Emergent fermion dynamical symmetry for monolayer graphene in a strong magnetic field

Mike Guidry, Lian-Ao Wu, Fletcher Williams

PDF(7044 KB)
PDF(7044 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014302. DOI: 10.15302/frontphys.2025.014302
TOPICAL REVIEW

Emergent fermion dynamical symmetry for monolayer graphene in a strong magnetic field

Author information +
History +

Abstract

We review the physics of monolayer graphene in a strong magnetic field, with emphasis on highly collective states that emerge from the weakly interacting system because of correlations (emergent states). After reviewing the general properties of graphene and of electrons in a magnetic field, we give a brief introduction to the integer quantum Hall effect (IQHE) and the fractional quantum Hall effect (FQHE) in a 2D electron gas as foundation to show that monolayer graphene in a magnetic field exhibits both effects, but with properties modified by the influence of the graphene crystal. After giving an introduction to standard methods of dealing with emergent states for this system, we show that an SO(8) fermion dynamical symmetry governs the emergent degrees of freedom and that the algebraic and group properties of the dynamical symmetry provide a new view of strongly correlated states observed in monolayer graphene subject to a strong magnetic field.

Graphical abstract

Keywords

graphene / group theory / dynamical symmetry / emergent states / Lie algebras / quantum phases

Cite this article

Download citation ▾
Mike Guidry, Lian-Ao Wu, Fletcher Williams. Emergent fermion dynamical symmetry for monolayer graphene in a strong magnetic field. Front. Phys., 2025, 20(1): 014302 https://doi.org/10.15302/frontphys.2025.014302

References

[1]
F.WilliamsL. WuM.Guidry, Supplement: Emergent fermion dynamical symmetries for monolayer graphene in a strong magnetic field, URL: journal.hep.com.cn/fop/EN/10.15302/frontphys.2025.014302
[2]
W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: A review, Crit. Rev. Solid State Mater. Sci. 35(1), 52 (2010)
CrossRef ADS Google scholar
[3]
A. K. Tareen, K. Khan, M. Iqbal, Y. Zhang, J. Long, F. Nazeer, A. Mahmood, N. Mahmood, Z. Shi, C. Ma, W. Huan, M. F. Khan, J. Yin, C. Li, and H. Zhang, Recent advances in novel graphene: New horizons in renewable energy storage technologies, J. Mater. Chem. C 32, 11472 (2022)
CrossRef ADS Google scholar
[4]
Q. Abbas, P. A. Shinde, M. A. Abdelkareem, A. H. Alami, M. Mirzaeian, A. Yadav, and A. G. Olabi, Graphene synthesis techniques and environmental applications, Materials (Basel) 15(21), 7804 (2022)
CrossRef ADS Google scholar
[5]
F. Zheng, Z. Chen, J. Li, R. Wu, B. Zhang, G. Nie, Z. Xie, and H. Zhang, A highly sensitive CRISPR‐empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar‐level real‐time quantification, Adv. Sci. (Weinh.) 9(14), 2105231 (2022)
CrossRef ADS Google scholar
[6]
Z. Chen, J. Li, T. Li, T. Fan, C. Meng, C. Li, J. Kang, L. Chai, Y. Hao, Y. Tang, O. A. Al-Hartomy, S. Wageh, A. G. Al-Sehemi, Z. Luo, J. Yu, Y. Shao, D. Li, S. Feng, W. J. Liu, Y. He, X. Ma, Z. Xie, and H. Zhang, A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2, Natl. Sci. Rev. 9(8), nwac104 (2022)
CrossRef ADS Google scholar
[7]
M. O. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys. 83(4), 1193 (2011)
CrossRef ADS Google scholar
[8]
P. R. Wallace, The band theory of graphite, Phys. Rev. 71(9), 622 (1947)
CrossRef ADS Google scholar
[9]
M.GuidryY. Sun, Symmetry, Broken Symmetry, and Topology in Modern Physics: A First Course, Cambridge University Press, Cambridge, 2022
[10]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[11]
C. Bena and G. Montambaux, Remarks on the tight-binding model of graphene, New J. Phys. 11(9), 095003 (2009)
CrossRef ADS Google scholar
[12]
C.Kittel, Introduction to Solid State Physics, John Wiley and Sons, New York, 2004
[13]
J.J. QuinnK. S. Li, Solid State Physics: Principles and Modern Applications, Springer Verlag, Berlin, 2009
[14]
P.Phillips, Advanced Solid State Physics, Westview Press, Boulder, 2003
[15]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[16]
J. P. Eisenstein and H. L. Stormer, The fractional quantum Hall effect, Science 248(4962), 1510 (1990)
CrossRef ADS Google scholar
[17]
X.G. Wen, Quantum Field Theory of Many-Body Systems, Oxford University Press, Oxford, 2004
[18]
D.Vanderbilt, Berry Phases in Electronic Structure Theory, Cambridge University Press, Cambridge, 2018
[19]
D.Tong, Lectures on the quantum Hall effect, arXiv: 2016)
arXiv
[20]
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982)
CrossRef ADS Google scholar
[21]
R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)
CrossRef ADS Google scholar
[22]
J.K. Jain, Composite Fermions, Cambridge University Press, Cambridge, 2007
[23]
M. O. Goerbig and N. Regnault, Theoretical aspects of the fractional quantum Hall effect in graphene, Phys. Scr. T146, 014017 (2012)
CrossRef ADS Google scholar
[24]
Y. Zhang, Y.W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[25]
K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462(7270), 196 (2009)
CrossRef ADS Google scholar
[26]
B. E. Feldman, B. Krauss, J. H. Smet, and A. Yacoby, Unconventional sequence of fractional quantum Hall states in suspended graphene, Science 337(6099), 1196 (2012)
CrossRef ADS Google scholar
[27]
X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462(7270), 192 (2009)
CrossRef ADS Google scholar
[28]
L. A. Wu, M. Murphy, and M. W. Guidry, SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene, Phys. Rev. B 95(11), 115117 (2017)
CrossRef ADS Google scholar
[29]
M. Kharitonov, Phase diagram for the ν = 0 quantum Hall state in monolayer graphene, Phys. Rev. B 85(15), 155439 (2012)
CrossRef ADS Google scholar
[30]
F. Wu, I. Sodemann, Y. Araki, A. H. MacDonald, and T. Jolicoeur, SO(5) symmetry in the quantum Hall effect in graphene, Phys. Rev. B 90(23), 235432 (2014)
CrossRef ADS Google scholar
[31]
L. A. Wu and M. W. Guidry, The ground state of monolayer graphene in a strong magnetic field, Sci. Rep. 6(1), 22423 (2016)
CrossRef ADS Google scholar
[32]
J. Jung and A. H. MacDonald, Theory of the magnetic-field-induced insulator in neutral graphene sheets, Phys. Rev. B 80(23), 235417 (2009)
CrossRef ADS Google scholar
[33]
C. Chamon, Solitons in carbon nanotubes, Phys. Rev. B. 62(4), 2806 (2000)
CrossRef ADS Google scholar
[34]
C. L. Wu, D. H. Feng, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetries and the nuclear shell model, Phys. Lett. B 168(4), 313 (1986)
CrossRef ADS Google scholar
[35]
C. L. Wu, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetry model of nuclei: Basis, Hamiltonian, and symmetries, Phys. Rev. C. 36(3), 1157 (1987)
CrossRef ADS Google scholar
[36]
C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)
CrossRef ADS Google scholar
[37]
M. W. Guidry, Y. Sun, L. A. Wu, and C. L. Wu, Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity, Front. Phys. 15(4), 43301 (2020)
CrossRef ADS Google scholar
[38]
M. W. Guidry, SO(8) fermion dynamical symmetry and quantum Hall states for graphene in a strong magnetic field, Fortschr. Phys. 65(6−8), 1600057 (2017)
CrossRef ADS Google scholar
[39]
R. Bijker, F. Iachello, and A. Leviatan, Algebraic models of hadron structure. I. Nonstrange baryons, Ann. Phys. 236(1), 69 (1994)
CrossRef ADS Google scholar
[40]
M. W. Guidry, L. A. Wu, Y. Sun, and C. L. Wu, SU(4) model of high-temperature superconductivity and antiferromagnetism, Phys. Rev. B 63(13), 134516 (2001)
CrossRef ADS Google scholar
[41]
F.IachelloA. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987
[42]
F.IachelloR. D. Levine, Algebraic Theory of Molecules, Oxford University Press, Oxford, 1995
[43]
F. Iachello and P. Truini, Algebraic model of anharmonic polymer chains, Ann. Phys. 276(1), 120 (1999)
CrossRef ADS Google scholar
[44]
J. Q. Chen, D. H. Feng, and C. L. Wu, Correspondence between the interacting boson model and the fermion dynamical symmetry model of nuclei, Phys. Rev. C 34(6), 2269 (1986)
CrossRef ADS Google scholar
[45]
W. M. Zhang, D. H. Feng, and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys. 62(4), 867 (1990)
CrossRef ADS Google scholar
[46]
C.F. KamW. M. ZhangD.H. Feng, Coherent States, Springer: Lecture Notes in Physics, Heidelberg, 2023
[47]
W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical structure and critical phenomena in the fermion dynamical symmetry model: SO(8), Phys. Rev. C 37(3), 1281 (1988)
CrossRef ADS Google scholar
[48]
L. A. Wu, M. W. Guidry, Y. Sun, and C. L. Wu, SO(5) as a critical dynamical symmetry in the SU(4) model of high-temperature superconductivity, Phys. Rev. B 67(1), 014515 (2003)
CrossRef ADS Google scholar
[49]
W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical interpretation of SO(7): A critical dynamical symmetry, Phys. Rev. Lett. 59(18), 2032 (1987)
CrossRef ADS Google scholar
[50]
M. W. Guidry, Y. Sun, C. L. Wu, and Inhomogeneity symmetry, and complexity in high-temperature superconductors: Reconciling a universal phase diagram with rich local disorder, Chin. Sci. Bull. 56(4−5), 367 (2011)
CrossRef ADS Google scholar
[51]
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
CrossRef ADS Google scholar
[52]
T.Frankel, The Geometry of Physics, Cambridge University Press, Cambridge, 2012
[53]
M.NakaharaGeometry , Topology and Physics, Taylor and Francis, Boca Raton, 2003

Declarations

The authors declare no competing interests and no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.014302.

Acknowledgements

We wish to thank Yang Sun for useful discussions and Matthew Murphy for help with some of the calculations and illustrations that were used here. L.-A. W. was supported by the Basque Country Government (Grant No. IT1470- 22) and Grant No. PGC2018-101355-B-I00 funded by MCIN/AEI/10.13039/501100011033. F. W. was supported partially by LightCone Interactive LLC during the completion of this work.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(7044 KB)

Accesses

Citations

Detail

Sections
Recommended

/