Recent advances in growth, characterization, and application of two-dimensional multiferroic materials

Dahua Ren, Yao Wen, Hui Zeng, Xiaoqiang Feng, Teng Zhang, Yuan Zhang, Liushun Wang, Qiang Li, Ming Du, Zhangyang Zhou, Jinqiao Yi, Jun He

Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044302.

PDF(57755 KB)
PDF(57755 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044302. DOI: 10.15302/frontphys.2025.044302
TOPICAL REVIEW

Recent advances in growth, characterization, and application of two-dimensional multiferroic materials

Author information +
History +

Abstract

Since the successful experimental fabrication of two-dimensional (2D) monolayer van der Waals (vdW) NiI2 material, which belongs to type II multiferroics, there has been a surge of interest in the research on 2D multiferroics. Furthermore, 2D multiferroics exhibit multiple ferroic orders, expanding their applications to high-density data storage, low-power multistate memories, spintronics, nanoelectronics, and actuators, among others. The coupling of magnetoelectricity, magnetoelasticity, piezoelectricity, and magneto−valley effects in 2D multiferroics offers technological advancements for multifunctional devices. Therefore, this review focuses on recent progress in ferromagnetic−ferroelectric materials as well as ferromagnetic-ferroelastic materials, and explores their categorization, growth methods, and characterization techniques. Finally, potential research challenges, along with prospects and application scenarios for 2D multiferroic materials, are outlined.

Graphical abstract

Keywords

two-dimensional materials / multiferroic materials / magnetoelectric coupling

Cite this article

Download citation ▾
Dahua Ren, Yao Wen, Hui Zeng, Xiaoqiang Feng, Teng Zhang, Yuan Zhang, Liushun Wang, Qiang Li, Ming Du, Zhangyang Zhou, Jinqiao Yi, Jun He. Recent advances in growth, characterization, and application of two-dimensional multiferroic materials. Front. Phys., 2025, 20(4): 044302 https://doi.org/10.15302/frontphys.2025.044302

References

[1]
W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
CrossRef ADS Google scholar
[2]
N. A. Spaldin and R. Ramesh, Advances in magnetoelectric multiferroics, Nat. Mater. 18(3), 203 (2019)
CrossRef ADS Google scholar
[3]
Z. Wang,G. Xu,X. Jiang,L. Yang,Q. Gao, C. Li,D. Li,D. Liu,B. Cui, 2D multiferroics in As‐substituted bilayer α‐In2Se3 with enhanced magnetic moments for next-generation nonvolatile memory device, Adv. Electron. Mater. 10, 2300642 (2024)
[4]
Y. Gao, M. Gao, and Y. Lu, Two-dimensional multiferroics, Nanoscale 13(46), 19324 (2021)
CrossRef ADS Google scholar
[5]
C. He,J. Zhang,L. Gong,P. Yu, Room-temperature ferroelectricity in van der Waals SnP2S6, Front. Phys. (Beijing) 19(4), 43202 (2024)
[6]
H. Wang,Y. Wen,H. Zeng,Z. Xiong,Y. Tu, H. Zhu,R. Cheng,L. Yin,J. Jiang,B. Zhai, C. Liu,C. Shan,J. He, 2D ferroic materials for nonvolatile memory applications, Adv. Mater. 2305044 (2024), doi: 10.1002/adma.202305044
[7]
B. Behera, B. C. Sutar, and N. R. Pradhan, Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity, Emergent Mater. 4(4), 847 (2021)
CrossRef ADS Google scholar
[8]
M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Tunnel junctions with multiferroic barriers, Nat. Mater. 6(4), 296 (2007)
CrossRef ADS Google scholar
[9]
N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields, Nature 429(6990), 392 (2004)
CrossRef ADS Google scholar
[10]
M. Tokunaga, M. Akaki, T. Ito, S. Miyahara, A. Miyake, H. Kuwahara, and N. Furukawa, Magnetic control of transverse electric polarization in BiFeO3, Nat. Commun. 6(1), 5878 (2015)
CrossRef ADS Google scholar
[11]
T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426(6962), 55 (2003)
CrossRef ADS Google scholar
[12]
X. Wang, Z. Shang, C. Zhang, J. Kang, T. Liu, X. Wang, S. Chen, H. Liu, W. Tang, Y. J. Zeng, J. Guo, Z. Cheng, L. Liu, D. Pan, S. Tong, B. Wu, Y. Xie, G. Wang, J. Deng, T. Zhai, H. X. Deng, J. Hong, and J. Zhao, Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6, Nat. Commun. 14(1), 840 (2023)
CrossRef ADS Google scholar
[13]
Q. Song, C. A. Occhialini, E. Ergeçen, B. Ilyas, D. Amoroso, P. Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana, S. Picozzi, N. Gedik, and R. Comin, Evidence for a single-layer van der Waals multiferroic, Nature 602(7898), 601 (2022)
CrossRef ADS arXiv Google scholar
[14]
A. Cong and K. Shen, Soft magnons in van der Waals multiferroic NiI2, Phys. Rev. B 109(22), 224419 (2024)
CrossRef ADS Google scholar
[15]
M. Cheng,J. Yang,X. Li,H. Li,R. Du, J. Shi,J. He, Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: three strategies, Front. Phys., 17(6), 63601 (2022)
[16]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS arXiv Google scholar
[17]
S. Li,K. Wei,Q. Liu,Y. Tang,T. Jiang, Twistronics and moiré excitonic physics in van der Waals heterostructures, Front. Phys., 19(4), 42501 (2024)
[18]
C. Gong, E. M. Kim, Y. Wang, G. Lee, and X. Zhang, Multiferroicity in atomic van der Waals heterostructures, Nat. Commun. 10(1), 2657 (2019)
CrossRef ADS Google scholar
[19]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS arXiv Google scholar
[20]
Y. Wen, Z. Liu, Y. Zhang, C. Xia, B. Zhai, X. Zhang, G. Zhai, C. Shen, P. He, R. Cheng, L. Yin, Y. Yao, M. Getaye Sendeku, Z. Wang, X. Ye, C. Liu, C. Jiang, C. Shan, Y. Long, and J. He, Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3, Nano Lett. 20(5), 3130 (2020)
CrossRef ADS Google scholar
[21]
Z. Gao, B. Xin, J. Chen, Z. Liu, R. Yao, W. Ai, Y. He, L. Xu, T. H. Cheng, W. H. Wang, and F. Luo, Above-room-temperature ferromagnetism in copper-doped two-dimensional chromium-based nanosheets, ACS Nano 18(1), 703 (2024)
CrossRef ADS Google scholar
[22]
S. Lu, D. Guo, Z. Cheng, Y. Guo, C. Wang, J. Deng, Y. Bai, C. Tian, L. Zhou, Y. Shi, J. He, W. Ji, and C. Zhang, Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures, Nat. Commun. 14(1), 2465 (2023)
CrossRef ADS arXiv Google scholar
[23]
M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H. Z. Tsai, A. Riss, S. K. Mo, D. Lee, A. Zettl, Z. Hussain, Z. X. Shen, and M. F. Crommie, Characterization of collective ground states in single-layer NbSe2, Nat. Phys. 12(1), 92 (2016)
CrossRef ADS arXiv Google scholar
[24]
L. Yin, R. Cheng, Y. Wen, C. Liu, and J. He, Emerging 2D memory devices for in‐memory computing, Adv. Mater. 33(29), 2007081 (2021)
CrossRef ADS Google scholar
[25]
X. Feng, R. Cheng, L. Yin, Y. Wen, J. Jiang, and J. He, Two‐dimensional oxide crystals for device applications: Challenges and opportunities, Adv. Mater. 36(2), 2304708 (2024)
CrossRef ADS Google scholar
[26]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef ADS arXiv Google scholar
[27]
S. W. Cheong and M. Mostovoy, Multiferroics: A magnetic twist for ferroelectricity, Nat. Mater. 6(1), 13 (2007)
CrossRef ADS Google scholar
[28]
C. Boix-Constant, S. Jenkins, R. Rama-Eiroa, E. J. G. Santos, S. Mañas-Valero, and E. Coronado, Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers, Nat. Mater. 23(2), 212 (2024)
CrossRef ADS arXiv Google scholar
[29]
V. Vaňo, M. Amini, S. C. Ganguli, G. Chen, J. L. Lado, S. Kezilebieke, and P. Liljeroth, Artificial heavy fermions in a van der Waals heterostructure, Nature 599(7886), 582 (2021)
CrossRef ADS arXiv Google scholar
[30]
S. Kezilebieke, M. N. Huda, V. Vaňo, M. Aapro, S. C. Ganguli, O. J. Silveira, S. Głodzik, A. S. Foster, T. Ojanen, and P. Liljeroth, Topological superconductivity in a van der Waals heterostructure, Nature 588(7838), 424 (2020)
CrossRef ADS arXiv Google scholar
[31]
M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, The evolution of multiferroics, Nat. Rev. Mater. 4, 146 (2019)
CrossRef ADS Google scholar
[32]
D. Khomskii, Classifying multiferroics: Mechanisms and effects, Physics 2, 20 (2009)
CrossRef ADS Google scholar
[33]
H. Tan, M. Li, H. Liu, Z. Liu, Y. Li, and W. Duan, Two-dimensional ferromagnetic-ferroelectric multiferroics in violation of the d0 rule, Phys. Rev. B 99(19), 195434 (2019)
CrossRef ADS arXiv Google scholar
[34]
N. A. Hill, Why are there so few magnetic ferroelectrics, J. Phys. Chem. B 104(29), 6694 (2000)
CrossRef ADS Google scholar
[35]
N. A. Spaldin and M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309(5733), 391 (2005)
CrossRef ADS Google scholar
[36]
L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, Multiferroics and magnetoelectrics: Thin films and nanostructures, J. Phys. Condens. Matter 20(43), 434220 (2008)
CrossRef ADS Google scholar
[37]
H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications, Actuators 5(1), 9 (2016)
CrossRef ADS Google scholar
[38]
J. Hu, L. Chen, and C. Nan, Multiferroic heterostructures integrating ferroelectric and magnetic materials, Adv. Mater. 28(1), 15 (2016)
CrossRef ADS Google scholar
[39]
D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Reversible electrical switching of spin polarization in multiferroic tunnel junctions, Nat. Mater. 11(4), 289 (2012)
CrossRef ADS Google scholar
[40]
L. Song, Y. Zhao, B. Xu, R. Du, H. Li, W. Feng, J. Yang, X. Li, Z. Liu, X. Wen, Y. Peng, Y. Wang, H. Sun, L. Huang, Y. Jiang, Y. Cai, X. Jiang, J. Shi, and J. He, Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide, Nat. Commun. 15(1), 721 (2024)
CrossRef ADS Google scholar
[41]
H. Wang and X. Qian, Two-dimensional multiferroics in monolayer group IV monochalcogenides, 2D Mater. 4(1), 015042 (2017)
CrossRef ADS Google scholar
[42]
L. Seixas, A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Multiferroic two-dimensional materials, Phys. Rev. Lett. 116(20), 206803 (2016)
CrossRef ADS arXiv Google scholar
[43]
M. Amini, A. O. Fumega, H. González‐Herrero, V. Vaňo, S. Kezilebieke, J. L. Lado, and P. Liljeroth, Atomic‐scale visualization of multiferroicity in monolayer NiI2, Adv. Mater. 36, 2311342 (2024)
CrossRef ADS arXiv Google scholar
[44]
Y. L. Huang, D. Nikonov, C. Addiego, R. V. Chopdekar, B. Prasad, L. Zhang, J. Chatterjee, H. J. Liu, A. Farhan, Y. H. Chu, M. Yang, M. Ramesh, Z. Q. Qiu, B. D. Huey, C. C. Lin, T. Gosavi, J. Íñiguez, J. Bokor, X. Pan, I. Young, L. W. Martin, and R. Ramesh, Manipulating magnetoelectric energy landscape in multiferroics, Nat. Commun. 11(1), 2836 (2020)
CrossRef ADS Google scholar
[45]
B. Tang, X. Wang, M. Han, X. Xu, Z. Zhang, C. Zhu, X. Cao, Y. Yang, Q. Fu, J. Yang, X. Li, W. Gao, J. Zhou, J. Lin, and Z. Liu, Phase engineering of Cr5Te8 with colossal anomalous Hall effect, Nat. Electron. 5(4), 224 (2022)
CrossRef ADS Google scholar
[46]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[47]
V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid exfoliation of layered materials, Science 340(6139), 1226419 (2013)
CrossRef ADS Google scholar
[48]
T. Zhang, J. Wang, P. Wu, A. Y. Lu, and J. Kong, Vapour-phase deposition of two-dimensional layered chalcogenides, Nat. Rev. Mater. 8(12), 799 (2023)
CrossRef ADS Google scholar
[49]
H. Zeng,Y. Wen,L. Yin,R. Cheng,H. Wang, C. Liu,J. He, Recent developments in CVD growth and applications of 2D transition metal dichalcogenides, Front. Phys. 18(5), 53603 (2023)
[50]
Á. Coogan and Y. K. Gun’ko, Solution-based “bottom-up” synthesis of group VI transition metal dichalcogenides and their applications, Mater. Adv. 2(1), 146 (2021)
CrossRef ADS Google scholar
[51]
J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331(6017), 568 (2011)
CrossRef ADS Google scholar
[52]
X. Ling, Y. H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, Role of the seeding promoter in MoS2 growth by chemical vapor deposition, Nano Lett. 14(2), 464 (2014)
CrossRef ADS Google scholar
[53]
C. Lunceford, E. Borcean, and J. Drucker, Uniform and repeatable cold-wall chemical vapor deposition synthesis of single-layer MoS2, Cryst. Growth Des. 16(2), 988 (2016)
CrossRef ADS Google scholar
[54]
S. Manzeli,D. Ovchinnikov,D. Pasquier,O. V. Yazyev,A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2, 17033 (2017)
[55]
Z. Sun, Y. Su, A. Zhi, Z. Gao, X. Han, K. Wu, L. Bao, Y. Huang, Y. Shi, X. Bai, P. Cheng, L. Chen, K. Wu, X. Tian, C. Wu, and B. Feng, Evidence for multiferroicity in single-layer CuCrSe2, Nat. Commun. 15(1), 4252 (2024)
CrossRef ADS arXiv Google scholar
[56]
R. Du, Y. Wang, M. Cheng, P. Wang, H. Li, W. Feng, L. Song, J. Shi, and J. He, Two-dimensional multiferroic material of metallic p-doped SnSe, Nat. Commun. 13(1), 6130 (2022)
CrossRef ADS Google scholar
[57]
M. H. Chiu, X. Ji, T. Zhang, N. Mao, Y. Luo, C. Shi, X. Zheng, H. Liu, Y. Han, W. L. Wilson, Z. Luo, V. Tung, and J. Kong, Growth of large-sized 2D ultrathin SnSe crystals with in-plane ferroelectricity, Adv. Electron. Mater. 9(4), 2201031 (2023)
CrossRef ADS Google scholar
[58]
D. Lebedev, J. T. Gish, E. S. Garvey, T. K. Stanev, J. Choi, L. Georgopoulos, T. W. Song, H. Y. Park, K. Watanabe, T. Taniguchi, N. P. Stern, V. K. Sangwan, and M. C. Hersam, Electrical interrogation of thickness‐dependent multiferroic phase transitions in the 2D antiferromagnetic semiconductor NiI2, Adv. Funct. Mater. 33(12), 2212568 (2023)
CrossRef ADS Google scholar
[59]
Y. Guo, J. Yang, J. Zhou, N. Zhu, Y. Jin, G. Thiele, A. Preobrajenski, E. Voloshina, and Y. Dedkov, Electronic correlations in multiferroic van der Waals CuCrP2S6: Insights from X-ray spectroscopy and DFT, J. Phys. Chem. C 128(18), 7830 (2024)
CrossRef ADS arXiv Google scholar
[60]
K. F. Mak, J. Shan, and D. C. Ralph, Probing and controlling magnetic states in 2D layered magnetic materials, Nat. Rev. Phys. 1(11), 646 (2019)
CrossRef ADS Google scholar
[61]
Q. Hu, Y. Huang, Y. Wang, S. Ding, M. Zhang, C. Hua, L. Li, X. Xu, J. Yang, S. Yuan, K. Watanabe, T. Taniguchi, Y. Lu, C. Jin, D. Wang, and Y. Zheng, Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics, Nat. Commun. 15(1), 3029 (2024)
CrossRef ADS Google scholar
[62]
J. H. Kim, T. S. Jung, Y. Lee, C. Kim, J. G. Park, and J. H. Kim, Terahertz evidence of electromagnon excitations in the multiferroic van der Waals insulator NiI2, Phys. Rev. B 108(6), 064414 (2023)
CrossRef ADS Google scholar
[63]
A. O. Fumega and J. L. Lado, Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers, 2D Mater. 10(2), 025026 (2023)
CrossRef ADS arXiv Google scholar
[64]
J. Sødequist and T. Olsen, Type II multiferroic order in two-dimensional transition metal halides from first principles spin-spiral calculations, 2D Mater. 10(3), 035016 (2023)
CrossRef ADS arXiv Google scholar
[65]
M. Y. Liu, J. X. Yu, X. L. Zhu, Z. P. Bian, X. Zhou, Y. H. Liang, Z. L. Luo, Y. W. Yin, J. Y. Li, and X. M. Chen, Hexagonal Lu1–xInxFeO3 room-temperature multiferroic thin films, ACS Appl. Mater. Interfaces 14(46), 52117 (2022)
CrossRef ADS Google scholar
[66]
Y. Zhao, Q. Liu, X. Jiang, and J. Zhao, Intrinsic multiferroic in VNI monolayer, ACS Appl. Electron. Mater. 4(7), 3177 (2022)
CrossRef ADS Google scholar
[67]
C. Song, W. Xu, N. Liedienov, I. Fesych, R. Kulagin, Y. Beygelzimer, X. Zhang, Y. Han, Q. Li, B. Liu, A. Pashchenko, and G. Levchenko, Novel multiferroic‐like nanocomposite with high pressure‐modulated magnetic and electric properties, Adv. Funct. Mater. 32(30), 2113022 (2022)
CrossRef ADS Google scholar
[68]
Y. Wang, L. Wang, L. Hu, C. Huang, D. Li, J. Liu, Magnetic and electric properties and their regulation of the intrinsic half‐metallic multiferroic monolayers AV2S4, Adv. Theory Simul. 6(9), 2300340 (2023)
CrossRef ADS Google scholar
[69]
Y. Feng,T. Zhang,Y. Dai,B. Huang,Y. Ma, p-orbital multiferroics in single-layer SiN, Appl. Phys. Lett. 120(19), 193102 (2022)
[70]
Y. Wu, L. Cao, G. Li, X. Huang, B. Zhang, B. Gao, and G. Song, Electrical control of metal–insulator transition and magnetism in asymmetric multiferroic InCrX3 (X = S, Se) monolayers, Appl. Phys. Lett. 124(16), 162902 (2024)
CrossRef ADS Google scholar
[71]
A. Lukovkina, S. A. López-Paz, C. Besnard, L. Guenee, F. O. Von Rohr, and E. Giannini, Controlling the magnetic properties of the van der Waals multiferroic crystals Co1−xNixI2, Chem. Mater. 36(12), 6237 (2024)
CrossRef ADS arXiv Google scholar
[72]
M. Liparo, J. P. Jay, M. Dubreuil, G. Simon, A. Fessant, W. Jahjah, Y. Le Grand, C. Sheppard, A. R. E. Prinsloo, V. Vlaminck, V. Castel, L. Temdie-Kom, G. Bourcin, D. Spenato, and D. T. Dekadjevi, Static and dynamic magnetization control of extrinsic multiferroics by the converse magneto-photostrictive effect, Commun. Phys. 6(1), 356 (2023)
CrossRef ADS Google scholar
[73]
C. Huang, J. Zhou, H. Sun, F. Wu, Y. Hou, and E. Kan, Toward room-temperature electrical control of magnetic order in multiferroic van der Waals materials, Nano Lett. 22(13), 5191 (2022)
CrossRef ADS Google scholar
[74]
P. T. W. Yen, H. C. Wu, and S. M. Huang, First-principles study of the crystal and magnetic structures of multiferroic Cu2OCl2, J. Phys.: Condens. Matter 34(33), 335602 (2022)
CrossRef ADS Google scholar
[75]
C. Hu, J. Chen, E. Du, W. Ju, Y. An, and S. J. Gong, Ferroelectric control of band alignments and magnetic properties in the two-dimensional multiferroic VSe2/In2Se3, J. Phys.: Condens. Matter 34(42), 425801 (2022)
CrossRef ADS Google scholar
[76]
J. Zhang and J. C. Ma, Electric-field control of magnetization reversal at room temperature in SmFeO3 single-phase multiferroic thin film, J. Alloys Compd. 934, 167935 (2023)
CrossRef ADS Google scholar
[77]
A. Mahajan and S. Bhowmick, Magnetoelectric multiferroic janus monolayers VOXY (X/Y = F, Cl, Br, or I, and X ≠ Y) with in-plane ferroelectricity and out-of-plane piezoelectricity, J. Phys. Chem. C 127(23), 11407 (2023)
CrossRef ADS Google scholar
[78]
Z. Yu, H. Bai, B. Li, L. Li, and H. Pan, Two-dimensional asymmetric multiferroics: Unique way toward strong magnetoelectric coupling and multistate memory, J. Phys. Chem. Lett. 15(7), 1795 (2024)
CrossRef ADS Google scholar
[79]
Y. Zhao, Q. Liu, F. Zhang, X. Jiang, W. Gao, and J. Zhao, Multiferroicity in a two-dimensional non-van der Waals crystal of AgCr2X4 (X = S or Se), J. Phys. Chem. Lett. 13(48), 11346 (2022)
CrossRef ADS Google scholar
[80]
S. Xu, F. Jia, X. Yu, S. Hu, H. Gao, and W. Ren, Intrinsic multiferroic MnOF monolayer with room-temperature ferromagnetism, Mater. Today Phys. 27, 100775 (2022)
CrossRef ADS Google scholar
[81]
Y. Liu, Y. Feng, Y. Dai, B. Huang, and Y. Ma, Engineering layertronics in two-dimensional ferromagnetic multiferroic lattice, Nano Lett. 24(11), 3507 (2024)
CrossRef ADS Google scholar
[82]
X. Shen, F. Wang, X. Lu, and J. Zhang, Two-dimensional multiferroics with intrinsic magnetoelectric coupling in a-site ordered perovskite monolayers, Nano Lett. 23(2), 735 (2023)
CrossRef ADS Google scholar
[83]
W. Xun, C. Wu, H. Sun, W. Zhang, Y. Z. Wu, and P. Li, Coexisting magnetism, ferroelectric, and ferrovalley multiferroic in stacking-dependent two-dimensional materials, Nano Lett. 24(11), 3541 (2024)
CrossRef ADS Google scholar
[84]
Y. Feng, Y. Dai, B. Huang, L. Kou, and Y. Ma, Layer Hall effect in multiferroic two-dimensional materials, Nano Lett. 23(11), 5367 (2023)
CrossRef ADS Google scholar
[85]
S. Teh and H. T. Jeng, Magnetoelastic and magnetoelectric coupling in two-dimensional nitride MXenes: A sensity functional theory study, Nanomaterials (Basel) 13(19), 2644 (2023)
CrossRef ADS Google scholar
[86]
G. Cardenas-Chirivi, K. Vega-Bustos, H. Rojas-Páez, D. Silvera-Vega, J. Pazos, O. Herrera, M. A. Macías, C. Espejo, W. López-Pérez, J. A. Galvis, and P. Giraldo-Gallo, Room temperature multiferroicity in a transition metal dichalcogenide, npj 2D Mater. Appl. 7, 54 (2023)
CrossRef ADS arXiv Google scholar
[87]
Z. W. Zhang, Y. F. Lang, H. P. Zhu, B. Li, Y. Q. Zhao, B. Wei, W. X. Zhou, and Electronic structure, Curie temperature, and magnetic transport of a two-dimensional multiferroic MnSe2/In2Se3 heterostructure, Phys. Rev. Appl. 21(6), 064012 (2024)
CrossRef ADS Google scholar
[88]
Y. Feng,J. Han,K. Zhang,X. Lin,G. Gao, Q. Yang,S. Meng, van der Waals multiferroic tunnel junctions based on sliding multiferroic layered VSi2N4, Phys. Rev. B 109(8), 085433 (2024)
[89]
C. Liu, W. Ren, and S. Picozzi, Spin-chirality-driven multiferroicity in van der Waals monolayers, Phys. Rev. Lett. 132(8), 086802 (2024)
CrossRef ADS Google scholar
[90]
R. Tahir, S. A. Zahra, U. Naeem, D. Akinwande, and S. Rizwan, First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti3C2Tx free-standing MXene film, RSC Advances 12(38), 24571 (2022)
CrossRef ADS Google scholar
[91]
W. Xiong, B. Lei, Y. Gao, R. Yang, A. Li, F. Ouyang, First-principles study on the p-orbital multiferroicity of single-layer XN (X = Ge, and Sn , Pb), Results Phys. 60, 107665 (2024)
CrossRef ADS Google scholar
[92]
J. Shen, B. K. Tsai, Y. Zhang, K. Xu, J. P. Barnard, Z. Hu, X. Zhang, and H. Wang, Van der Waals epitaxy of bismuth‐based multiferroic layered supercell oxide thin films integrated on flexible mica substrate, Small Sci. 4(2), 2300244 (2024)
CrossRef ADS Google scholar
[93]
F. Orlandi,D. Delmonte,G. Calestani,E. Cavalli,E. Gilioli,V. V. Shvartsman,P. Graziosi,S. Rampino,G. Spaggiari,C. Liu,W. Ren, S. Picozzi,M. Solzi,M. Casappa,F. Mezzadri, γ-BaFe2O4: A fresh playground for room temperature multiferroicity, Nat. Commun. 13(1), 7968 (2022)
[94]
Y. Wu, D. Zhang, Y. N. Zhang, L. Deng, and B. Peng, Nonreciprocal and nonvolatile electric-field switching of magnetism in van der Waals heterostructure multiferroics, Nano Lett. 24(20), 5929 (2024)
CrossRef ADS Google scholar
[95]
I. Lubomirsky and O. Stafsudd, Invited review article: Practical guide for pyroelectric measurements, Rev. Sci. Instrum. 83(5), 051101 (2012)
CrossRef ADS Google scholar
[96]
M. Dragičević, D. R. Góngora, Ž. Rapljenović, M. Herak, V. Brusar, D. Altus, M. Pregelj, A. Zorko, H. Berger, D. Arčon, and T. Ivek, Control of a polar order via magnetic field in a vector-chiral magnet, Phys. Rev. B 104(12), L121107 (2021)
CrossRef ADS Google scholar
[97]
H. Ma, J. Liang, H. Hong, K. Liu, D. Zou, M. Wu, and K. Liu, Rich information on 2D materials revealed by optical second harmonic generation, Nanoscale 12(45), 22891 (2020)
CrossRef ADS Google scholar
[98]
N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G. C. Li, Nonlinear optics in plasmonic nanostructures, J. Opt. 20(8), 083001 (2018)
CrossRef ADS Google scholar
[99]
S. Son, Y. Lee, J. H. Kim, B. H. Kim, C. Kim, W. Na, H. Ju, S. Park, A. Nag, K. Zhou, Y. Son, H. Kim, W. Noh, J. Park, J. S. Lee, H. Cheong, J. H. Kim, and J. Park, Multiferroic‐enabled magnetic‐excitons in 2D quantum‐entangled van der Waals antiferromagnet NiI2, Adv. Mater. 34(10), 2109144 (2022)
CrossRef ADS Google scholar
[100]
X. Li, C. Xu, B. Liu, X. Li, L. Bellaiche, and H. Xiang, Realistic spin model for multiferroic NiI2, Phys. Rev. Lett. 131(3), 036701 (2023)
CrossRef ADS Google scholar
[101]
M. Ogino, Y. Kaneko, Y. Tokura, and Y. Takahashi, Gyrotropic birefringence via electromagnon resonance in a multiferroic of spin origin, Phys. Rev. Res. 2(2), 023345 (2020)
CrossRef ADS Google scholar
[102]
S. Iguchi, R. Masuda, S. Seki, Y. Tokura, and Y. Takahashi, Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet, Nat. Commun. 12(1), 6674 (2021)
CrossRef ADS Google scholar
[103]
M. J. Cabral, Z. Chen, and X. Liao, Scanning transmission electron microscopy for advanced characterization of ferroic materials, Microstructures 3(4), 2023040 (2023)
CrossRef ADS Google scholar
[104]
A. Tao, Y. Jiang, S. Chen, Y. Zhang, Y. Cao, T. Yao, C. Chen, H. Ye, and X. L. Ma, Ferroelectric polarization and magnetic structure at domain walls in a multiferroic film, Nat. Commun. 15(1), 6099 (2024)
CrossRef ADS Google scholar
[105]
C. L. Jia, S. B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse, Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films, Nat. Mater. 7(1), 57 (2008)
CrossRef ADS Google scholar
[106]
M. D. Rossell, R. Erni, M. P. Prange, J. C. Idrobo, W. Luo, R. J. Zeches, S. T. Pantelides, and R. Ramesh, Atomic structure of highly strained BiFeO3 thin films, Phys. Rev. Lett. 108(4), 047601 (2012)
CrossRef ADS Google scholar
[107]
A. Y. Borisevich, O. S. Ovchinnikov, H. J. Chang, M. P. Oxley, P. Yu, J. Seidel, E. A. Eliseev, A. N. Morozovska, R. Ramesh, S. J. Pennycook, and S. V. Kalinin, Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis, ACS Nano 4(10), 6071 (2010)
CrossRef ADS Google scholar
[108]
B. W. Batterman and H. Cole, Dynamical diffraction of X rays by perfect crystals, Rev. Mod. Phys. 36(3), 681 (1964)
CrossRef ADS Google scholar
[109]
B. E. Warren, X-ray Diffraction, Addison-Wesley Pub. Co., 1969
[110]
K. T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S. Woo, K. Chu, J. Seidel, B. G. Jeon, Y. S. Oh, K. H. Kim, W. I. Liang, H. J. Chen, Y. H. Chu, Y. H. Jeong, R. Ramesh, J. H. Park, and C. H. Yang, Concurrent transition of ferroelectric and magnetic ordering near room temperature, Nat. Commun. 2(1), 567 (2011)
CrossRef ADS Google scholar
[111]
W. Ratcliff, J. W. Lynn, V. Kiryukhin, P. Jain, and M. R. Fitzsimmons, Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering, npj Quant. Mater. 1, 16003 (2016)
CrossRef ADS Google scholar
[112]
A. Viljoen, M. Mathelié-Guinlet, A. Ray, N. Strohmeyer, Y. J. Oh, P. Hinterdorfer, D. J. Müller, D. Alsteens, and Y. F. Dufrêne, Force spectroscopy of single cells using atomic force microscopy, Nat. Rev. Methods Primers 1(1), 63 (2021)
CrossRef ADS Google scholar
[113]
Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, and D. J. Müller, Imaging modes of atomic force microscopy for application in molecular and cell biology, Nat. Nanotechnol. 12(4), 295 (2017)
CrossRef ADS Google scholar
[114]
A. B. Ustinov, B. A. Kalinikos, and G. Srinivasan, Nonlinear multiferroic phase shifters for microwave frequencies, Appl. Phys. Lett. 104(5), 052911 (2014)
CrossRef ADS Google scholar
[115]
T. D. Onuta, Y. Wang, C. J. Long, and I. Takeuchi, Energy harvesting properties of all-thin-film multiferroic cantilevers, Appl. Phys. Lett. 99(20), 203506 (2011)
CrossRef ADS Google scholar
[116]
X. Tang and L. Kou, Two-dimensional ferroics and multiferroics: Platforms for new physics and applications, J. Phys. Chem. Lett. 10(21), 6634 (2019)
CrossRef ADS Google scholar
[117]
J. M. Hu, T. Nan, N. X. Sun, and L. Q. Chen, Multiferroic magnetoelectric nanostructures for novel device applications, MRS Bull. 40(9), 728 (2015)
CrossRef ADS Google scholar
[118]
N. Hiremath, R. Guntupalli, V. Vodyanoy, B. A. Chin, and M. K. Park, Detection of methicillin-resistant Staphylococcus aureus using novel lytic phage-based magnetoelastic biosensors, Sens. Actuators B 210, 129 (2015)
CrossRef ADS Google scholar
[119]
S. Manipatruni, D. E. Nikonov, C. C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y. L. Huang, E. Bonturim, R. Ramesh, and I. A. Young, Scalable energy-efficient magnetoelectric spin–orbit logic, Nature 565(7737), 35 (2019)
CrossRef ADS Google scholar
[120]
Y. Chai, Y. Liang, C. Xiao, Y. Wang, B. Li, D. Jiang, P. Pal, Y. Tang, H. Chen, Y. Zhang, H. Bai, T. Xu, W. Jiang, W. Skowroński, Q. Zhang, L. Gu, J. Ma, P. Yu, J. Tang, Y. H. Lin, D. Yi, D. C. Ralph, C. B. Eom, H. Wu, and T. Nan, Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory, Nat. Commun. 15(1), 5975 (2024)
CrossRef ADS Google scholar
[121]
J. F. Scott, Multiferroic memories, Nat. Mater. 6(4), 256 (2007)
CrossRef ADS Google scholar
[122]
M. Bibes and A. Barthélémy, Towards a magnetoelectric memory, Nat. Mater. 7(6), 425 (2008)
CrossRef ADS Google scholar
[123]
F. J. Albert, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett. 77(23), 3809 (2000)
CrossRef ADS Google scholar
[124]
T. Kawahara,R. Takemura,K. Miura, J. Hayakawa,S. Ikeda,Y. Lee, R. Sasaki,Y. Goto,K. Ito,T. Meguro,F. Matsukura,H. Takahashi,H. Matsuoka,H. Ohno, 2 Mb spin-transfer torque RAM (SPRAM) with bit-by-bit bidirectional current write and parallelizing-direction current read, in: 2007 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2007, p. 480
[125]
W. Kleemann, Multiferroic and magnetoelectric nanocomposites for data processing, J. Phys. D Appl. Phys. 50(22), 223001 (2017)
CrossRef ADS Google scholar
[126]
B. Zhang,P. Lu,R. Tabrizian,P. X. L. Feng,Y. Y. Wu, 2D Magnetic heterostructures: Spintronics and quantum future, npj Spintronics 2(1), 6 (2024)
[127]
H. Li, S. Ruan, and Y. Zeng, Intrinsic van der Waals magnetic materials from bulk to the 2D Limit: New frontiers of spintronics, Adv. Mater. 31(27), 1900065 (2019)
CrossRef ADS Google scholar
[128]
X. Lin, W. Yang, K. L. Wang, and W. Zhao, Two-dimensional spintronics for low-power electronics, Nat. Electron. 2(7), 274 (2019)
CrossRef ADS Google scholar
[129]
E. Gradauskaite, P. Meisenheimer, M. Müller, J. Heron, and M. Trassin, Multiferroic heterostructures for spintronics, Phys. Sci. Rev. 6(2), 20190072 (2021)
CrossRef ADS Google scholar
[130]
H. Béa, M. Gajek, M. Bibes, and A. Barthélémy, Spintronics with multiferroics, J. Phys.: Condens. Matter 20(43), 434221 (2008)
CrossRef ADS Google scholar
[131]
L. Zhang, Y. Wang, X. Liu, and F. Liu, Electrical switching of spin-polarized current in multiferroic tunneling junctions, npj Comput. Mater. 8(1), 197 (2022)
CrossRef ADS Google scholar
[132]
M. Castro, G. Saéz, P. Vergara Apaz, S. Allende, and A. S. Nunez, Toward fully multiferroic van der Waals spin FETs: Basic design and quantum calculations, Nano Lett. 24(26), 7911 (2024)
CrossRef ADS Google scholar
[133]
S. Dong, Review on piezoelectric, ultrasonic, and magnetoelectric actuators, J. Adv. Dielectr. 2(1), 1230001 (2012)
CrossRef ADS Google scholar
[134]
M. Crescentini, S. F. Syeda, and G. P. Gibiino, Hall-effect current sensors: Principles of operation and implementation techniques, IEEE Sens. J. 22(11), 10137 (2022)
CrossRef ADS Google scholar
[135]
P. Li,Y. Wen,P. Liu,X. Li,C. Jia, A magnetoelectric energy harvester and management circuit for wireless sensor network, Sens. Actuators A Phys. 157(1), 100 (2010)
[136]
K. Bhoi, H. S. Mohanty, M. Ravikant, M. F. Abdullah, D. K. Pradhan, S. N. Babu, A. K. Singh, P. N. Vishwakarma, A. Kumar, R. Thomas, and D. K. Pradhan, Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites, Sci. Rep. 11(1), 3149 (2021)
CrossRef ADS Google scholar
[137]
A. B. Swain, S. Dinesh Kumar, V. Subramanian, and P. Murugavel, Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications, Phys. Rev. Appl. 13(2), 024026 (2020)
CrossRef ADS Google scholar
[138]
M. Zaeimbashi, M. Nasrollahpour, A. Khalifa, A. Romano, X. Liang, H. Chen, N. Sun, A. Matyushov, H. Lin, C. Dong, Z. Xu, A. Mittal, I. Martos-Repath, G. Jha, N. Mirchandani, D. Das, M. Onabajo, A. Shrivastava, S. Cash, and N. X. Sun, Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing, Nat. Commun. 12(1), 3141 (2021)
CrossRef ADS Google scholar
[139]
C. L. Zhang,W. Q. Chen, A wideband magnetic energy harvester, Appl. Phys. Lett. 96(12), 123507 (2010)
[140]
X. Bai, Y. Wen, P. Li, J. Yang, X. Peng, and X. Yue, Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling, Sens. Actuators A 209, 78 (2014)
CrossRef ADS Google scholar
[141]
Z. Lin, J. Chen, X. Li, J. Li, J. Liu, Q. Awais, and J. Yang, Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator, Appl. Phys. Lett. 109(25), 253903 (2016)
CrossRef ADS Google scholar
[142]
H. Lin, Y. Gao, X. Wang, T. Nan, M. Liu, J. Lou, G. Yang, Z. Zhou, X. Yang, J. Wu, M. Li, Z. Hu, and N. X. Sun, Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics, IEEE Trans. Magn. 52(7), 1 (2016)
CrossRef ADS Google scholar
[143]
J. D. Schneider, J. P. Domann, M. K. Panduranga, S. Tiwari, P. Shirazi, Z. J. Yao, C. Sennott, D. Shahan, S. Selvin, G. McKnight, W. Wall, R. N. Candler, Y. E. Wang, and G. P. Carman, Experimental demonstration and operating principles of a multiferroic antenna, J. Appl. Phys. 126(22), 224104 (2019)
CrossRef ADS Google scholar
[144]
Y. Zhao, Y. Li, S. Zhu, C. Chen, M. Yao, Y. Zhao, Z. Hu, B. Peng, M. Liu, and Z. Zhou, Voltage tunable low damping YIG/PMN-PT multiferroic heterostructure for low-power RF/microwave devices, J. Phys. D Appl. Phys. 54(24), 245002 (2021)
CrossRef ADS Google scholar
[145]
G. Dong, Z. Zhou, X. Xue, Y. Zhang, B. Peng, M. Guan, S. Zhao, Z. Hu, W. Ren, Z. G. Ye, and M. Liu, Ferroelectric phase transition induced a large FMR tuning in self-assembled BaTiO3:Y3Fe5O12 multiferroic composites, ACS Appl. Mater. Interfaces 9(36), 30733 (2017)
CrossRef ADS Google scholar
[146]
A. B. Ustinov, G. Srinivasan, and B. A. Kalinikos, Ferrite-ferroelectric hybrid wave phase shifters, Appl. Phys. Lett. 90(3), 031913 (2007)
CrossRef ADS Google scholar
[147]
R. Kokkoniemi, T. Ollikainen, R. E. Lake, S. Saarenpää, K. Y. Tan, J. I. Kokkala, C. B. Dağ, J. Govenius, and M. Möttönen, Flux-tunable phase shifter for microwaves, Sci. Rep. 7(1), 14713 (2017)
CrossRef ADS Google scholar
[148]
X. W. Shen, W. Y. Tong, S. J. Gong, and C. G. Duan, Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials, 2D Mater. 5(1), 011001 (2017)
CrossRef ADS Google scholar
[149]
S. Yu, D. Sun, Y. Xu, Y. Dai, B. Huang, and W. Wei, Triferroic coupling in two-dimensional WRuCl6, Phys. Rev. B 110(6), 064417 (2024)
CrossRef ADS Google scholar
[150]
S. Shen, X. Xu, B. Huang, L. Kou, Y. Dai, and Y. Ma, Intrinsic triferroicity in a two-dimensional lattice, Phys. Rev. B 103(14), 144101 (2021)
CrossRef ADS Google scholar
[151]
Y. Feng, and Q. Yang Enabling triferroics coupling in breathing kagome lattice Nb3X8 (X = Cl, Br, I) monolayers, J. Mater. Chem. C 11(17), 5762 (2023)
CrossRef ADS Google scholar
[152]
S. Bhardwaj and T. Maitra, Two-dimensional rare-earth halide based single-phase triferroic, Phys. Rev. B 108(8), L081116 (2023)
CrossRef ADS Google scholar
[153]
T. Zhang, X. Xu, Y. Dai, B. Huang, and Y. Ma, Intrinsic ferromagnetic triferroicity in bilayer T′-VTe2, Appl. Phys. Lett. 120(19), 192903 (2022)
CrossRef ADS Google scholar
[154]
F. Zhang, W. Mi, and X. Wang, Tunable valley and spin splitting in 2H-VSe2/BiFeO3 (111) triferroic heterostructures, Nanoscale 11(21), 10329 (2019)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 1264004), the Natural Science Foundation Joint Fund of Hubei Province, China (No. 2024AFD069), the Catching-up Science and Technology Research Funds of Enshi (No. XYJ2023000170), and the Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission (No. PT092208).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(57755 KB)

Accesses

Citations

Detail

Sections
Recommended

/