
Photonic biosensing through cascade-coupled Su–Schrieffer–Heeger boundary modes
Yang Liu, Jian-Hua Jiang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044203.
Photonic biosensing through cascade-coupled Su–Schrieffer–Heeger boundary modes
We propose a conceptual device for a multiplexed biosensor in a photonic crystal chip based on the Su–Schrieffer–Heeger mechanism. Remarkably, the proposed biosensor can identify three distinct disease markers through a single-shot photon transmission measurement, thanks to the couplings among the three Su–Schrieffer–Heeger boundary modes in the photonic crystal. Our biosensor design is more robust against defects and disorders that are inevitable in real-life device applications than previous designs. Such robustness is invaluable for achieving efficient, reliable, and integrated biosensing based on nanophotonic systems. We further demonstrate that various combinations of disease markers can be recognized via the photon transmission spectrum, thus unveiling a promising route toward high-performance, advanced biosensing for future biomedical technology.
photonic / biosensing / cascade-coupled / Su–Schrieffer–Heeger / boundary
[1] |
G. S. Liu, X. Xiong, S. Hu, W. Shi, Y. Chen, W. Zhu, H. Zheng, J. Yu, N. H. Azeman, Y. Luo, and Z. Chen, Photonic cavity enhanced high-performance surface plasmon resonance biosensor, Photon. Res. 8(4), 448 (2020)
CrossRef
ADS
Google scholar
|
[2] |
C. Li, J. Gao, M. Shafi, R. Liu, Z. Zha, D. Feng, M. Liu, X. Du, W. Yue, and S. Jiang, Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film, Photon. Res. 9(3), 379 (2021)
CrossRef
ADS
Google scholar
|
[3] |
P. Falkowski, Z. Lukaszewski, and E. Gorodkiewicz, Potential of surface plasmon resonance biosensors in cancer detection, J. Pharm. Biomed. Anal. 194, 113802 (2021)
CrossRef
ADS
Google scholar
|
[4] |
S. Mostufa, T. B. Akib, M. M. Rana, and M. R. Islam, Highly sensitive TiO2/Au/graphene layer-based surface plasmon resonance biosensor for cancer detection, Biosensors (Basel) 12(8), 603 (2022)
CrossRef
ADS
Google scholar
|
[5] |
S. Das, R. Devireddy, and M. R. Gartia, Surface plasmon resonance (SPR) sensor for cancer biomarker detection, Biosensors (Basel) 13(3), 396 (2023)
CrossRef
ADS
Google scholar
|
[6] |
J. J. Hao, X. Xie, K. D. Gu, W. C. Du, Y. J. Liu, and H. W. Yang, Research on photonic crystal-based biosensor for detection of escherichia coli colony, Plasmonics 14(6), 1919 (2019)
CrossRef
ADS
Google scholar
|
[7] |
A. B. Pebdeni, A. Roshani, E. Mirsadoughi, S. Behzadifar, and M. Hosseini, Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water, Food Control 135, 108822 (2022)
CrossRef
ADS
Google scholar
|
[8] |
X. Yu, S. Zhang, M. Olivo, and N. Li, Micro- and nano-fiber probes for optical sensing, imaging, and stimulation in biomedical applications, Photon. Res. 8(11), 1703 (2020)
CrossRef
ADS
Google scholar
|
[9] |
A. Capocefalo, S. Gentilini, L. Barolo, P. Baiocco, C. Conti, and N. Ghofraniha, Biosensing with free space whispering gallery mode microlasers, Photon. Res. 11(5), 732 (2023)
CrossRef
ADS
Google scholar
|
[10] |
O. Stranik, J. Jatschka, A. Csaki, and W. Fritzsche, Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding, Front. Phys. (Beijing) 9(5), 652 (2014)
CrossRef
ADS
Google scholar
|
[11] |
Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. (Beijing) 9(1), 31 (2014)
CrossRef
ADS
Google scholar
|
[12] |
Z. L. Lei,B. Guo, 2D material-based optical biosensor: Status and prospect, Adv. Sci. (Weinh.) 9(4), 2102924 (2022)
|
[13] |
A. Uniyal, G. Srivastava, A. Pal, S. Taya, and A. Muduli, Recent advances in optical biosensors for sensing applications: A review, Plasmonics 18(2), 735 (2023)
CrossRef
ADS
Google scholar
|
[14] |
H. Zhu, Z. Fohlerová, J. Pekárek, E. Basova, and P. Neužil, Recent advances in lab-on-a-chip technologies for viral diagnosis, Biosens. Bioelectron. 153, 112041 (2020)
CrossRef
ADS
Google scholar
|
[15] |
N. Azizipour, R. Avazpour, D. H. Rosenzweig, M. Sawan, and A. Ajji, Evolution of biochip technology: A Review from lab-on-a-chip to organ-on-a-chip, Micromachines (Basel) 11(6), 599 (2020)
CrossRef
ADS
Google scholar
|
[16] |
B. Sharma and A. Sharma, Microfluidics: Recent advances toward lab-on-chip applications in bioanalysis, Adv. Eng. Mater. 24(2), 2100738 (2022)
CrossRef
ADS
Google scholar
|
[17] |
D. S. Dkhar, R. Kumari, S. J. Malode, N. P. Shetti, and P. Chandra, Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes, J. Pharm. Biomed. Anal. 223, 115120 (2023)
CrossRef
ADS
Google scholar
|
[18] |
K. M. Yoo, K. C. Fan, M. Hlaing, S. Jain, S. Ning, Y. An, and R. T. Chen, Lab-on-a-chip optical biosensor platform: a micro-ring resonator integrated with a near-infrared Fourier transform spectrometer, Opt. Lett. 48(20), 5371 (2023)
CrossRef
ADS
Google scholar
|
[19] |
T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator, IEEE Photonics J. 1(3), 197 (2009)
CrossRef
ADS
Google scholar
|
[20] |
M. I. Zibaii, H. Latifi, A. Asadollahi, A. H. Bayat, L. Dargahi, and A. Haghparast, Label free fiber optic apta-biosensor for in-vitro detection of dopamine, J. Lightwave Technol. 34(19), 4516 (2016)
CrossRef
ADS
Google scholar
|
[21] |
G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, Emerging applications of label-free optical biosensors, Nanophotonics 6(4), 627 (2017)
CrossRef
ADS
Google scholar
|
[22] |
F. Chiavaioli, P. Zubiate, I. Del Villar, C. R. Zamarreño, A. Giannetti, S. Tombelli, C. Trono, F. J. Arregui, I. R. Matias, and F. Baldini, Femtomolar detection by nanocoated fiber label-free biosensors, ACS Sens. 3(5), 936 (2018)
CrossRef
ADS
Google scholar
|
[23] |
N. Khansili,G. Rattu,P. M. Krishna, Label-free optical biosensors for food and biological sensor applications, Sens, Sensors Actuat. B 265, 35 (2018)
|
[24] |
R. Peltomaa, B. Glahn-Martínez, E. Benito-Peña, and M. C. Moreno-Bondi, Optical biosensors for label-free detection of small molecules, Sensors (Basel) 18(12), 4126 (2018)
CrossRef
ADS
Google scholar
|
[25] |
F. L. Chen, Y. J. Fan, J. D. Lin, and Y. C. Hsiao, Label-free, color-indicating, and sensitive biosensors of cholesteric liquid crystals on a single vertically aligned substrate, Biomed. Opt. Express 10(9), 4636 (2019)
CrossRef
ADS
Google scholar
|
[26] |
J. Wang, M. M. Sanchez, Y. Yin, R. Herzer, L. Ma, and O. G. Schmidt, Silicon-based integrated label-free optofluidic biosensors: Latest advances and roadmap, Adv. Mater. Technol. 5(6), 1901138 (2020)
CrossRef
ADS
Google scholar
|
[27] |
A. Bekmurzayeva, M. Nurlankyzy, A. Abdossova, Z. Myrkhiyeva, and D. Tosi, All-fiber label-free optical fiber biosensors: From modern technologies to current applications, Biomed. Opt. Express 15(3), 1453 (2024)
CrossRef
ADS
Google scholar
|
[28] |
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7(6), 442 (2008)
CrossRef
ADS
Google scholar
|
[29] |
B. A. Prabowo, A. Purwidyantri, and K. C. Liu, Surface plasmon resonance optical sensor: A review on light source technology, Biosensors (Basel) 8(3), 80 (2018)
CrossRef
ADS
Google scholar
|
[30] |
H. Vahed and C. Nadri, Sensitivity enhancement of SPR optical biosensor based on Graphene–MoS2 structure with nanocomposite layer, Opt. Mater. 88, 161 (2019)
CrossRef
ADS
Google scholar
|
[31] |
J. Li, D. Han, J. Zeng, J. Deng, N. Hu, and J. Yang, Multi-channel surface plasmon resonance biosensor using prism-based wavelength interrogation, Opt. Express 28(9), 14007 (2020)
CrossRef
ADS
Google scholar
|
[32] |
A. Jebelli, F. Oroojalian, F. Fathi, A. Mokhtarzadeh, and M. Guardia, Recent advances in surface plasmon resonance biosensors for microRNAs detection, Biosens. Bioelectron. 169, 112599 (2020)
CrossRef
ADS
Google scholar
|
[33] |
K. Liu, J. Zhang, J. Jiang, T. Xu, S. Wang, P. Chang, Z. Zhang, J. Ma, and T. Liu, Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe2@Au nanoparticles-polydopamine, Biomed. Opt. Express 11(12), 6840 (2020)
CrossRef
ADS
Google scholar
|
[34] |
H. Cai, M. Wang, J. Liu, and X. Wang, Theoretical and experimental study of a highly sensitive SPR biosensor based on Au grating and Au film coupling structure, Opt. Express 30(15), 26136 (2022)
CrossRef
ADS
Google scholar
|
[35] |
B. Karki, B. Vasudevan, A. Uniyal, A. Pal, and V. Srivastava, Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor, Optik (Stuttg.) 270, 169947 (2022)
CrossRef
ADS
Google scholar
|
[36] |
S. Mondal, A. S. M. Mohsin, M. B. H. Bhuian, M. Mosaddequr Rahman, and R. Rahad, Label-free biosensor on chip (BoC) based on localized surface plasmon resonance for monitoring temperature and blood hemoglobin concentration, Phys. Scr. 99(4), 045030 (2024)
CrossRef
ADS
Google scholar
|
[37] |
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, Optical grating coupler biosensors, Biomaterials 23(17), 3699 (2002)
CrossRef
ADS
Google scholar
|
[38] |
Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, Resonant waveguide grating biosensor for living cell sensing, Biophys. J. 91(5), 1925 (2006)
CrossRef
ADS
Google scholar
|
[39] |
H. Shahar, L. L. Tan, G. C. Ta, and L. Y. Heng, Optical enzymatic biosensor membrane for rapid in situ detection of organohalide in water samples, Microchem. J. 146, 41 (2019)
CrossRef
ADS
Google scholar
|
[40] |
Y. Xu, L. Wu, and L. K. Ang, Surface exciton polaritons: A promising mechanism for refractive-index sensing, Phys. Rev. Appl. 12(2), 024029 (2019)
CrossRef
ADS
Google scholar
|
[41] |
F. Khozeymeh and M. Razaghi, Parallel-coupled dualS iOxNy, Phys. Rev. Appl. 12(5), 054045 (2019)
CrossRef
ADS
Google scholar
|
[42] |
S. A. Madani, M. Bahrami, and A. Rostami, Modulation instability and highly sensitive optical fiber biosensor, Opt. Continuum 1(4), 816 (2022)
CrossRef
ADS
Google scholar
|
[43] |
J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62(23), 2747 (1989)
CrossRef
ADS
Google scholar
|
[44] |
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
CrossRef
ADS
Google scholar
|
[45] |
N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, Photonic-crystal waveguide biosensor, Opt. Express 15(6), 3169 (2007)
CrossRef
ADS
Google scholar
|
[46] |
A. Al-Rashid and S. John, Optical biosensing of multiple disease markers in a photonic-band-gap lab-on-a-chip: A conceptual paradigm, Phys. Rev. Appl. 3(3), 034001 (2015)
CrossRef
ADS
Google scholar
|
[47] |
S. Feng, J. H. Jiang, A. A. Rashid, and S. John, Biosensor architecture for enhanced disease diagnostics: Lab-in-a-photonic-crystal, Opt. Express 24(11), 12166 (2016)
CrossRef
ADS
Google scholar
|
[48] |
E. J. Meier, F. A. An, and B. Gadway, Observation of the topological soliton state in the Su–Schrieffer–Heeger model, Nat. Commun. 7(1), 13986 (2016)
CrossRef
ADS
Google scholar
|
[49] |
X. D. Chen, W. M. Deng, F. L. Shi, F. L. Zhao, M. Chen, and J. W. Dong, Direct observation of corner states in second-order topological photonic crystal slabs, Phys. Rev. Lett. 122(23), 233902 (2019)
CrossRef
ADS
Google scholar
|
[50] |
M. Kim and J. Rho, Topological edge and corner states in a two-dimensional photonic Su–Schrieffer–Heeger lattice, Nanophotonics 9(10), 3227 (2020)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |