Understanding formation of molecular rotor array on Au(111) surface
, , , , ,
Understanding formation of molecular rotor array on Au(111) surface
The motion of single molecules on surfaces plays an important role in nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this article, we review the recent progress on single molecular rotors self-assembled on Au(111) surfaces. We focus on the motion of single phthalocyanine molecules on the reconstructed Au(111) surface based on the most recent results obtained by scanning tunneling microscopy (STM). An ordered array of single molecular rotors with large scale is self-assembled on Au(111) surface. Combined with first principle calculations, the mechanism of the surface-supported molecular rotor is investigated. Based on these results, phthalocyanine molecules on Au (111) are a promising candidate system for the development of adaptive molecular device structures.
molecular rotors / scanning tunneling microscopy (STM) / nanodevices
[1] |
J. V. Barth, G. Costantini, and K. Kern, Nature, 2005, 437: 671
CrossRef
ADS
Google scholar
|
[2] |
J. V. Barth, Annu. Rev. Phys. Chem., 2007, 58: 375
CrossRef
ADS
Google scholar
|
[3] |
A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, and J. R. Heath, Acc. Chem. Res., 2001, 34: 433
CrossRef
ADS
Google scholar
|
[4] |
A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater., 2005, 17, 1705
CrossRef
ADS
Google scholar
|
[5] |
O. M. Yaghi, O. K. M, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature, 2003, 423: 705
CrossRef
ADS
Google scholar
|
[6] |
Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101
CrossRef
ADS
Google scholar
|
[7] |
N. Jiang, Y. Y. Zhang, Q. Liu, Z. H. Cheng, Z. T. Deng, S. X. Du, H. J. Gao, M. J. Beck, and S. T. Pantelides, Nano Lett., 2010, 10: 1184
CrossRef
ADS
Google scholar
|
[8] |
H. J. Gao and L. Gao, Prog. Surf. Sci., 2010, 85: 28
CrossRef
ADS
Google scholar
|
[9] |
W. Ji, Z. Y. Lu, and H. Gao, Phys. Rev. Lett., 2007, 99 (5): 059602
CrossRef
ADS
Google scholar
|
[10] |
L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du, W. A. Hofer, X. C. Xie, and H. J. Gao, Phys. Rev. Lett., 2007, 99: 106402
CrossRef
ADS
Google scholar
|
[11] |
M. Feng, L. Gao, S. X. Du, Z. T. Deng, Z. H. Cheng, W. Ji, D. Q. Zhang, X. F. Guo, X. Lin, L. F. Chi, D. B. Zhu, H. Fuchs, and H. J. Gao, Adv. Funct. Mater., 2007, 17: 770
CrossRef
ADS
Google scholar
|
[12] |
D. Shi, W. Ji, X. Lin, X. He, J. Lian, L. Gao, J. Cai, H. Lin, S. Du, F. Lin, C. Seidel, L. Chi, W. Hofer, H. Fuchs, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 226101
CrossRef
ADS
Google scholar
|
[13] |
L. Gao, Z. T. Deng, W. Ji, X. Lin, Z. H. Cheng, X. B. He, D. X. Shi, and H. J. Gao, Phys. Rev. B, 2006, 73: 075424
CrossRef
ADS
Google scholar
|
[14] |
M. Feng, X. F. Guo, X. Lin, X. B. He, W. Ji, S. X. Du, D. Q. Zhang, D. B. Zhu, and H. J. Gao, J. Am. Chem. Soc., 2005, 127: 15338
CrossRef
ADS
Google scholar
|
[15] |
Y. L. Wang, W. Ji, D. X. Shi, S. X. Du, C. Seidel, Y. G. Ma, H. J. Gao, L. F. Chi, and H. Fuchs, Phys. Rev. B, 2004, 69: 075408
CrossRef
ADS
Google scholar
|
[16] |
L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209
CrossRef
ADS
Google scholar
|
[17] |
G. S. Kottas, L. I. Clarke, D. Horinek, and J. Michl, Chem. Rev., 2005, 105: 1281
CrossRef
ADS
Google scholar
|
[18] |
J. Vacek and J. Michl, Adv. Funct. Mater., 2007, 17: 730
CrossRef
ADS
Google scholar
|
[19] |
D. Zhong, T. Blomker, K. Wedeking, L. Chi, G. Erker, and H. Fuchs, Nano Lett., 2009, 9: 4387
CrossRef
ADS
Google scholar
|
[20] |
J. Vacek and J. Michl, Proc. Natl. Acad. Sci. USA, 2001, 98: 5481
CrossRef
ADS
Google scholar
|
[21] |
P. Kral and H. R. Sadeghpour, Phys. Rev. B, 2002, 65: 161401
CrossRef
ADS
Google scholar
|
[22] |
S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, Nano Lett., 2004, 4: 1415
CrossRef
ADS
Google scholar
|
[23] |
J. Berna, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Perez, P. Rudolf, G. Teobaldi, and F. Zerbetto, Nature Mater., 2005, 4: 704
CrossRef
ADS
Google scholar
|
[24] |
K. Petr and S. J. Tamar, Chem. Phys., 2005, 123: 184702
|
[25] |
J. E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H. R. Tseng, J. F. Stoddart, and J. R. Heath, Nature, 2007, 445: 414
CrossRef
ADS
Google scholar
|
[26] |
T. R. Kelly, H. De Silva, and R. A. Silva, Nature, 1999, 401: 150
CrossRef
ADS
Google scholar
|
[27] |
K. V. Mikkelsen and M. A. Ratner, Chem. Rev., 1987, 87: 113
CrossRef
ADS
Google scholar
|
[28] |
P. Kral, Phys. Rev. B, 1997, 56: 7293
CrossRef
ADS
Google scholar
|
[29] |
R. A. Van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, and B. L. Feringa, Nature, 2005, 437-1337
CrossRef
ADS
Google scholar
|
[30] |
G. London, G. T. Carroll, T. F. Landaluce, M. M. Pollard, P. Rudolf, and B. L. Feringa, Chem. Commun., 2009: 1712
CrossRef
ADS
Google scholar
|
[31] |
C. Manzano, W. H. Soe, H. S. Wong, F. Ample, A. Gourdon, N. Chandrasekhar, and C. Joachim, Nature Mater., 2009, 8: 576
CrossRef
ADS
Google scholar
|
[32] |
N. Henningsen, K. J. Franke, I. F. Torrente, G. Sehulze, B. Priewisch, K. Ruck-Braun, J. Dokic, T. Klamroth, P. Saalfrank, and J. I. J. Pascual, Phys. Chem. C, 2007, 111: 14843
|
[33] |
B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907
CrossRef
ADS
Google scholar
|
[34] |
A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou, and Q. Zhu, Science, 2005, 309: 1542
CrossRef
ADS
Google scholar
|
[35] |
P. Wahl, L. Diekhöer, G. Wittich, L. Vitali, M. A. Schneider, and K. Kern, Phys. Rev. Lett., 2005, 95: 166601
CrossRef
ADS
Google scholar
|
[36] |
N. Tsukahara, K.-I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett., 2009, 102: 167203
CrossRef
ADS
Google scholar
|
[37] |
X. Chen, Y. S. Fu, S. H. Ji, T. Zhang, P. Cheng, X. C. Ma, X. L. Zou, W. H. Duan, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett., 2008, 101: 197208
CrossRef
ADS
Google scholar
|
[38] |
B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 280: 1732
CrossRef
ADS
Google scholar
|
[39] |
J. K. Gimzewski, C. Joachim, R. R. Schlittler, V. Langlais, H. Tang, and I. Johannsen, Science, 1998, 281: 531
CrossRef
ADS
Google scholar
|
[40] |
B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907
CrossRef
ADS
Google scholar
|
[41] |
J. K. Gimzewski and C. Joachim, Science, 1999, 283: 1683
CrossRef
ADS
Google scholar
|
[42] |
J. A. Stroscio and D. M. Eigler, Science, 1991, 254: 1319
CrossRef
ADS
Google scholar
|
[43] |
P. Avouris, Acc. Chem. Res., 1995, 28: 95
CrossRef
ADS
Google scholar
|
[44] |
F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, and F. Besenbacher, Prog. Surf. Sci., 2003, 71: 95
CrossRef
ADS
Google scholar
|
[45] |
C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541
CrossRef
ADS
Google scholar
|
[46] |
D. M. Eigler, C. P. Lutz, and W. E. Rudge, Nature, 1991, 352: 600
CrossRef
ADS
Google scholar
|
[47] |
C. Wöll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys. Rev. B, 1989, 39: 7988
CrossRef
ADS
Google scholar
|
[48] |
J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. B, 1990, 42: 9307
CrossRef
ADS
Google scholar
|
[49] |
M. Peter, C. S. Dan, and T. John Yates Jr., Phys. Rev. Lett., 2006, 97: 146103
CrossRef
ADS
Google scholar
|
[50] |
L. Limot, J. Kröer, R. Berndt, A. Garcia-Lekue, and W. A. Hofer, Phys. Rev. Lett., 2005, 94: 126102
CrossRef
ADS
Google scholar
|
[51] |
H. G. Zhang, J. H. Mao, Q. Liu, N. Jiang, H. T. Zhou, H. M. Guo, D. X. Shi, and H. J. Gao, Chin. Phys. B, 2010, 19: 018105
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |