
Theoretical study of nonlinear magnetosonic waves: Potential applications in plasma diagnostics
Wei-Ping Zhang, Jin-Ze Liu, Fei-Yun Ding, Zhong-Zheng Li, Wen-Shan Duan
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 045201.
Theoretical study of nonlinear magnetosonic waves: Potential applications in plasma diagnostics
Nonlinear magnetosonic waves (MSWs) in electron-ion plasmas play a critical role in plasma dynamics, with implications for energy transfer, particle acceleration, and astrophysical phenomena. In this study, deriving a generalized nonlinear Schrödinger equation (NLSE) to describe weakly nonlinear magnetosonic wave packets, accounting for the interplay between magnetic pressure and plasma thermal pressure. Unlike previous works limited to linear or Korteweg−de Vries (KdV) type models, present paper reveals the conditions for the existence of various nonlinear wave structures, including Kuznetsov−Ma (K−M) breather soliton, Akhmediev breather (AB) soliton, bright soliton (BS), and rogue wave (RW). A detailed analysis shows how these waveforms depend on plasma parameters such as external magnetic field strength, electron and ion temperatures, and wave number. Additionally, this work explores a potential application of these findings, using multiple breather solutions as a diagnostic tool to infer challenging to measure plasma parameters from easily observable quantities. The present results not only extend the theoretical understanding of magnetosonic waves but also suggest practical approaches for future plasma diagnostics, providing a foundation for research in controlled fusion, space physics, and astrophysical plasma studies.
magnetized plasmas / nonlinear phenomena / magnetohydrodynamic waves / perturbative methods / plasma diagnostic techniques
Fig.6 Dependence of the amplitude |
[1] |
F. F. Chen, Introduction to Plasma Physics, Springer Science & Business Media, 2012
|
[2] |
P. M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, 2008
|
[3] |
C. Liu, G. Xu, and T. Wang, Non-thermal plasma approaches in CO2 utilization, Fuel Process. Technol. 58(2−3), 119 (1999)
CrossRef
ADS
Google scholar
|
[4] |
S. Sharma, R. Chalise, S. Basnet, H. P. Lamichhane, and R. Khanal, Development of a low-cost plasma source using fly-back transformer for atmospheric pressure gliding arc discharge, Phys. Plasmas 31(4), 043509 (2024)
CrossRef
ADS
Google scholar
|
[5] |
J. O. Pouzo and M. M. Milanese, Applications of the dense plasma focus to nuclear fusion and plasma astrophysics, IEEE Trans. Plasma Sci. 31(6), 1237 (2003)
CrossRef
ADS
Google scholar
|
[6] |
R. Rodríguez, G. Espinosa, J. M. Gil, and P. R. Beltrán, Generation and parametrization of mean plasma radiative properties databases for astrophysics and nuclear fusion applications, Int. J. Comput. Methods 17(05), 1940003 (2020)
CrossRef
ADS
Google scholar
|
[7] |
O. V. Penkov, M. Khadem, W. S. Lim, and D. E. Kim, A review of recent applications of atmospheric pressure plasma jets for materials processing, J. Coat. Technol. Res. 12(2), 225 (2015)
CrossRef
ADS
Google scholar
|
[8] |
N. N. Misra,O. Schlüter,P. J. Cullen, Cold Plasma in Food and Agriculture, Academic Press, 2016
|
[9] |
D. B. Graves, Low temperature plasma biomedicine: A tutorial review, Phys. Plasmas 21(8), 080901 (2014)
CrossRef
ADS
Google scholar
|
[10] |
M. Brown, Plasma physics: An introduction to laboratory, S-pace, and fusion plasmas, doi: 10.1063/1.3603921
|
[11] |
L. Bergé, Wave collapse in physics: principles and applications to light and plasma waves, Phys. Rep. 303(5−6), 259 (1998)
CrossRef
ADS
Google scholar
|
[12] |
I. N. Toptyghin, Acceleration of particles by shocks in a cosmic plasma, Space Sci. Rev. 26(2), 157 (1980)
CrossRef
ADS
Google scholar
|
[13] |
M. A. Malkov and L. O. C. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves, Rep. Prog. Phys. 64(4), 429 (2001)
CrossRef
ADS
Google scholar
|
[14] |
S. Ballav, A. Das, S. Pramanick, and S. Chandra, Plasma shock wave in gamma-ray bursts: Nonlinear phenomena and radiative process, IEEE Trans. Plasma Sci. 50(6), 1488 (2022)
CrossRef
ADS
Google scholar
|
[15] |
Y. Sentoku, T. Z. Esirkepov, K. Mima, K. Nishihara, F. Califano, F. Pegoraro, H. Sakagami, Y. Kitagawa, N. M. Naumova, and S. V. Bulanov, Bursts of superreflected laser light from inhomogeneous plasmas due to the generation of relativistic solitary waves, Phys. Rev. Lett. 83(17), 3434 (1999)
CrossRef
ADS
Google scholar
|
[16] |
S. Hussain and S. Mahmood, Korteweg-de Vries Burgers equation for magnetosonic wave in plasma, Phys. Plasmas 18(5), 052308 (2011)
CrossRef
ADS
Google scholar
|
[17] |
S. Hussain, S. Mahmood, and A. Rehman, Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons, Phys. Plasmas 21(11), 112901 (2014)
CrossRef
ADS
Google scholar
|
[18] |
S. Hussain and H. Hasnain, Magnetosonic wave in pair-ion electron collisional plasmas, Phys. Plasmas 24(3), 032106 (2017)
CrossRef
ADS
Google scholar
|
[19] |
R. Shisen, W. Shan, and Z. Cheng, Magnetoacoustic solitary waves in pair ion-electron plasmas, Phys. Scr. 87(4), 045503 (2013)
CrossRef
ADS
Google scholar
|
[20] |
H. Ur-Rehman, S. Mahmood, and T. Kaladze, Magnetoacoustic cnoidal waves and solitons in multi-ions plasmas with application to ionospheric plasmas, Phys. Plasmas 26(9), 092108 (2019)
CrossRef
ADS
Google scholar
|
[21] |
H. Ur-Rehman, S. Mahmood, and S. Hussain, Magnetoacoustic nonlinear periodic (cnoidal) waves in plasmas, Phys. Plasmas 24(1), 012106 (2017)
CrossRef
ADS
Google scholar
|
[22] |
S. Parveen, S. Mahmood, A. Qamar, S. Hussain, and M. Adnan, Interaction of magnetoacoustic solitons in plasmas with dispersion effects through electron inertia, Contrib. Plasma Phys. 58(10), 1015 (2018)
CrossRef
ADS
Google scholar
|
[23] |
W. S. Duan, J. Parkes, and L. Zhang, Modulational instability of dust envelope waves with grain and charge distribution, Phys. Plasmas 11(8), 3762 (2004)
CrossRef
ADS
Google scholar
|
[24] |
W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, Dust-acoustic rogue waves in a non-extensive plasma, Phys. Rev. E 84(6), 066402 (2011)
CrossRef
ADS
Google scholar
|
[25] |
S. Sultana, S. Islam, A. A. Mamun, and R. Schlickeiser, Modulated heavy nucleus-acoustic waves and associated rogue waves in a degenerate relativistic quantum plasma system, Phys. Plasmas 25(1), 012113 (2018)
CrossRef
ADS
Google scholar
|
[26] |
C. Dasgupta and S. Maitra, Envelope solitons and rogue waves in Jupiter’s magnetosphere, Phys. Plasmas 27(10), 102110 (2020)
CrossRef
ADS
Google scholar
|
[27] |
K. Y. Qi, X. Yao, L. C. Zhao, and Z. Y. Yang, Solitonic attractors in the coupled nonlinear Schrödinger equations with weak dissipations, Commum. Theor. Phys. 75(6), 065003 (2023)
CrossRef
ADS
Google scholar
|
[28] |
X. W. Jin,Z. Y. Yang,Z. Liao,
|
[29] |
N. Karjanto, Modeling wave packet dynamics and exploring applications: A comprehensive guide to the nonlinear Schrödinger equation, Mathematics 12(5), 744 (2024)
CrossRef
ADS
Google scholar
|
[30] |
E. A. Kuznetsov, Solitons in a parametrically unstable plasma, Akademiia Nauk SSSR Doklady. 236, 575 (1977) (C)
|
[31] |
Y. C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math. 60(1), 43 (1979)
CrossRef
ADS
Google scholar
|
[32] |
L. C. Zhao, L. Ling, and Z. Y. Yang, Mechanism of Kuznetsov−Ma breathers, Phys. Rev. E 97(2), 022218 (2018)
CrossRef
ADS
Google scholar
|
[33] |
N. N. Akhmediev and V. I. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation, Theor. Math. Phys. 69(2), 1089 (1986)
CrossRef
ADS
Google scholar
|
[34] |
V. B. Matveev,M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 1991
|
[35] |
L. C. Zhao and L. M. Ling, Quantitative relations between modulational instability and several well-known nonlinear excitations, J. Opt. Soc. Am. B 33(5), 850 (2016)
CrossRef
ADS
Google scholar
|
[36] |
G. P. Agrawal Nonlinear fiber Optics, Nonlinear Science at the Dawn of the 21st Century, Berlin, Heidelberg: Springer, 2000, p. 195
|
[37] |
W. M. Moslem, Langmuir rogue waves in electron-positron plasmas, Phys. Plasmas 18(3), 032301 (2011)
CrossRef
ADS
Google scholar
|
[38] |
D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, ANZIAM J. 25(1), 16 (1983)
|
[39] |
C. Pan, G. Wu, L. Zhang, and H. Zhang, Akhmediev breathers and Kuznetsov−Ma solitons in the cubic-quintic nonlinear Schrödinger equation, IEEE Photonics J. 16(5), 1 (2024)
CrossRef
ADS
Google scholar
|
[40] |
N. N. Akhmediev and V. I. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation, Theor. Math. Phys. 69(2), 1089 (1986)
CrossRef
ADS
Google scholar
|
[41] |
J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, and Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation, Opt. Express 17(24), 21497 (2009)
CrossRef
ADS
Google scholar
|
[42] |
N. Akhmediev, A. Ankiewicz, and M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A 373(6), 675 (2009)
CrossRef
ADS
Google scholar
|
[43] |
E. C. Boadi, E. G. Charalampidis, P. G. Kevrekidis, N. J. Ossi, and B. Prinari, On the discrete Kuznetsov−Ma solutions for the defocusing Ablowitz−Ladik equation with large background amplitude, Wave Motion 134, 103496 (2025)
CrossRef
ADS
Google scholar
|
[44] |
I. I. Mullyadzhanov, A. S. Gudko, R. I. Mullyadzhanov, and A. A. Gelash, Numerical direct scattering transform for breathers, Proc. R. Soc. Lond. A 480, 2282 (2024)
CrossRef
ADS
Google scholar
|
[45] |
M. Vivas-Cortez, S. A. Baloch, M. Abbas, M. Alosaimi, and G. Wei, Periodic cross-kink and multi-waves soliton solutions for Benney−Luke equation, Symmetry (Basel) 16(6), 747 (2024)
CrossRef
ADS
Google scholar
|
[46] |
H. Y. Wu and L. H. Jiang, 3D partially nonlocal ring-like Kuznetsov−Ma and Akhmediev breathers of NLS model with different diffractions under a linear potential, Chaos Solitons Fractals 182, 114862 (2024)
CrossRef
ADS
Google scholar
|
[47] |
Y. C. Wei, H. Q. Zhang, and W. X. Ma, Multi-breathers and higher-order rogue waves on the periodic background in a fourth-order integrable nonlinear Schrödinger equation, J. Math. Anal. Appl. 537(2), 128287 (2024)
CrossRef
ADS
Google scholar
|
[48] |
J. Ahmad, K. Noor, and S. Akram, Stability analysis and solitonic behaviour of Schrödinger’s nonlinear (2+1) complex conformable time fractional model, Opt. Quantum Electron. 56(5), 907 (2024)
CrossRef
ADS
Google scholar
|
[49] |
J. Ahmad, Z. Mustafa, and M. Nadeem, Optical solutions to the truncated M-fractional Schrödinger−KdV equation via an analytical method, J. Math. Chem. 62(10), 2798 (2024)
CrossRef
ADS
Google scholar
|
[50] |
A. Ali, J. Ahmad, S. Javed, R. Hussain, and M. K. Alaoui, Numerical simulation and investigation of soliton solutions and chaotic behavior to a stochastic nonlinear Schrödinger model with a random potential, PLoS One 19(1), e0296678 (2024)
CrossRef
ADS
Google scholar
|
[51] |
S. Akram, J. Ahmad, S. U. Rehman, and T. Younas, Stability analysis and dispersive optical solitons of fractional Schrödinger-Hirota equation, Opt. Quantum Electron. 55(8), 664 (2023)
CrossRef
ADS
Google scholar
|
[52] |
K. K. Ali, M. S. Mohamed, M. S. Mehanna, Bright , and da rk, and periodic soliton solutions for the (2+1)-dimensional nonlinear Schrödinger equation with fourth-order nonlinearity and dispersion, Opt. Quantum Electron. 56(6), 1050 (2024)
CrossRef
ADS
Google scholar
|
[53] |
B. E. Alam, A. Javid, and Optical dark, singular and bright soliton solutions with dual-mode fourth-order nonlinear Schrödinger equation involving different nonlinearities, Alex. Eng. J. 87, 329 (2024)
CrossRef
ADS
Google scholar
|
[54] |
L. Li, L. Wang, and F. Yu, Some general bright soliton solution-s and interactions for a (2+1)-dimensional nonlocal nonlinear Schrödinger equation, Appl. Math. Lett. 141, 108600 (2023)
CrossRef
ADS
Google scholar
|
[55] |
M. Farrukh, G. Akram, K. M. Abualnaja, M. Sadaf, S. Arshed, Da rk, and bright , and peaked solitons for Camassa-Holm nonlinear Schrödinger equation, Opt. Quantum Electron. 56(11), 1809 (2024)
CrossRef
ADS
Google scholar
|
[56] |
S. M. R. Islam, S. M. Y. Arafat, H. Alotaibi, and M. Inc, Some optical soliton solutions with bifurcation analysis of the paraxial nonlinear Schrödinger equation, Opt. Quantum Electron. 56(3), 379 (2024)
CrossRef
ADS
Google scholar
|
[57] |
A. Ali, J. Ahmad, and S. Javed, Investigating the dynamics of soliton solutions to the fractional coupled nonlinear Schrödinger model with their bifurcation and stability analysis, Opt. Quantum Electron. 55(9), 829 (2023)
CrossRef
ADS
Google scholar
|
[58] |
H. K. Ahmed and H. F. Ismael, Optical soliton solutions for the non-linear Schrödinger equation with higher-order dispersion arise in nonlinear optics, Phys. Scr. 99(10), 105276 (2024)
CrossRef
ADS
Google scholar
|
[59] |
D. J. Wu, D. Y. Wang, and C. G. Fälthammar, An analytical solution of finite-amplitude solitary kinetic Alfvén waves, Phys. Plasmas 2(12), 4476 (1995)
CrossRef
ADS
Google scholar
|
[60] |
H. Zhang, Y. X. Chen, L. Wei, F. P. Wang, W. P. Zhang, and W. S. Duan, Application scope of the reductive perturbation method to derive the KdV equation and CKdV equation in dusty plasma, J. Plasma Phys. 89(2), 905890212 (2023)
CrossRef
ADS
Google scholar
|
[61] |
S. I. Dejak and I. M. Sigal, Long-time dynamics of KdV solitary waves over a variable bottom, Commun. Pure Appl. Math. 59(6), 869 (2006)
CrossRef
ADS
Google scholar
|
[62] |
H. Zhang, Z. Z. Liu, F. P. Wang, L. Wei, and W. S. Duan, The upper-limited amplitude of the nonlinear magnetosonic solitary wave in a magnetized plasma, Astrophys. Space Sci. 367(9), 88 (2022)
CrossRef
ADS
Google scholar
|
[63] |
V. E. Zakharov and E. A. Kuznetsov, Multi-scale expansions in the theory of systems integrable by the inverse scattering transform, Physica D 18(1−3), 455 (1986)
CrossRef
ADS
Google scholar
|
[64] |
G. Schneider, Approximation of the Korteweg−de Vries equation by the nonlinear Schrödinger equation, J. Differ. Equ. 147(2), 333 (1998)
CrossRef
ADS
Google scholar
|
[65] |
S. A. El-Tantawy, Rogue waves in electronegative space plasmas: The link between the family of the KdV equations and the non-linear Schrödinger equation, Astrophys. Space Sci. 361(5), 164 (2016)
CrossRef
ADS
Google scholar
|
[66] |
Y. X. Chen, H. Zhang, and W. S. Duan, Differences between two methods to derive a nonlinear Schrödinger equation and their application scopes, Chin. Phys. B 33(2), 025203 (2024)
CrossRef
ADS
Google scholar
|
[67] |
G. W. Wang and A. M. Wazwaz, On the modified Gardner type equation and its time fractional form, Chaos Solitons Fractals 155, 111694 (2022)
CrossRef
ADS
Google scholar
|
[68] |
M. R. Amin, G. E. Morfill, and P. K. Shukla, Modulational instability of dust-acoustic and dust-ion-acoustic waves, Phys. Rev. E 58(5), 6517 (1998)
CrossRef
ADS
Google scholar
|
[69] |
Y. A. Kosevich and S. Lepri, Modulational instability and energy localization in anharmonic lattices at finite energy density, Phys. Rev. B 61(1), 299 (2000)
CrossRef
ADS
Google scholar
|
[70] |
I. Daumont, T. Dauxois, and M. Peyrard, Modulational instability: First step towards energy localization in nonlinear lattices, Nonlinearity 10(3), 617 (1997)
CrossRef
ADS
Google scholar
|
[71] |
A. S. Etémé, Consistency between modulational instability and energy localization in time-delay-memristive neural network, Europhys. Lett. 143(4), 42002 (2023)
CrossRef
ADS
Google scholar
|
[72] |
A. U. Nielsen, Y. Xu, C. Todd, M. Ferré, M. G. Clerc, S. Coen, S. G. Murdoch, and M. Erkintalo, Nonlinear localization of dissipative modulation instability, Phys. Rev. Lett. 127(12), 123901 (2021)
CrossRef
ADS
Google scholar
|
[73] |
H. T. Wang, X. Y. Wen, D. S. Wang, and Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation, Wave Motion 91, 102396 (2019)
CrossRef
ADS
Google scholar
|
[74] |
V. E. Zakharov and L. A. Ostrovsky, Modulation instability: The beginning, Physica D 238(5), 540 (2009)
CrossRef
ADS
Google scholar
|
[75] |
K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation and propagation of matter-wave soliton trains, Nature 417(6885), 150 (2002)
CrossRef
ADS
Google scholar
|
[76] |
D. Kip, M. Soljacic, M. Segev, E. Eugenieva, and D. N. Christodoulides, Modulation instability and pattern formation in spatially incoherent light beams, Science 290(5491), 495 (2000)
CrossRef
ADS
Google scholar
|
[77] |
C. Sun, L. Waller, D. V. Dylov, and J. W. Fleischer, Spectral dynamics of spatially incoherent modulation instability, Phys. Rev. Lett. 108(26), 263902 (2012)
CrossRef
ADS
Google scholar
|
[78] |
S. Mosca, M. Parisi, I. Ricciardi, F. Leo, T. Hansson, M. Erkintalo, P. Maddaloni, P. De Natale, S. Wabnitz, and M. De Rosa, Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator, Phys. Rev. Lett. 121(9), 093903 (2018)
CrossRef
ADS
Google scholar
|
[79] |
M. J. Ablowitz,B. Prinari,A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge University Press, 2004
|
[80] |
L. Debnath,L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Boston: Birkhäuser, 2005
|
[81] |
M. A. Helal and A. R. Seadawy, Variational method for the derivative nonlinear Schrödinger equation with computational applications, Phys. Scr. 80(3), 035004 (2009)
CrossRef
ADS
Google scholar
|
[82] |
M. Bilal, Shafqat-Ur-Rehman , and J. Ahmad, Dynamics of nonlinear wave propagation to coupled nonlinear Schrödinger-type equations, Int. J. Appl. Comput. Math. 7(4), 137 (2021)
CrossRef
ADS
Google scholar
|
[83] |
M A E. Abdelrahman and H. A. Alkhidhr, A robust and accurate solver for some nonlinear partial differential equations and tow applications, Phys. Scr. 95(6), 065212 (2020)
CrossRef
ADS
Google scholar
|
[84] |
R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, 2004
|
[85] |
B. Guo, L. Ling, and Q. P. Liu, Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E 85(2), 026607 (2012)
CrossRef
ADS
Google scholar
|
[86] |
S. Novikov,S. V. Manakov,L. P. Pitaevskii,V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Springer Science & Business Media, 1984
|
[87] |
J. Yang, Nonlinear Waves in Integrable And Nonintegrable Systems, Society for Industrial and Applied Mathematics, 2010
|
[88] |
F. Y. Ding, Z. Z. Li, and W. S. Duan, Several nonlinear waves in spin quantum electron-positron plasmas, Phys. Scr. 99(6), 065248 (2024)
CrossRef
ADS
Google scholar
|
[89] |
L. Wei,Z. Z. Li,W. S. Duan, Nonlinear waves coupled by magne-tosonic wave and ion acoustic wave in overdense plasma, Waves Random Complex Media, doi: 10.1080/17455030.2023.2192818 (2023)
|
[90] |
B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhme-diev, and J. M. Dudley, The Peregrine soliton in nonlinear fibre optics, Nat. Phys. 6(10), 790 (2010)
CrossRef
ADS
Google scholar
|
[91] |
J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, and Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation, Opt. Express 17(24), 21497 (2009)
CrossRef
ADS
Google scholar
|
[92] |
P. Walczak, S. Randoux, and P. Suret, Optical rogue waves in integrable turbulence, Phys. Rev. Lett. 114(14), 143903 (2015)
CrossRef
ADS
Google scholar
|
[93] |
A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky, and N. Akhmediev, Observation of a hierarchy of up to fifth-order rogue waves in a water tank, Phys. Rev. E 86(5), 056601 (2012)
CrossRef
ADS
Google scholar
|
[94] |
A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, Super rogue waves: Observation of a higher-order breather in water waves, Phys. Rev. X 2(1), 011015 (2012)
CrossRef
ADS
Google scholar
|
[95] |
A. Chabchoub and N. Akhmediev, Observation of rogue wave triplets in water waves, Phys. Lett. A 377(38), 2590 (2013)
CrossRef
ADS
Google scholar
|
[96] |
F. P. Wang, J. F. Han, J. Zhang, D. N. Gao, Z. Z. Li, W. S. Duan, and H. Zhang, Numerical simulation of dark envelope soliton in plasma, Phys. Plasmas 25(3), 032121 (2018)
CrossRef
ADS
Google scholar
|
[97] |
A. R. Seadawy and D. Lu, Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability, Results Phys. 7, 43 (2017)
CrossRef
ADS
Google scholar
|
[98] |
C. R. Du, K. R. Sütterlin, K. Jiang, C. Räth, A. V. Ivlev, S. Khrapak, M. Schwabe, H. M. Thomas, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, O. F. Petrov, Y. Malentschenko, F. Yurtschichin, Y. Lonchakov, and G. E. Morfill, Experimental investigation on lane formation in complex plasmas under microgravity conditions, New J. Phys. 14(7), 073058 (2012)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |