Understanding formation of molecular rotor array on Au(111) surface

, , , , ,

PDF(355 KB)
PDF(355 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 380-386. DOI: 10.1007/s11467-010-0134-3
MINI-REVIEW ARTICLE
MINI-REVIEW ARTICLE

Understanding formation of molecular rotor array on Au(111) surface

Author information +
History +

Abstract

The motion of single molecules on surfaces plays an important role in nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this article, we review the recent progress on single molecular rotors self-assembled on Au(111) surfaces. We focus on the motion of single phthalocyanine molecules on the reconstructed Au(111) surface based on the most recent results obtained by scanning tunneling microscopy (STM). An ordered array of single molecular rotors with large scale is self-assembled on Au(111) surface. Combined with first principle calculations, the mechanism of the surface-supported molecular rotor is investigated. Based on these results, phthalocyanine molecules on Au (111) are a promising candidate system for the development of adaptive molecular device structures.

Keywords

molecular rotors / scanning tunneling microscopy (STM) / nanodevices

Cite this article

Download citation ▾
, , , , , . Understanding formation of molecular rotor array on Au(111) surface. Front Phys Chin, 2010, 5(4): 380‒386 https://doi.org/10.1007/s11467-010-0134-3

References

[1]
J. V. Barth, G. Costantini, and K. Kern, Nature, 2005, 437: 671
CrossRef ADS Google scholar
[2]
J. V. Barth, Annu. Rev. Phys. Chem., 2007, 58: 375
CrossRef ADS Google scholar
[3]
A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, and J. R. Heath, Acc. Chem. Res., 2001, 34: 433
CrossRef ADS Google scholar
[4]
A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater., 2005, 17, 1705
CrossRef ADS Google scholar
[5]
O. M. Yaghi, O. K. M, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature, 2003, 423: 705
CrossRef ADS Google scholar
[6]
Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101
CrossRef ADS Google scholar
[7]
N. Jiang, Y. Y. Zhang, Q. Liu, Z. H. Cheng, Z. T. Deng, S. X. Du, H. J. Gao, M. J. Beck, and S. T. Pantelides, Nano Lett., 2010, 10: 1184
CrossRef ADS Google scholar
[8]
H. J. Gao and L. Gao, Prog. Surf. Sci., 2010, 85: 28
CrossRef ADS Google scholar
[9]
W. Ji, Z. Y. Lu, and H. Gao, Phys. Rev. Lett., 2007, 99 (5): 059602
CrossRef ADS Google scholar
[10]
L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du, W. A. Hofer, X. C. Xie, and H. J. Gao, Phys. Rev. Lett., 2007, 99: 106402
CrossRef ADS Google scholar
[11]
M. Feng, L. Gao, S. X. Du, Z. T. Deng, Z. H. Cheng, W. Ji, D. Q. Zhang, X. F. Guo, X. Lin, L. F. Chi, D. B. Zhu, H. Fuchs, and H. J. Gao, Adv. Funct. Mater., 2007, 17: 770
CrossRef ADS Google scholar
[12]
D. Shi, W. Ji, X. Lin, X. He, J. Lian, L. Gao, J. Cai, H. Lin, S. Du, F. Lin, C. Seidel, L. Chi, W. Hofer, H. Fuchs, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 226101
CrossRef ADS Google scholar
[13]
L. Gao, Z. T. Deng, W. Ji, X. Lin, Z. H. Cheng, X. B. He, D. X. Shi, and H. J. Gao, Phys. Rev. B, 2006, 73: 075424
CrossRef ADS Google scholar
[14]
M. Feng, X. F. Guo, X. Lin, X. B. He, W. Ji, S. X. Du, D. Q. Zhang, D. B. Zhu, and H. J. Gao, J. Am. Chem. Soc., 2005, 127: 15338
CrossRef ADS Google scholar
[15]
Y. L. Wang, W. Ji, D. X. Shi, S. X. Du, C. Seidel, Y. G. Ma, H. J. Gao, L. F. Chi, and H. Fuchs, Phys. Rev. B, 2004, 69: 075408
CrossRef ADS Google scholar
[16]
L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209
CrossRef ADS Google scholar
[17]
G. S. Kottas, L. I. Clarke, D. Horinek, and J. Michl, Chem. Rev., 2005, 105: 1281
CrossRef ADS Google scholar
[18]
J. Vacek and J. Michl, Adv. Funct. Mater., 2007, 17: 730
CrossRef ADS Google scholar
[19]
D. Zhong, T. Blomker, K. Wedeking, L. Chi, G. Erker, and H. Fuchs, Nano Lett., 2009, 9: 4387
CrossRef ADS Google scholar
[20]
J. Vacek and J. Michl, Proc. Natl. Acad. Sci. USA, 2001, 98: 5481
CrossRef ADS Google scholar
[21]
P. Kral and H. R. Sadeghpour, Phys. Rev. B, 2002, 65: 161401
CrossRef ADS Google scholar
[22]
S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, Nano Lett., 2004, 4: 1415
CrossRef ADS Google scholar
[23]
J. Berna, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Perez, P. Rudolf, G. Teobaldi, and F. Zerbetto, Nature Mater., 2005, 4: 704
CrossRef ADS Google scholar
[24]
K. Petr and S. J. Tamar, Chem. Phys., 2005, 123: 184702
[25]
J. E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H. R. Tseng, J. F. Stoddart, and J. R. Heath, Nature, 2007, 445: 414
CrossRef ADS Google scholar
[26]
T. R. Kelly, H. De Silva, and R. A. Silva, Nature, 1999, 401: 150
CrossRef ADS Google scholar
[27]
K. V. Mikkelsen and M. A. Ratner, Chem. Rev., 1987, 87: 113
CrossRef ADS Google scholar
[28]
P. Kral, Phys. Rev. B, 1997, 56: 7293
CrossRef ADS Google scholar
[29]
R. A. Van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, and B. L. Feringa, Nature, 2005, 437-1337
CrossRef ADS Google scholar
[30]
G. London, G. T. Carroll, T. F. Landaluce, M. M. Pollard, P. Rudolf, and B. L. Feringa, Chem. Commun., 2009: 1712
CrossRef ADS Google scholar
[31]
C. Manzano, W. H. Soe, H. S. Wong, F. Ample, A. Gourdon, N. Chandrasekhar, and C. Joachim, Nature Mater., 2009, 8: 576
CrossRef ADS Google scholar
[32]
N. Henningsen, K. J. Franke, I. F. Torrente, G. Sehulze, B. Priewisch, K. Ruck-Braun, J. Dokic, T. Klamroth, P. Saalfrank, and J. I. J. Pascual, Phys. Chem. C, 2007, 111: 14843
[33]
B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907
CrossRef ADS Google scholar
[34]
A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou, and Q. Zhu, Science, 2005, 309: 1542
CrossRef ADS Google scholar
[35]
P. Wahl, L. Diekhöer, G. Wittich, L. Vitali, M. A. Schneider, and K. Kern, Phys. Rev. Lett., 2005, 95: 166601
CrossRef ADS Google scholar
[36]
N. Tsukahara, K.-I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett., 2009, 102: 167203
CrossRef ADS Google scholar
[37]
X. Chen, Y. S. Fu, S. H. Ji, T. Zhang, P. Cheng, X. C. Ma, X. L. Zou, W. H. Duan, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett., 2008, 101: 197208
CrossRef ADS Google scholar
[38]
B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 280: 1732
CrossRef ADS Google scholar
[39]
J. K. Gimzewski, C. Joachim, R. R. Schlittler, V. Langlais, H. Tang, and I. Johannsen, Science, 1998, 281: 531
CrossRef ADS Google scholar
[40]
B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907
CrossRef ADS Google scholar
[41]
J. K. Gimzewski and C. Joachim, Science, 1999, 283: 1683
CrossRef ADS Google scholar
[42]
J. A. Stroscio and D. M. Eigler, Science, 1991, 254: 1319
CrossRef ADS Google scholar
[43]
P. Avouris, Acc. Chem. Res., 1995, 28: 95
CrossRef ADS Google scholar
[44]
F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, and F. Besenbacher, Prog. Surf. Sci., 2003, 71: 95
CrossRef ADS Google scholar
[45]
C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541
CrossRef ADS Google scholar
[46]
D. M. Eigler, C. P. Lutz, and W. E. Rudge, Nature, 1991, 352: 600
CrossRef ADS Google scholar
[47]
C. Wöll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys. Rev. B, 1989, 39: 7988
CrossRef ADS Google scholar
[48]
J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. B, 1990, 42: 9307
CrossRef ADS Google scholar
[49]
M. Peter, C. S. Dan, and T. John Yates Jr., Phys. Rev. Lett., 2006, 97: 146103
CrossRef ADS Google scholar
[50]
L. Limot, J. Kröer, R. Berndt, A. Garcia-Lekue, and W. A. Hofer, Phys. Rev. Lett., 2005, 94: 126102
CrossRef ADS Google scholar
[51]
H. G. Zhang, J. H. Mao, Q. Liu, N. Jiang, H. T. Zhou, H. M. Guo, D. X. Shi, and H. J. Gao, Chin. Phys. B, 2010, 19: 018105
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(355 KB)

Accesses

Citations

Detail

Sections
Recommended

/