. Cheng, W. H. Wang, and F. Luo, Above-room-temperature ferromagnetism in copper-doped two-dimensional chromium-based nanosheets, ACS Nano 18(1), 703 (2024)
CrossRef
ADS
Google scholar
|
[22] |
S. Lu, D. Guo, Z. Cheng, Y. Guo, C. Wang, J. Deng, Y. Bai, C. Tian, L. Zhou, Y. Shi, J. He, W. Ji, and C. Zhang, Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures, Nat. Commun. 14(1), 2465 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H. Z. Tsai, A. Riss, S. K. Mo, D. Lee, A. Zettl, Z. Hussain, Z. X. Shen, and M. F. Crommie, Characterization of collective ground states in single-layer NbSe2, Nat. Phys. 12(1), 92 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
L. Yin, R. Cheng, Y. Wen, C. Liu, and J. He, Emerging 2D memory devices for in‐memory computing, Adv. Mater. 33(29), 2007081 (2021)
CrossRef
ADS
Google scholar
|
[25] |
X. Feng, R. Cheng, L. Yin, Y. Wen, J. Jiang, and J. He, Two‐dimensional oxide crystals for device applications: Challenges and opportunities, Adv. Mater. 36(2), 2304708 (2024)
CrossRef
ADS
Google scholar
|
[26] |
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
S. W. Cheong and M. Mostovoy, Multiferroics: A magnetic twist for ferroelectricity, Nat. Mater. 6(1), 13 (2007)
CrossRef
ADS
Google scholar
|
[28] |
C. Boix-Constant, S. Jenkins, R. Rama-Eiroa, E. J. G. Santos, S. Mañas-Valero, and E. Coronado, Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers, Nat. Mater. 23(2), 212 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
V. Vaňo, M. Amini, S. C. Ganguli, G. Chen, J. L. Lado, S. Kezilebieke, and P. Liljeroth, Artificial heavy fermions in a van der Waals heterostructure, Nature 599(7886), 582 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
S. Kezilebieke, M. N. Huda, V. Vaňo, M. Aapro, S. C. Ganguli, O. J. Silveira, S. Głodzik, A. S. Foster, T. Ojanen, and P. Liljeroth, Topological superconductivity in a van der Waals heterostructure, Nature 588(7838), 424 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, The evolution of multiferroics, Nat. Rev. Mater. 4, 146 (2019)
CrossRef
ADS
Google scholar
|
[32] |
D. Khomskii, Classifying multiferroics: Mechanisms and effects, Physics 2, 20 (2009)
CrossRef
ADS
Google scholar
|
[33] |
H. Tan, M. Li, H. Liu, Z. Liu, Y. Li, and W. Duan, Two-dimensional ferromagnetic-ferroelectric multiferroics in violation of the d0 rule, Phys. Rev. B 99(19), 195434 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
N. A. Hill, Why are there so few magnetic ferroelectrics, J. Phys. Chem. B 104(29), 6694 (2000)
CrossRef
ADS
Google scholar
|
[35] |
N. A. Spaldin and M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309(5733), 391 (2005)
CrossRef
ADS
Google scholar
|
[36] |
L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, Multiferroics and magnetoelectrics: Thin films and nanostructures, J. Phys. Condens. Matter 20(43), 434220 (2008)
CrossRef
ADS
Google scholar
|
[37] |
H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications, Actuators 5(1), 9 (2016)
CrossRef
ADS
Google scholar
|
[38] |
J. Hu, L. Chen, and C. Nan, Multiferroic heterostructures integrating ferroelectric and magnetic materials, Adv. Mater. 28(1), 15 (2016)
CrossRef
ADS
Google scholar
|
[39] |
D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Reversible electrical switching of spin polarization in multiferroic tunnel junctions, Nat. Mater. 11(4), 289 (2012)
CrossRef
ADS
Google scholar
|
[40] |
L. Song, Y. Zhao, B. Xu, R. Du, H. Li, W. Feng, J. Yang, X. Li, Z. Liu, X. Wen, Y. Peng, Y. Wang, H. Sun, L. Huang, Y. Jiang, Y. Cai, X. Jiang, J. Shi, and J. He, Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide, Nat. Commun. 15(1), 721 (2024)
CrossRef
ADS
Google scholar
|
[41] |
H. Wang and X. Qian, Two-dimensional multiferroics in monolayer group IV monochalcogenides, 2D Mater. 4(1), 015042 (2017)
CrossRef
ADS
Google scholar
|
[42] |
L. Seixas, A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Multiferroic two-dimensional materials, Phys. Rev. Lett. 116(20), 206803 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
M. Amini, A. O. Fumega, H. González‐Herrero, V. Vaňo, S. Kezilebieke, J. L. Lado, and P. Liljeroth, Atomic‐scale visualization of multiferroicity in monolayer NiI2, Adv. Mater. 36, 2311342 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
Y. L. Huang, D. Nikonov, C. Addiego, R. V. Chopdekar, B. Prasad, L. Zhang, J. Chatterjee, H. J. Liu, A. Farhan, Y. H. Chu, M. Yang, M. Ramesh, Z. Q. Qiu, B. D. Huey, C. C. Lin, T. Gosavi, J. Íñiguez, J. Bokor, X. Pan, I. Young, L. W. Martin, and R. Ramesh, Manipulating magnetoelectric energy landscape in multiferroics, Nat. Commun. 11(1), 2836 (2020)
CrossRef
ADS
Google scholar
|
[45] |
B. Tang, X. Wang, M. Han, X. Xu, Z. Zhang, C. Zhu, X. Cao, Y. Yang, Q. Fu, J. Yang, X. Li, W. Gao, J. Zhou, J. Lin, and Z. Liu, Phase engineering of Cr5Te8 with colossal anomalous Hall effect, Nat. Electron. 5(4), 224 (2022)
CrossRef
ADS
Google scholar
|
[46] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[47] |
V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid exfoliation of layered materials, Science 340(6139), 1226419 (2013)
CrossRef
ADS
Google scholar
|
[48] |
T. Zhang, J. Wang, P. Wu, A. Y. Lu, and J. Kong, Vapour-phase deposition of two-dimensional layered chalcogenides, Nat. Rev. Mater. 8(12), 799 (2023)
CrossRef
ADS
Google scholar
|
[49] |
H. Zeng,Y. Wen,L. Yin,R. Cheng,H. Wang, C. Liu,J. He, Recent developments in CVD growth and applications of 2D transition metal dichalcogenides, Front. Phys. 18(5), 53603 (2023)
|
[50] |
Á. Coogan and Y. K. Gun’ko, Solution-based “bottom-up” synthesis of group VI transition metal dichalcogenides and their applications, Mater. Adv. 2(1), 146 (2021)
CrossRef
ADS
Google scholar
|
[51] |
J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331(6017), 568 (2011)
CrossRef
ADS
Google scholar
|
[52] |
X. Ling, Y. H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, Role of the seeding promoter in MoS2 growth by chemical vapor deposition, Nano Lett. 14(2), 464 (2014)
CrossRef
ADS
Google scholar
|
[53] |
C. Lunceford, E. Borcean, and J. Drucker, Uniform and repeatable cold-wall chemical vapor deposition synthesis of single-layer MoS2, Cryst. Growth Des. 16(2), 988 (2016)
CrossRef
ADS
Google scholar
|
[54] |
S. Manzeli,D. Ovchinnikov,D. Pasquier,O. V. Yazyev,A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2, 17033 (2017)
|
[55] |
Z. Sun, Y. Su, A. Zhi, Z. Gao, X. Han, K. Wu, L. Bao, Y. Huang, Y. Shi, X. Bai, P. Cheng, L. Chen, K. Wu, X. Tian, C. Wu, and B. Feng, Evidence for multiferroicity in single-layer CuCrSe2, Nat. Commun. 15(1), 4252 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[56] |
R. Du, Y. Wang, M. Cheng, P. Wang, H. Li, W. Feng, L. Song, J. Shi, and J. He, Two-dimensional multiferroic material of metallic p-doped SnSe, Nat. Commun. 13(1), 6130 (2022)
CrossRef
ADS
Google scholar
|
[57] |
M. H. Chiu, X. Ji, T. Zhang, N. Mao, Y. Luo, C. Shi, X. Zheng, H. Liu, Y. Han, W. L. Wilson, Z. Luo, V. Tung, and J. Kong, Growth of large-sized 2D ultrathin SnSe crystals with in-plane ferroelectricity, Adv. Electron. Mater. 9(4), 2201031 (2023)
CrossRef
ADS
Google scholar
|
[58] |
D. Lebedev, J. T. Gish, E. S. Garvey, T. K. Stanev, J. Choi, L. Georgopoulos, T. W. Song, H. Y. Park, K. Watanabe, T. Taniguchi, N. P. Stern, V. K. Sangwan, and M. C. Hersam, Electrical interrogation of thickness‐dependent multiferroic phase transitions in the 2D antiferromagnetic semiconductor NiI2, Adv. Funct. Mater. 33(12), 2212568 (2023)
CrossRef
ADS
Google scholar
|
[59] |
Y. Guo, J. Yang, J. Zhou, N. Zhu, Y. Jin, G. Thiele, A. Preobrajenski, E. Voloshina, and Y. Dedkov, Electronic correlations in multiferroic van der Waals CuCrP2S6: Insights from X-ray spectroscopy and DFT, J. Phys. Chem. C 128(18), 7830 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[60] |
K. F. Mak, J. Shan, and D. C. Ralph, Probing and controlling magnetic states in 2D layered magnetic materials, Nat. Rev. Phys. 1(11), 646 (2019)
CrossRef
ADS
Google scholar
|
[61] |
Q. Hu, Y. Huang, Y. Wang, S. Ding, M. Zhang, C. Hua, L. Li, X. Xu, J. Yang, S. Yuan, K. Watanabe, T. Taniguchi, Y. Lu, C. Jin, D. Wang, and Y. Zheng, Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics, Nat. Commun. 15(1), 3029 (2024)
CrossRef
ADS
Google scholar
|
[62] |
J. H. Kim, T. S. Jung, Y. Lee, C. Kim, J. G. Park, and J. H. Kim, Terahertz evidence of electromagnon excitations in the multiferroic van der Waals insulator NiI2, Phys. Rev. B 108(6), 064414 (2023)
CrossRef
ADS
Google scholar
|
[63] |
A. O. Fumega and J. L. Lado, Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers, 2D Mater. 10(2), 025026 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[64] |
J. Sødequist and T. Olsen, Type II multiferroic order in two-dimensional transition metal halides from first principles spin-spiral calculations, 2D Mater. 10(3), 035016 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[65] |
M. Y. Liu, J. X. Yu, X. L. Zhu, Z. P. Bian, X. Zhou, Y. H. Liang, Z. L. Luo, Y. W. Yin, J. Y. Li, and X. M. Chen, Hexagonal Lu1–xInxFeO3 room-temperature multiferroic thin films, ACS Appl. Mater. Interfaces 14(46), 52117 (2022)
CrossRef
ADS
Google scholar
|
[66] |
Y. Zhao, Q. Liu, X. Jiang, and J. Zhao, Intrinsic multiferroic in VNI monolayer, ACS Appl. Electron. Mater. 4(7), 3177 (2022)
CrossRef
ADS
Google scholar
|
[67] |
C. Song, W. Xu, N. Liedienov, I. Fesych, R. Kulagin, Y. Beygelzimer, X. Zhang, Y. Han, Q. Li, B. Liu, A. Pashchenko, and G. Levchenko, Novel multiferroic‐like nanocomposite with high pressure‐modulated magnetic and electric properties, Adv. Funct. Mater. 32(30), 2113022 (2022)
CrossRef
ADS
Google scholar
|
[68] |
Y. Wang, L. Wang, L. Hu, C. Huang, D. Li, J. Liu, Magnetic and electric properties and their regulation of the intrinsic half‐metallic multiferroic monolayers AV2S4, Adv. Theory Simul. 6(9), 2300340 (2023)
CrossRef
ADS
Google scholar
|
[69] |
Y. Feng,T. Zhang,Y. Dai,B. Huang,Y. Ma, p-orbital multiferroics in single-layer SiN, Appl. Phys. Lett. 120(19), 193102 (2022)
|
[70] |
Y. Wu, L. Cao, G. Li, X. Huang, B. Zhang, B. Gao, and G. Song, Electrical control of metal–insulator transition and magnetism in asymmetric multiferroic InCrX3 (X = S, Se) monolayers, Appl. Phys. Lett. 124(16), 162902 (2024)
CrossRef
ADS
Google scholar
|
[71] |
A. Lukovkina, S. A. López-Paz, C. Besnard, L. Guenee, F. O. Von Rohr, and E. Giannini, Controlling the magnetic properties of the van der Waals multiferroic crystals Co1−xNixI2, Chem. Mater. 36(12), 6237 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[72] |
M. Liparo, J. P. Jay, M. Dubreuil, G. Simon, A. Fessant, W. Jahjah, Y. Le Grand, C. Sheppard, A. R. E. Prinsloo, V. Vlaminck, V. Castel, L. Temdie-Kom, G. Bourcin, D. Spenato, and D. T. Dekadjevi, Static and dynamic magnetization control of extrinsic multiferroics by the converse magneto-photostrictive effect, Commun. Phys. 6(1), 356 (2023)
CrossRef
ADS
Google scholar
|
[73] |
C. Huang, J. Zhou, H. Sun, F. Wu, Y. Hou, and E. Kan, Toward room-temperature electrical control of magnetic order in multiferroic van der Waals materials, Nano Lett. 22(13), 5191 (2022)
CrossRef
ADS
Google scholar
|
[74] |
P. T. W. Yen, H. C. Wu, and S. M. Huang, First-principles study of the crystal and magnetic structures of multiferroic Cu2OCl2, J. Phys.: Condens. Matter 34(33), 335602 (2022)
CrossRef
ADS
Google scholar
|
[75] |
C. Hu, J. Chen, E. Du, W. Ju, Y. An, and S. J. Gong, Ferroelectric control of band alignments and magnetic properties in the two-dimensional multiferroic VSe2/In2Se3, J. Phys.: Condens. Matter 34(42), 425801 (2022)
CrossRef
ADS
Google scholar
|
[76] |
J. Zhang and J. C. Ma, Electric-field control of magnetization reversal at room temperature in SmFeO3 single-phase multiferroic thin film, J. Alloys Compd. 934, 167935 (2023)
CrossRef
ADS
Google scholar
|
[77] |
A. Mahajan and S. Bhowmick, Magnetoelectric multiferroic janus monolayers VOXY (X/Y = F, Cl, Br, or I, and X ≠ Y) with in-plane ferroelectricity and out-of-plane piezoelectricity, J. Phys. Chem. C 127(23), 11407 (2023)
CrossRef
ADS
Google scholar
|
[78] |
Z. Yu, H. Bai, B. Li, L. Li, and H. Pan, Two-dimensional asymmetric multiferroics: Unique way toward strong magnetoelectric coupling and multistate memory, J. Phys. Chem. Lett. 15(7), 1795 (2024)
CrossRef
ADS
Google scholar
|
[79] |
Y. Zhao, Q. Liu, F. Zhang, X. Jiang, W. Gao, and J. Zhao, Multiferroicity in a two-dimensional non-van der Waals crystal of AgCr2X4 (X = S or Se), J. Phys. Chem. Lett. 13(48), 11346 (2022)
CrossRef
ADS
Google scholar
|
[80] |
S. Xu, F. Jia, X. Yu, S. Hu, H. Gao, and W. Ren, Intrinsic multiferroic MnOF monolayer with room-temperature ferromagnetism, Mater. Today Phys. 27, 100775 (2022)
CrossRef
ADS
Google scholar
|
[81] |
Y. Liu, Y. Feng, Y. Dai, B. Huang, and Y. Ma, Engineering layertronics in two-dimensional ferromagnetic multiferroic lattice, Nano Lett. 24(11), 3507 (2024)
CrossRef
ADS
Google scholar
|
[82] |
X. Shen, F. Wang, X. Lu, and J. Zhang, Two-dimensional multiferroics with intrinsic magnetoelectric coupling in a-site ordered perovskite monolayers, Nano Lett. 23(2), 735 (2023)
CrossRef
ADS
Google scholar
|
[83] |
W. Xun, C. Wu, H. Sun, W. Zhang, Y. Z. Wu, and P. Li, Coexisting magnetism, ferroelectric, and ferrovalley multiferroic in stacking-dependent two-dimensional materials, Nano Lett. 24(11), 3541 (2024)
CrossRef
ADS
Google scholar
|
[84] |
Y. Feng, Y. Dai, B. Huang, L. Kou, and Y. Ma, Layer Hall effect in multiferroic two-dimensional materials, Nano Lett. 23(11), 5367 (2023)
CrossRef
ADS
Google scholar
|
[85] |
S. Teh and H. T. Jeng, Magnetoelastic and magnetoelectric coupling in two-dimensional nitride MXenes: A sensity functional theory study, Nanomaterials (Basel) 13(19), 2644 (2023)
CrossRef
ADS
Google scholar
|
[86] |
G. Cardenas-Chirivi, K. Vega-Bustos, H. Rojas-Páez, D. Silvera-Vega, J. Pazos, O. Herrera, M. A. Macías, C. Espejo, W. López-Pérez, J. A. Galvis, and P. Giraldo-Gallo, Room temperature multiferroicity in a transition metal dichalcogenide, npj 2D Mater. Appl. 7, 54 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[87] |
Z. W. Zhang, Y. F. Lang, H. P. Zhu, B. Li, Y. Q. Zhao, B. Wei, W. X. Zhou, and Electronic structure, Curie temperature, and magnetic transport of a two-dimensional multiferroic MnSe2/In2Se3 heterostructure, Phys. Rev. Appl. 21(6), 064012 (2024)
CrossRef
ADS
Google scholar
|
[88] |
Y. Feng,J. Han,K. Zhang,X. Lin,G. Gao, Q. Yang,S. Meng, van der Waals multiferroic tunnel junctions based on sliding multiferroic layered VSi2N4, Phys. Rev. B 109(8), 085433 (2024)
|
[89] |
C. Liu, W. Ren, and S. Picozzi, Spin-chirality-driven multiferroicity in van der Waals monolayers, Phys. Rev. Lett. 132(8), 086802 (2024)
CrossRef
ADS
Google scholar
|
[90] |
R. Tahir, S. A. Zahra, U. Naeem, D. Akinwande, and S. Rizwan, First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti3C2Tx free-standing MXene film, RSC Advances 12(38), 24571 (2022)
CrossRef
ADS
Google scholar
|
[91] |
W. Xiong, B. Lei, Y. Gao, R. Yang, A. Li, F. Ouyang, First-principles study on the p-orbital multiferroicity of single-layer XN (X = Ge, and Sn , Pb), Results Phys. 60, 107665 (2024)
CrossRef
ADS
Google scholar
|
[92] |
J. Shen, B. K. Tsai, Y. Zhang, K. Xu, J. P. Barnard, Z. Hu, X. Zhang, and H. Wang, Van der Waals epitaxy of bismuth‐based multiferroic layered supercell oxide thin films integrated on flexible mica substrate, Small Sci. 4(2), 2300244 (2024)
CrossRef
ADS
Google scholar
|
[93] |
F. Orlandi,D. Delmonte,G. Calestani,E. Cavalli,E. Gilioli,V. V. Shvartsman,P. Graziosi,S. Rampino,G. Spaggiari,C. Liu,W. Ren, S. Picozzi,M. Solzi,M. Casappa,F. Mezzadri, γ-BaFe2O4: A fresh playground for room temperature multiferroicity, Nat. Commun. 13(1), 7968 (2022)
|
[94] |
Y. Wu, D. Zhang, Y. N. Zhang, L. Deng, and B. Peng, Nonreciprocal and nonvolatile electric-field switching of magnetism in van der Waals heterostructure multiferroics, Nano Lett. 24(20), 5929 (2024)
CrossRef
ADS
Google scholar
|
[95] |
I. Lubomirsky and O. Stafsudd, Invited review article: Practical guide for pyroelectric measurements, Rev. Sci. Instrum. 83(5), 051101 (2012)
CrossRef
ADS
Google scholar
|
[96] |
M. Dragičević, D. R. Góngora, Ž. Rapljenović, M. Herak, V. Brusar, D. Altus, M. Pregelj, A. Zorko, H. Berger, D. Arčon, and T. Ivek, Control of a polar order via magnetic field in a vector-chiral magnet, Phys. Rev. B 104(12), L121107 (2021)
CrossRef
ADS
Google scholar
|
[97] |
H. Ma, J. Liang, H. Hong, K. Liu, D. Zou, M. Wu, and K. Liu, Rich information on 2D materials revealed by optical second harmonic generation, Nanoscale 12(45), 22891 (2020)
CrossRef
ADS
Google scholar
|
[98] |
N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G. C. Li, Nonlinear optics in plasmonic nanostructures, J. Opt. 20(8), 083001 (2018)
CrossRef
ADS
Google scholar
|
[99] |
S. Son, Y. Lee, J. H. Kim, B. H. Kim, C. Kim, W. Na, H. Ju, S. Park, A. Nag, K. Zhou, Y. Son, H. Kim, W. Noh, J. Park, J. S. Lee, H. Cheong, J. H. Kim, and J. Park, Multiferroic‐enabled magnetic‐excitons in 2D quantum‐entangled van der Waals antiferromagnet NiI2, Adv. Mater. 34(10), 2109144 (2022)
CrossRef
ADS
Google scholar
|
[100] |
X. Li, C. Xu, B. Liu, X. Li, L. Bellaiche, and H. Xiang, Realistic spin model for multiferroic NiI2, Phys. Rev. Lett. 131(3), 036701 (2023)
CrossRef
ADS
Google scholar
|
[101] |
M. Ogino, Y. Kaneko, Y. Tokura, and Y. Takahashi, Gyrotropic birefringence via electromagnon resonance in a multiferroic of spin origin, Phys. Rev. Res. 2(2), 023345 (2020)
CrossRef
ADS
Google scholar
|
[102] |
S. Iguchi, R. Masuda, S. Seki, Y. Tokura, and Y. Takahashi, Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet, Nat. Commun. 12(1), 6674 (2021)
CrossRef
ADS
Google scholar
|
[103] |
M. J. Cabral, Z. Chen, and X. Liao, Scanning transmission electron microscopy for advanced characterization of ferroic materials, Microstructures 3(4), 2023040 (2023)
CrossRef
ADS
Google scholar
|
[104] |
A. Tao, Y. Jiang, S. Chen, Y. Zhang, Y. Cao, T. Yao, C. Chen, H. Ye, and X. L. Ma, Ferroelectric polarization and magnetic structure at domain walls in a multiferroic film, Nat. Commun. 15(1), 6099 (2024)
CrossRef
ADS
Google scholar
|
[105] |
C. L. Jia, S. B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse, Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films, Nat. Mater. 7(1), 57 (2008)
CrossRef
ADS
Google scholar
|
[106] |
M. D. Rossell, R. Erni, M. P. Prange, J. C. Idrobo, W. Luo, R. J. Zeches, S. T. Pantelides, and R. Ramesh, Atomic structure of highly strained BiFeO3 thin films, Phys. Rev. Lett. 108(4), 047601 (2012)
CrossRef
ADS
Google scholar
|
[107] |
A. Y. Borisevich, O. S. Ovchinnikov, H. J. Chang, M. P. Oxley, P. Yu, J. Seidel, E. A. Eliseev, A. N. Morozovska, R. Ramesh, S. J. Pennycook, and S. V. Kalinin, Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis, ACS Nano 4(10), 6071 (2010)
CrossRef
ADS
Google scholar
|
[108] |
B. W. Batterman and H. Cole, Dynamical diffraction of X rays by perfect crystals, Rev. Mod. Phys. 36(3), 681 (1964)
CrossRef
ADS
Google scholar
|
[109] |
B. E. Warren, X-ray Diffraction, Addison-Wesley Pub. Co., 1969
|
[110] |
K. T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S. Woo, K. Chu, J. Seidel, B. G. Jeon, Y. S. Oh, K. H. Kim, W. I. Liang, H. J. Chen, Y. H. Chu, Y. H. Jeong, R. Ramesh, J. H. Park, and C. H. Yang, Concurrent transition of ferroelectric and magnetic ordering near room temperature, Nat. Commun. 2(1), 567 (2011)
CrossRef
ADS
Google scholar
|
[111] |
W. Ratcliff, J. W. Lynn, V. Kiryukhin, P. Jain, and M. R. Fitzsimmons, Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering, npj Quant. Mater. 1, 16003 (2016)
CrossRef
ADS
Google scholar
|
[112] |
A. Viljoen, M. Mathelié-Guinlet, A. Ray, N. Strohmeyer, Y. J. Oh, P. Hinterdorfer, D. J. Müller, D. Alsteens, and Y. F. Dufrêne, Force spectroscopy of single cells using atomic force microscopy, Nat. Rev. Methods Primers 1(1), 63 (2021)
CrossRef
ADS
Google scholar
|
[113] |
Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, and D. J. Müller, Imaging modes of atomic force microscopy for application in molecular and cell biology, Nat. Nanotechnol. 12(4), 295 (2017)
CrossRef
ADS
Google scholar
|
[114] |
A. B. Ustinov, B. A. Kalinikos, and G. Srinivasan, Nonlinear multiferroic phase shifters for microwave frequencies, Appl. Phys. Lett. 104(5), 052911 (2014)
CrossRef
ADS
Google scholar
|
[115] |
T. D. Onuta, Y. Wang, C. J. Long, and I. Takeuchi, Energy harvesting properties of all-thin-film multiferroic cantilevers, Appl. Phys. Lett. 99(20), 203506 (2011)
CrossRef
ADS
Google scholar
|
[116] |
X. Tang and L. Kou, Two-dimensional ferroics and multiferroics: Platforms for new physics and applications, J. Phys. Chem. Lett. 10(21), 6634 (2019)
CrossRef
ADS
Google scholar
|
[117] |
J. M. Hu, T. Nan, N. X. Sun, and L. Q. Chen, Multiferroic magnetoelectric nanostructures for novel device applications, MRS Bull. 40(9), 728 (2015)
CrossRef
ADS
Google scholar
|
[118] |
N. Hiremath, R. Guntupalli, V. Vodyanoy, B. A. Chin, and M. K. Park, Detection of methicillin-resistant Staphylococcus aureus using novel lytic phage-based magnetoelastic biosensors, Sens. Actuators B 210, 129 (2015)
CrossRef
ADS
Google scholar
|
[119] |
S. Manipatruni, D. E. Nikonov, C. C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y. L. Huang, E. Bonturim, R. Ramesh, and I. A. Young, Scalable energy-efficient magnetoelectric spin–orbit logic, Nature 565(7737), 35 (2019)
CrossRef
ADS
Google scholar
|
[120] |
Y. Chai, Y. Liang, C. Xiao, Y. Wang, B. Li, D. Jiang, P. Pal, Y. Tang, H. Chen, Y. Zhang, H. Bai, T. Xu, W. Jiang, W. Skowroński, Q. Zhang, L. Gu, J. Ma, P. Yu, J. Tang, Y. H. Lin, D. Yi, D. C. Ralph, C. B. Eom, H. Wu, and T. Nan, Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory, Nat. Commun. 15(1), 5975 (2024)
CrossRef
ADS
Google scholar
|
[121] |
J. F. Scott, Multiferroic memories, Nat. Mater. 6(4), 256 (2007)
CrossRef
ADS
Google scholar
|
[122] |
M. Bibes and A. Barthélémy, Towards a magnetoelectric memory, Nat. Mater. 7(6), 425 (2008)
CrossRef
ADS
Google scholar
|
[123] |
F. J. Albert, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett. 77(23), 3809 (2000)
CrossRef
ADS
Google scholar
|
[124] |
T. Kawahara,R. Takemura,K. Miura, J. Hayakawa,S. Ikeda,Y. Lee, R. Sasaki,Y. Goto,K. Ito,T. Meguro,F. Matsukura,H. Takahashi,H. Matsuoka,H. Ohno, 2 Mb spin-transfer torque RAM (SPRAM) with bit-by-bit bidirectional current write and parallelizing-direction current read, in: 2007 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2007, p. 480
|
[125] |
W. Kleemann, Multiferroic and magnetoelectric nanocomposites for data processing, J. Phys. D Appl. Phys. 50(22), 223001 (2017)
CrossRef
ADS
Google scholar
|
[126] |
B. Zhang,P. Lu,R. Tabrizian,P. X. L. Feng,Y. Y. Wu, 2D Magnetic heterostructures: Spintronics and quantum future, npj Spintronics 2(1), 6 (2024)
|
[127] |
H. Li, S. Ruan, and Y. Zeng, Intrinsic van der Waals magnetic materials from bulk to the 2D Limit: New frontiers of spintronics, Adv. Mater. 31(27), 1900065 (2019)
CrossRef
ADS
Google scholar
|
[128] |
X. Lin, W. Yang, K. L. Wang, and W. Zhao, Two-dimensional spintronics for low-power electronics, Nat. Electron. 2(7), 274 (2019)
CrossRef
ADS
Google scholar
|
[129] |
E. Gradauskaite, P. Meisenheimer, M. Müller, J. Heron, and M. Trassin, Multiferroic heterostructures for spintronics, Phys. Sci. Rev. 6(2), 20190072 (2021)
CrossRef
ADS
Google scholar
|
[130] |
H. Béa, M. Gajek, M. Bibes, and A. Barthélémy, Spintronics with multiferroics, J. Phys.: Condens. Matter 20(43), 434221 (2008)
CrossRef
ADS
Google scholar
|
[131] |
L. Zhang, Y. Wang, X. Liu, and F. Liu, Electrical switching of spin-polarized current in multiferroic tunneling junctions, npj Comput. Mater. 8(1), 197 (2022)
CrossRef
ADS
Google scholar
|
[132] |
M. Castro, G. Saéz, P. Vergara Apaz, S. Allende, and A. S. Nunez, Toward fully multiferroic van der Waals spin FETs: Basic design and quantum calculations, Nano Lett. 24(26), 7911 (2024)
CrossRef
ADS
Google scholar
|
[133] |
S. Dong, Review on piezoelectric, ultrasonic, and magnetoelectric actuators, J. Adv. Dielectr. 2(1), 1230001 (2012)
CrossRef
ADS
Google scholar
|
[134] |
M. Crescentini, S. F. Syeda, and G. P. Gibiino, Hall-effect current sensors: Principles of operation and implementation techniques, IEEE Sens. J. 22(11), 10137 (2022)
CrossRef
ADS
Google scholar
|
[135] |
P. Li,Y. Wen,P. Liu,X. Li,C. Jia, A magnetoelectric energy harvester and management circuit for wireless sensor network, Sens. Actuators A Phys. 157(1), 100 (2010)
|
[136] |
K. Bhoi, H. S. Mohanty, M. Ravikant, M. F. Abdullah, D. K. Pradhan, S. N. Babu, A. K. Singh, P. N. Vishwakarma, A. Kumar, R. Thomas, and D. K. Pradhan, Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites, Sci. Rep. 11(1), 3149 (2021)
CrossRef
ADS
Google scholar
|
[137] |
A. B. Swain, S. Dinesh Kumar, V. Subramanian, and P. Murugavel, Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications, Phys. Rev. Appl. 13(2), 024026 (2020)
CrossRef
ADS
Google scholar
|
[138] |
M. Zaeimbashi, M. Nasrollahpour, A. Khalifa, A. Romano, X. Liang, H. Chen, N. Sun, A. Matyushov, H. Lin, C. Dong, Z. Xu, A. Mittal, I. Martos-Repath, G. Jha, N. Mirchandani, D. Das, M. Onabajo, A. Shrivastava, S. Cash, and N. X. Sun, Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing, Nat. Commun. 12(1), 3141 (2021)
CrossRef
ADS
Google scholar
|
[139] |
C. L. Zhang,W. Q. Chen, A wideband magnetic energy harvester, Appl. Phys. Lett. 96(12), 123507 (2010)
|
[140] |
X. Bai, Y. Wen, P. Li, J. Yang, X. Peng, and X. Yue, Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling, Sens. Actuators A 209, 78 (2014)
CrossRef
ADS
Google scholar
|
[141] |
Z. Lin, J. Chen, X. Li, J. Li, J. Liu, Q. Awais, and J. Yang, Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator, Appl. Phys. Lett. 109(25), 253903 (2016)
CrossRef
ADS
Google scholar
|
[142] |
H. Lin, Y. Gao, X. Wang, T. Nan, M. Liu, J. Lou, G. Yang, Z. Zhou, X. Yang, J. Wu, M. Li, Z. Hu, and N. X. Sun, Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics, IEEE Trans. Magn. 52(7), 1 (2016)
CrossRef
ADS
Google scholar
|
[143] |
J. D. Schneider, J. P. Domann, M. K. Panduranga, S. Tiwari, P. Shirazi, Z. J. Yao, C. Sennott, D. Shahan, S. Selvin, G. McKnight, W. Wall, R. N. Candler, Y. E. Wang, and G. P. Carman, Experimental demonstration and operating principles of a multiferroic antenna, J. Appl. Phys. 126(22), 224104 (2019)
CrossRef
ADS
Google scholar
|
[144] |
Y. Zhao, Y. Li, S. Zhu, C. Chen, M. Yao, Y. Zhao, Z. Hu, B. Peng, M. Liu, and Z. Zhou, Voltage tunable low damping YIG/PMN-PT multiferroic heterostructure for low-power RF/microwave devices, J. Phys. D Appl. Phys. 54(24), 245002 (2021)
CrossRef
ADS
Google scholar
|
[145] |
G. Dong, Z. Zhou, X. Xue, Y. Zhang, B. Peng, M. Guan, S. Zhao, Z. Hu, W. Ren, Z. G. Ye, and M. Liu, Ferroelectric phase transition induced a large FMR tuning in self-assembled BaTiO3:Y3Fe5O12 multiferroic composites, ACS Appl. Mater. Interfaces 9(36), 30733 (2017)
CrossRef
ADS
Google scholar
|
[146] |
A. B. Ustinov, G. Srinivasan, and B. A. Kalinikos, Ferrite-ferroelectric hybrid wave phase shifters, Appl. Phys. Lett. 90(3), 031913 (2007)
CrossRef
ADS
Google scholar
|
[147] |
R. Kokkoniemi, T. Ollikainen, R. E. Lake, S. Saarenpää, K. Y. Tan, J. I. Kokkala, C. B. Dağ, J. Govenius, and M. Möttönen, Flux-tunable phase shifter for microwaves, Sci. Rep. 7(1), 14713 (2017)
CrossRef
ADS
Google scholar
|
[148] |
X. W. Shen, W. Y. Tong, S. J. Gong, and C. G. Duan, Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials, 2D Mater. 5(1), 011001 (2017)
CrossRef
ADS
Google scholar
|
[149] |
S. Yu, D. Sun, Y. Xu, Y. Dai, B. Huang, and W. Wei, Triferroic coupling in two-dimensional WRuCl6, Phys. Rev. B 110(6), 064417 (2024)
CrossRef
ADS
Google scholar
|
[150] |
S. Shen, X. Xu, B. Huang, L. Kou, Y. Dai, and Y. Ma, Intrinsic triferroicity in a two-dimensional lattice, Phys. Rev. B 103(14), 144101 (2021)
CrossRef
ADS
Google scholar
|
[151] |
Y. Feng, and Q. Yang Enabling triferroics coupling in breathing kagome lattice Nb3X8 (X = Cl, Br, I) monolayers, J. Mater. Chem. C 11(17), 5762 (2023)
CrossRef
ADS
Google scholar
|
[152] |
S. Bhardwaj and T. Maitra, Two-dimensional rare-earth halide based single-phase triferroic, Phys. Rev. B 108(8), L081116 (2023)
CrossRef
ADS
Google scholar
|
[153] |
T. Zhang, X. Xu, Y. Dai, B. Huang, and Y. Ma, Intrinsic ferromagnetic triferroicity in bilayer T′-VTe2, Appl. Phys. Lett. 120(19), 192903 (2022)
CrossRef
ADS
Google scholar
|
[154] |
F. Zhang, W. Mi, and X. Wang, Tunable valley and spin splitting in 2H-VSe2/BiFeO3 (111) triferroic heterostructures, Nanoscale 11(21), 10329 (2019)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |