Understanding formation of molecular rotor array on Au(111) surface

Shi-xuan DU (杜世萱) , Ye-liang WANG (王业亮) , Qi LIU (刘奇) , Hai-gang ZHANG (张海刚) , Hai-ming GUO (郭海明) , Hong-jun GAO (高鸿钧)

Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 380 -386.

PDF (355KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 380 -386. DOI: 10.1007/s11467-010-0134-3
MINI-REVIEW ARTICLE

Understanding formation of molecular rotor array on Au(111) surface

Author information +
History +
PDF (355KB)

Abstract

The motion of single molecules on surfaces plays an important role in nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this article, we review the recent progress on single molecular rotors self-assembled on Au(111) surfaces. We focus on the motion of single phthalocyanine molecules on the reconstructed Au(111) surface based on the most recent results obtained by scanning tunneling microscopy (STM). An ordered array of single molecular rotors with large scale is self-assembled on Au(111) surface. Combined with first principle calculations, the mechanism of the surface-supported molecular rotor is investigated. Based on these results, phthalocyanine molecules on Au (111) are a promising candidate system for the development of adaptive molecular device structures.

Keywords

molecular rotors / scanning tunneling microscopy (STM) / nanodevices

Cite this article

Download citation ▾
Shi-xuan DU (杜世萱), Ye-liang WANG (王业亮), Qi LIU (刘奇), Hai-gang ZHANG (张海刚), Hai-ming GUO (郭海明), Hong-jun GAO (高鸿钧). Understanding formation of molecular rotor array on Au(111) surface. Front. Phys., 2010, 5(4): 380-386 DOI:10.1007/s11467-010-0134-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. V. Barth, G. Costantini, and K. Kern, Nature, 2005, 437: 671

[2]

J. V. Barth, Annu. Rev. Phys. Chem., 2007, 58: 375

[3]

A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, and J. R. Heath, Acc. Chem. Res., 2001, 34: 433

[4]

A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater., 2005, 17, 1705

[5]

O. M. Yaghi, O. K. M, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature, 2003, 423: 705

[6]

Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101

[7]

N. Jiang, Y. Y. Zhang, Q. Liu, Z. H. Cheng, Z. T. Deng, S. X. Du, H. J. Gao, M. J. Beck, and S. T. Pantelides, Nano Lett., 2010, 10: 1184

[8]

H. J. Gao and L. Gao, Prog. Surf. Sci., 2010, 85: 28

[9]

W. Ji, Z. Y. Lu, and H. Gao, Phys. Rev. Lett., 2007, 99 (5): 059602

[10]

L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du, W. A. Hofer, X. C. Xie, and H. J. Gao, Phys. Rev. Lett., 2007, 99: 106402

[11]

M. Feng, L. Gao, S. X. Du, Z. T. Deng, Z. H. Cheng, W. Ji, D. Q. Zhang, X. F. Guo, X. Lin, L. F. Chi, D. B. Zhu, H. Fuchs, and H. J. Gao, Adv. Funct. Mater., 2007, 17: 770

[12]

D. Shi, W. Ji, X. Lin, X. He, J. Lian, L. Gao, J. Cai, H. Lin, S. Du, F. Lin, C. Seidel, L. Chi, W. Hofer, H. Fuchs, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 226101

[13]

L. Gao, Z. T. Deng, W. Ji, X. Lin, Z. H. Cheng, X. B. He, D. X. Shi, and H. J. Gao, Phys. Rev. B, 2006, 73: 075424

[14]

M. Feng, X. F. Guo, X. Lin, X. B. He, W. Ji, S. X. Du, D. Q. Zhang, D. B. Zhu, and H. J. Gao, J. Am. Chem. Soc., 2005, 127: 15338

[15]

Y. L. Wang, W. Ji, D. X. Shi, S. X. Du, C. Seidel, Y. G. Ma, H. J. Gao, L. F. Chi, and H. Fuchs, Phys. Rev. B, 2004, 69: 075408

[16]

L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209

[17]

G. S. Kottas, L. I. Clarke, D. Horinek, and J. Michl, Chem. Rev., 2005, 105: 1281

[18]

J. Vacek and J. Michl, Adv. Funct. Mater., 2007, 17: 730

[19]

D. Zhong, T. Blomker, K. Wedeking, L. Chi, G. Erker, and H. Fuchs, Nano Lett., 2009, 9: 4387

[20]

J. Vacek and J. Michl, Proc. Natl. Acad. Sci. USA, 2001, 98: 5481

[21]

P. Kral and H. R. Sadeghpour, Phys. Rev. B, 2002, 65: 161401

[22]

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, Nano Lett., 2004, 4: 1415

[23]

J. Berna, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Perez, P. Rudolf, G. Teobaldi, and F. Zerbetto, Nature Mater., 2005, 4: 704

[24]

K. Petr and S. J. Tamar, Chem. Phys., 2005, 123: 184702

[25]

J. E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H. R. Tseng, J. F. Stoddart, and J. R. Heath, Nature, 2007, 445: 414

[26]

T. R. Kelly, H. De Silva, and R. A. Silva, Nature, 1999, 401: 150

[27]

K. V. Mikkelsen and M. A. Ratner, Chem. Rev., 1987, 87: 113

[28]

P. Kral, Phys. Rev. B, 1997, 56: 7293

[29]

R. A. Van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, and B. L. Feringa, Nature, 2005, 437-1337

[30]

G. London, G. T. Carroll, T. F. Landaluce, M. M. Pollard, P. Rudolf, and B. L. Feringa, Chem. Commun., 2009: 1712

[31]

C. Manzano, W. H. Soe, H. S. Wong, F. Ample, A. Gourdon, N. Chandrasekhar, and C. Joachim, Nature Mater., 2009, 8: 576

[32]

N. Henningsen, K. J. Franke, I. F. Torrente, G. Sehulze, B. Priewisch, K. Ruck-Braun, J. Dokic, T. Klamroth, P. Saalfrank, and J. I. J. Pascual, Phys. Chem. C, 2007, 111: 14843

[33]

B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907

[34]

A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou, and Q. Zhu, Science, 2005, 309: 1542

[35]

P. Wahl, L. Diekhöer, G. Wittich, L. Vitali, M. A. Schneider, and K. Kern, Phys. Rev. Lett., 2005, 95: 166601

[36]

N. Tsukahara, K.-I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett., 2009, 102: 167203

[37]

X. Chen, Y. S. Fu, S. H. Ji, T. Zhang, P. Cheng, X. C. Ma, X. L. Zou, W. H. Duan, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett., 2008, 101: 197208

[38]

B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 280: 1732

[39]

J. K. Gimzewski, C. Joachim, R. R. Schlittler, V. Langlais, H. Tang, and I. Johannsen, Science, 1998, 281: 531

[40]

B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907

[41]

J. K. Gimzewski and C. Joachim, Science, 1999, 283: 1683

[42]

J. A. Stroscio and D. M. Eigler, Science, 1991, 254: 1319

[43]

P. Avouris, Acc. Chem. Res., 1995, 28: 95

[44]

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, and F. Besenbacher, Prog. Surf. Sci., 2003, 71: 95

[45]

C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541

[46]

D. M. Eigler, C. P. Lutz, and W. E. Rudge, Nature, 1991, 352: 600

[47]

C. Wöll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys. Rev. B, 1989, 39: 7988

[48]

J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. B, 1990, 42: 9307

[49]

M. Peter, C. S. Dan, and T. John Yates Jr., Phys. Rev. Lett., 2006, 97: 146103

[50]

L. Limot, J. Kröer, R. Berndt, A. Garcia-Lekue, and W. A. Hofer, Phys. Rev. Lett., 2005, 94: 126102

[51]

H. G. Zhang, J. H. Mao, Q. Liu, N. Jiang, H. T. Zhou, H. M. Guo, D. X. Shi, and H. J. Gao, Chin. Phys. B, 2010, 19: 018105

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (355KB)

1384

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/