Probing neutral triple gauge couplings via Z γ(+γ) production at e+e colliders

Danning Liu, Rui-Qing Xiao, Shu Li, John Ellis, Hong-Jian He, Rui Yuan

PDF(3229 KB)
PDF(3229 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 015201. DOI: 10.15302/frontphys.2025.015201
RESEARCH ARTICLE

Probing neutral triple gauge couplings via Z γ(+γ) production at e+e colliders

Author information +
History +

Abstract

Neutral triple gauge couplings (nTGCs) are absent in the Standard Model (SM) and at the dimension-6 level in the Standard Model Effective Field Theory (SMEFT), arising first from dimension-8 operators. As such, they provide a unique window for probing new physics beyond the SM. These dimension-8 operators can be mapped to nTGC form factors whose structure is consistent with the spontaneously-broken electroweak gauge symmetry of the SM. In this work, we study the probes of nTGCs in the reaction e+eZγ with Z + (=e ,μ) at an e+e collider. We perform a detector-level simulation and analysis of this reaction at the Circular Electron Positron Collider (CEPC) with collision energy s=240 GeV and an integrated luminosity of 20 ab−1. We present the sensitivity limits on probing the new physics scales of dimension-8 nTGC operators via measurements of the corresponding nTGC form factors.

Graphical abstract

Keywords

anomalous gauge coupling / future colliders / / effective field theory / neutral triple gauge coupling

Cite this article

Download citation ▾
Danning Liu, Rui-Qing Xiao, Shu Li, John Ellis, Hong-Jian He, Rui Yuan. Probing neutral triple gauge couplings via Z γ(+γ) production at e+e colliders. Front. Phys., 2025, 20(1): 015201 https://doi.org/10.15302/frontphys.2025.015201

References

[1]
W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268(3−4), 621 (1986)
CrossRef ADS Google scholar
[2]
B. Grzadkowski, . Dimension-six terms in the Standard Model Lagrangian, J. High Energy Phys. 10, 085 (2010)
CrossRef ADS arXiv Google scholar
[3]
G. F. Giudice, . The strongly-interacting light Higgs, J. High Energy Phys. 0706, 045 (2007)
CrossRef ADS Google scholar
[4]
C. W. Murphy, Dimension-8 operators in the Standard Model effective field theory, J. High Energy Phys. 10(10), 174 (2020)
CrossRef ADS arXiv Google scholar
[5]
H. L. Li, . Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104, 015026 (2021)
CrossRef ADS arXiv Google scholar
[6]
A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, J. High Energy Phys. 01(1), 151 (2014)
CrossRef ADS arXiv Google scholar
[7]
L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, J. High Energy Phys. 05, 024 (2015)
CrossRef ADS arXiv Google scholar
[8]
L. Berthier and M. Trott, Consistent constraints on the Standard Model effective field theory, J. High Energy Phys. 02, 069 (2016)
CrossRef ADS arXiv Google scholar
[9]
A. Biekötter, T. Corbett, and T. Plehn, The Gauge‒Higgs legacy of the LHC run II, SciPost Phys. 6, 064 (2019)
CrossRef ADS arXiv Google scholar
[10]
J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, Higgs, diboson and electroweak fit to the Standard Model effective field theory, J. High Energy Phys. 04(4), 279 (2021)
CrossRef ADS arXiv Google scholar
[11]
H. J. He, J. Ren, and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93(1), 015003 (2016)
CrossRef ADS arXiv Google scholar
[12]
S. F. Ge, H. J. He, and R. Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e+e Higgs factory, J. High Energy Phys. 1610, 007 (2016)
CrossRef ADS arXiv Google scholar
[13]
S. F. Ge, H. J. He, and R. Q. Xiao, Testing Higgs coupling precision and new physics scales at lepton colliders, Int. J. Mod. Phys. A 31, 1644004 (2016)
CrossRef ADS arXiv Google scholar
[14]
J. de Blas, M. Cepeda, J. D’Hondt, R. K. Ellis, C. Grojean, B. Heinemann, F. Maltoni, A. Nisati, E. Petit, R. Rattazzi, and W. Verkerke, Higgs Boson studies at future particle colliders, J. High Energy Phys. 01(1), 139 (2020)
CrossRef ADS arXiv Google scholar
[15]
T.Corbett, ., EWPD in the SMEFT to dimension eight, J. High Energy Phys. 06, 076 (2021), arXiv:
[16]
T. Corbett, . Impact of dimension-eight SMEFT operators in the electroweak precision observables and triple gauge couplings analysis in universal SMEFT, Phys. Rev. D 107(11), 115013 (2023)
CrossRef ADS arXiv Google scholar
[17]
I.BrivioS. BruggisserF.MaltoniR.MoutafisT.Plehn E.VryonidouS. WesthoffC.Zhang, O new physics, where art thou? A global search in the top sector, J. High Energy Phys. 02(2), 131 (2020)
[18]
G. Durieux, . The electro-weak couplings of the top and bottom quarks — Global fit and future prospects, J. High Energy Phys. 12, 098 (2019)
CrossRef ADS arXiv Google scholar
[19]
J. J. Ethier, . Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC, J. High Energy Phys. 2021, 89 (2021)
[20]
C.Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, J. High Energy Phys. 2014(2), 101 (2014)
[21]
J. Ellis, . Probing the scale of new physics in the ZZγ coupling at e+e colliders, Chin. Phys. C 44, 063106 (2020)
CrossRef ADS arXiv Google scholar
[22]
J. Ellis, H. J. He, and R. Q. Xiao, Probing new physics in dimension-8 neutral gauge couplings at e+e colliders, Sci. China Phys. Mech. Astron. 64(2), 221062 (2020)
CrossRef ADS arXiv Google scholar
[23]
J. Ellis, H. J. He, and R. Q. Xiao, Probing neutral triple gauge couplings at the LHC and future hadron colliders, Phys. Rev. D 107(3), 035005 (2023)
CrossRef ADS arXiv Google scholar
[24]
J. Ellis, H. J. He, and R. Q. Xiao, Probing neutral triple gauge couplings with (νv ¯γ) production at hadron colliders, Phys. Rev. D 108(11), L111704 (2023)
CrossRef ADS arXiv Google scholar
[25]
S. Jahedi and J. Lahiri, Probing anomalous ZZγ and Zγγ couplings at the e+e colliders using optimal observable technique, J. High Energy Phys. 04, 085 (2023)
CrossRef ADS arXiv Google scholar
[26]
S. Jahedi, Optimal estimation of dimension-8 neutral triple gauge couplings at the e+e colliders, J. High Energy Phys. 12, 031 (2023)
CrossRef ADS Google scholar
[27]
The CEPC Study Group, CEPC conceptual design report: Volume 2 – Physics & detector, arXiv: 2018)
[28]
W.Abdallah, ., CEPC technical design report – Accelerator, arXiv: 2023)
[29]
Y.L. Zhang, ., Search for long-lived particles at future lepton colliders using deep learning techniques, arXiv: 2024)
[30]
M.Zaro, An introduction to MadGraph5 aMC@NLO, 2022, URL: pcteserver.mi.infn.it/~mzaro/mg5amc-tif2-2022/tutorial-unimi-2022-tif.pdf
[31]
T.SjöstrandS.MrennaP.Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178(11), 852 (2008)
[32]
W.KilianT. OhlJ.Reuter, WHIZARD — simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71(9), 1742 (2011), arXiv:
[33]
M.de FreitasH.Videau, Detector simulation with MOKKA/GEANT4: Present and future, in: International Workshop on Linear Colliders (LCWS 2002), Aug. 2002, pp 623–627, arXiv:
[34]
S.AgostinelliJ.AllisonK.Amako J.ApostolakisH.Araujo, ., GEANT4 – a simulation toolkit, Nucl. Instrum. Methods Phys. Res. A 506(3), 250 (2003)
[35]
C.Chen, ., Fast simulation of the CEPC detector with Delphes, arXiv: 2017)
[36]
M. Q. Ruan, H. Zhao, G. Li, C. Fu, Z. Wang, X. Lou, D. Yu, V. Boudry, H. Videau, V. Balagura, J. C. Brient, P. Lai, C. M. Kuo, B. Liu, F. An, C. Chen, S. Prell, B. Li, and I. Laketineh, Reconstruction of physics objects at the circular electron positron collider with Arbor, Eur. Phys. J. C 78(5), 426 (2018)
CrossRef ADS arXiv Google scholar
[37]
M.Q. Ruan, Arbor, a new approach of the particle flow algorithm, arXiv: 2014)
[38]
D. Yu, M. Ruan, V. Boudry, and H. Videau, Lepton identification at particle flow oriented detector for the future e+e Higgs factories, Eur. Phys. J. C 77(9), 591 (2017)
CrossRef ADS arXiv Google scholar
[39]
Y. Bai, . Measurements of decay branching fractions of Hbb ¯/cc ¯/gg in associated (e+e/µ+µ)H production at the CEPC, Chin. Phys. C 44(1), 013001 (2020)
CrossRef ADS arXiv Google scholar
[40]
F. Y. Guo, . Expected measurement precision of the branching ratio of the Higgs boson decaying to the di-photon at the CEPC, Chin. Phys. C 47(4), 043002 (2023)
CrossRef ADS arXiv Google scholar
[41]
EFT-fun, URL: gitlab.cern.ch/eft-tools/eft-fun
[42]
TMVA, Toolkit for multivariate data analysis with ROOT, URL: root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf
[43]
A.Hoecker, ., TMVA − Toolkit for multivariate data analysis, 2009, arXiv:
[44]
ROOT data analysis framework, URL: root.cern/

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The work of J.E. was supported in part by the United Kingdom STFC Grant ST/T000759/1. The work of H.J.H. and R.Q.X. was supported in part by the NSFC Grants 12175136 and 11835005. R.Q.X has also been supported by an International Postdoctoral Exchange Fellowship. We thank Gang Li, Yulei Zhang and Xuliang Zhu for discussions of the CEPC detector configuration.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3229 KB)

Accesses

Citations

Detail

Sections
Recommended

/