
Review on graphene-lithium niobate integration-based acoustoelectric, photonic, and optic devices
Longjiang Zhao, Xu Chu, Jin Cheng, Sumei Wang, Wei Jin, Zhengqiang Zhang, Kin Seng Chiang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044301.
Review on graphene-lithium niobate integration-based acoustoelectric, photonic, and optic devices
Graphene-lithium niobate (G-LN) integration has emerged as a promising approach for advancing acoustoelectric, photonic, and optic devices. This hybrid integration leverages graphene’s remarkable optical transparency, excellent conductivity, high carrier mobility, tunable electronic properties, and compatibility with complementary metal oxide semiconductor technology, alongside LN’s high electro-optic, acousto-optic, and nonlinear-optic coefficients, creating a highly functional platform for novel devices. This mini-review comprehensively synthesizes the state-of-the-art and recent advancements in G-LN integration, summarizing its fundamental principles and processes of practical fabrication techniques, and exploring surface acoustic waves, graphene electrodes, surface plasmon polaritons, and graphene absorbers. This mini-review of G-LN integration could underscore its significance in supporting more robust, energy-efficient, high-performance, and uniquely diverse devices, implying its potential to drive breakthroughs across multiple disciplines, as well as inspire further advancements in G-LN integration-based device design and applications.
graphene-lithium niobate integration / acoustoelectric devices / photonic devices / optic devices
[1] |
F. Bonaccorso , Z. Sun , T. Hasan , and A. C. Ferrari , Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
CrossRef
ADS
Google scholar
|
[2] |
M. Liu,X. Yin,E. Ulin-Avila,B. Geng,T. Zentgraf,L. Ju,F. Wang,X. Zhang, A graphene-based broadband optical modulator, Nature 474(7349), 64 (2011)
|
[3] |
K. Kim,J. Y. Choi,T. Kim,S. H. Cho,H. J. Chung, A role for graphene in silicon-based semiconductor devices, Nature 479(7373), 338 (2011)
|
[4] |
F. Koppens , T. Mueller , P. Avouris , A. C. Ferrari , M. S. Vitiello , and M. Polini , Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9(10), 780 (2014)
CrossRef
ADS
Google scholar
|
[5] |
C. T. Phare , Y. H. Daniel Lee , J. Cardenas , and M. Lipson , Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photonics 9(8), 511 (2015)
CrossRef
ADS
Google scholar
|
[6] |
Y. Hu , M. Pantouvaki , J. Van Campenhout , S. Brems , I. Asselberghs , C. Huyghebaert , P. Absil , and D. Van Thourhout , Broadband 10 Gb/s operation of graphene electro‐absorption modulator on silicon, Laser Photonics Rev. 10(2), 307 (2016)
CrossRef
ADS
Google scholar
|
[7] |
K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , and A. A. Firsov , Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
CrossRef
ADS
Google scholar
|
[8] |
Q. Bao and K. P. Loh , Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano 6(5), 3677 (2012)
CrossRef
ADS
Google scholar
|
[9] |
X. Huang , Z. Zeng , Z. Fan , J. Liu , and H. Zhang , Graphene‐based electrodes, Adv. Mater. 24(45), 5979 (2012)
CrossRef
ADS
Google scholar
|
[10] |
G. Poberaj , H. Hu , W. Sohler , and P. Günter , Lithium niobate on insulator (LNOI) for micro‐photonic devices, Laser Photonics Rev. 6(4), 488 (2012)
CrossRef
ADS
Google scholar
|
[11] |
A. Boes , B. Corcoran , L. Chang , J. Bowers , and A. Mitchell , Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits, Laser Photonics Rev. 12(4), 1700256 (2018)
CrossRef
ADS
Google scholar
|
[12] |
G. Chen , N. Li , J. D. Ng , H. L. Lin , Y. Zhou , Y. H. Fu , L. Y. T. Lee , Y. Yu , A. Q. Liu , and A. J. Danner , Advances in lithium niobate photonics: development status and perspectives, Adv. Photonics 4(3), 034003 (2022)
CrossRef
ADS
Google scholar
|
[13] |
A. Boes , L. Chang , C. Langrock , M. Yu , M. Zhang , Q. Lin , M. Lončar , M. Fejer , J. Bowers , and A. Mitchell , Lithium niobate photonics: Unlocking the electromagnetic spectrum, Science 379(6627), eabj4396 (2023)
CrossRef
ADS
Google scholar
|
[14] |
B. You , S. Yuan , Y. Tian , H. Zhang , X. Zhu , N. A. Mortensen , and Y. Cheng , Lithium niobate on insulator–fundamental opto-electronic properties and photonic device prospects, Nanophotonics 13(17), 3037 (2024)
CrossRef
ADS
Google scholar
|
[15] |
K. Nassau , H. Levinstein , and G. Loiacono , Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching, J. Phys. Chem. Solids 27(6-7), 983 (1966)
CrossRef
ADS
Google scholar
|
[16] |
D. Čiplys,R. Rimeika,V. Chivukula,M. S. Shur,J. H. Kim,J. M. Xu, Surface acoustic waves in graphene structures: Response to ambient humidity, in: IEEE SENSORS 2010 Conference, 2010
|
[17] |
V. Miseikis , J. Cunningham , K. Saeed , R. O’Rorke , and A. Davies , Acoustically induced current flow in graphene, Appl. Phys. Lett. 100, 133105 (2012)
CrossRef
ADS
Google scholar
|
[18] |
Y. Zheng , G. X. Ni , C. T. Toh , M. G. Zeng , S. T. Chen , K. Yao , and B. Özyilmaz , Gate-controlled nonvolatile graphene-ferroelectric memory, Appl. Phys. Lett. 94, 163505 (2009)
CrossRef
ADS
Google scholar
|
[19] |
Y. Zheng , G. X. Ni , C. T. Toh , C. Y. Tan , K. Yao , and B. Özyilmaz , Graphene field-effect transistors with ferroelectric gating, Phys. Rev. Lett. 105(16), 166602 (2010)
CrossRef
ADS
Google scholar
|
[20] |
G. X. Ni , Y. Zheng , S. Bae , C. Y. Tan , O. Kahya , J. Wu , B. H. Hong , K. Yao , and B. Özyilmaz , Graphene–ferroelectric hybrid structure for flexible transparent electrodes, ACS Nano 6(5), 3935 (2012)
CrossRef
ADS
Google scholar
|
[21] |
C. Baeumer , S. P. Rogers , R. Xu , L. W. Martin , and M. Shim , Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching, Nano Lett. 13(4), 1693 (2013)
CrossRef
ADS
Google scholar
|
[22] |
D. L. Duong , S. Y. Lee , S. K. Kim , and Y. H. Lee , Graphene/ferroelectrics/graphene hybrid structure: Asymmetric doping of graphene layers, Appl. Phys. Lett. 106(24), 243104 (2015)
CrossRef
ADS
Google scholar
|
[23] |
P. Bøggild , D. M. A. Mackenzie , P. R. Whelan , D. H. Petersen , J. D. Buron , A. Zurutuza , J. Gallop , L. Hao , and P. U. Jepsen , Mapping the electrical properties of large-area graphene, 2D Mater. 4, 042003 (2017)
CrossRef
ADS
Google scholar
|
[24] |
J. Ding , L. W. Wen , H. D. Li , X. B. Kang , and J. M. Zhang , First-principles investigation of graphene on the ferroelectric LiNbO3 (001) surface, Europhys. Lett. 104(1), 17009 (2013)
CrossRef
ADS
Google scholar
|
[25] |
J. Ding , L. Wen , H. Li , and Y. Zhang , Structure and electronic properties of graphene on ferroelectric LiNbO3 surface, Phys. Lett. A 381(20), 1749 (2017)
CrossRef
ADS
Google scholar
|
[26] |
C. Baeumer , D. Saldana-Greco , J. M. P. Martirez , A. M. Rappe , M. Shim , and L. W. Martin , Ferroelectrically driven spatial carrier density modulation in graphene, Nat. Commun. 6(1), 6136 (2015)
CrossRef
ADS
Google scholar
|
[27] |
S. Bidmeshkipour , A. Vorobiev , M. Andersson , A. Kompany , and J. Stake , Effect of ferroelectric substrate on carrier mobility in graphene field-effect transistors, Appl. Phys. Lett. 107(17), 173106 (2015)
CrossRef
ADS
Google scholar
|
[28] |
O. Salas , E. Garces , and L. F. Magana , Optical absorption and reflectivity of a molecular cluster of lithium niobate adsorbed on a graphene layer, Crystals (Basel) 8(5), 208 (2018)
CrossRef
ADS
Google scholar
|
[29] |
M. S. Richman , X. Li , and A. Caruso , Inadequacy of the extrapolation-length method for modeling the interface of a ferroelectric–graphene heterostructure, J. Appl. Phys. 125(18), 184103 (2019)
CrossRef
ADS
Google scholar
|
[30] |
Y. Liu,H. Li,Y. Li,W. Shang, Research on the electronic structure of the interface between the LiNbO3 and the magic angle graphene electrode: First principle calculation, Ferroelectrics 614(1), 160 (2023)
|
[31] |
J. Yuan , J. Q. Dai , and C. Ke , Electrostatic doping determined by band alignment in graphene on ferroelectric LiNbO3 (0001) polar surfaces, Comput. Mater. Sci. 200, 110811 (2021)
CrossRef
ADS
Google scholar
|
[32] |
C. Yue , X. Lu , J. Zhang , F. Huang , and J. Zhu , Electrostatic doping of graphene from a LiNbO3 (0001) substrate, J. Phys. D Appl. Phys. 54(23), 235303 (2021)
CrossRef
ADS
Google scholar
|
[33] |
A. C. Ferrari and D. M. Basko , Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8(4), 235 (2013)
CrossRef
ADS
Google scholar
|
[34] |
N. Papasimakis , S. Mailis , C. C. Huang , F. Al-Saab , D. W. Hewak , Z. Luo , and Z. X. Shen , Strain engineering in graphene by laser irradiation, Appl. Phys. Lett. 106(6), 061904 (2015)
CrossRef
ADS
Google scholar
|
[35] |
Y. Sun , K. Kirimoto , H. Kamada , K. Onishi , D. Etoh , S. Yoshimura , and S. Kanemitsu , Sliding-friction-dependent stress at the graphene/LiNbO3 interface around the critical temperature of the stress-free state, AIP Adv. 9(2), 025316 (2019)
CrossRef
ADS
Google scholar
|
[36] |
R. Fandan , J. Pedrós , A. Hernández-Mínguez , F. Iikawa , P. V. Santos , A. Boscá , and F. Calle , Dynamic local strain in graphene generated by surface acoustic waves, Nano Lett. 20(1), 402 (2020)
CrossRef
ADS
Google scholar
|
[37] |
Y. Sun , K. Kirimoto , T. Takase , D. Eto , S. Yoshimura , and S. Tsuru , Possible pair-graphene structures govern the thermodynamic properties of arbitrarily stacked few-layer graphene, Sci. Rep. 11(1), 23401 (2021)
CrossRef
ADS
Google scholar
|
[38] |
A. Irzhak , D. Irzhak , O. Kononenko , K. Pundikov , and D. Roshchupkin , Changes in the Raman spectrum of monolayer graphene under compression/stretching strain in graphene/piezoelectric crystal structures, Nanomaterials (Basel) 13(2), 350 (2023)
CrossRef
ADS
Google scholar
|
[39] |
I. Drichko , I. Y. Smirnov , Y. M. Galperin , P. Dementev , and M. Rybin , Low Temperature Electrical Properties of CVD Graphene on LiNbO3: Acoustic Studies, Semiconductors 57(3), 184 (2023)
CrossRef
ADS
Google scholar
|
[40] |
J. Gorecki , V. Apostolopoulos , J. Y. Ou , S. Mailis , and N. Papasimakis , Optical gating of graphene on photoconductive Fe: LiNbO3, ACS Nano 12(6), 5940 (2018)
CrossRef
ADS
Google scholar
|
[41] |
J. Gorecki,L. Piper,V. Apostolopoulos,S. Mailis,N. Papasimakis, in: 2019 Conference on Lasers and Electro-Optics (CLEO), 2019
|
[42] |
N. Park , D. Suh , and H. Kang , Feasibility of a dual-gate graphene transistor to test various gate dielectrics for two-dimensional device application, J. Korean Phys. Soc. 77(10), 888 (2020)
CrossRef
ADS
Google scholar
|
[43] |
K. Liu , F. Lu , Y. Xu , and C. Ma , Investigation of novel optical and waveguide characteristics for an air–graphene–LiNbO3 system, Nanotechnology 32(21), 215704 (2021)
CrossRef
ADS
Google scholar
|
[44] |
K. Liu , F. Lu , Y. Xu , and C. Ma , Investigation of optical absorption enhancement of plasmonic configuration by graphene on LiNbO3-SiO2 structure, Nanotechnology 33(4), 045701 (2022)
CrossRef
ADS
Google scholar
|
[45] |
Y. Liu , F. Lu , C. Liu , Q. Li , Y. Li , and Y. Xu , Monolayer graphene on submicron LiNbO3 thin film waveguide: Carrier properties and their effect on waveguide transmission, Appl. Surf. Sci. 648, 159018 (2024)
CrossRef
ADS
Google scholar
|
[46] |
X. Li , W. Cai , J. An , S. Kim , J. Nah , D. Yang , R. Piner , A. Velamakanni , I. Jung , E. Tutuc , S. K. Banerjee , L. Colombo , and R. S. Ruoff , Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
CrossRef
ADS
Google scholar
|
[47] |
S. Bidmeshkipour , M. Fathipour , Y. Abdi , and S. Ashtiani , Microwave characterization of graphene field effect transistors on lithium niobate ferroelectric substrates, Mater. Res. Express 4(3), 035042 (2017)
CrossRef
ADS
Google scholar
|
[48] |
Y. Liu , F. Lu , H. Hu , P. Yin , K. Zhao , Y. Liu , and Y. Wei , Enhanced electromagnetic wave coupling in infrared range at graphene-loaded LiNbO3 interface, Surf. Interfaces 52, 104894 (2024)
CrossRef
ADS
Google scholar
|
[49] |
A. Boscá , J. Pedrós , J. Martínez , T. Palacios , and F. Calle , Automatic graphene transfer system for improved material quality and efficiency, Sci. Rep. 6(1), 21676 (2016)
CrossRef
ADS
Google scholar
|
[50] |
K. Liu , F. Lu , K. Li , Y. Xu , and C. Ma , Synthesis of turbostratic graphene by direct carbon ions implantation on LiNbO3, Appl. Surf. Sci. 493, 1255 (2019)
CrossRef
ADS
Google scholar
|
[51] |
Y. Xu , F. Lu , K. Liu , and C. Ma , Direct graphene synthesis on lithium niobate substrate by carbon ion implantation, Front. Mater. 7, 572280 (2020)
CrossRef
ADS
Google scholar
|
[52] |
Y. Xu , F. Lu , K. Liu , and C. Ma , Direct combination of carbon structure with optoelectronics crystal: Thermal behavior of implanted carbon in lithium niobate crystal at near surface, Mater. Res. Express 7(2), 025030 (2020)
CrossRef
ADS
Google scholar
|
[53] |
Y. Xu , F. Lu , K. Liu , and C. Ma , Thermodynamic study of adsorption capacity between metal film and optical crystal: Adsorption energy of Ni films on LiNbO3 substrates, Crystals (Basel) 11(11), 1273 (2021)
CrossRef
ADS
Google scholar
|
[54] |
Y. Xu , F. Lu , Y. Liu , and C. Ma , Direct graphene synthesis on LiNbO3 substrate by C implantation on Cu covering layer, Mater. Res. Express 9(11), 115602 (2022)
CrossRef
ADS
Google scholar
|
[55] |
A. Hernández-Mínguez , Y. T. Liou , and P. V. Santos , Interaction of surface acoustic waves with electronic excitations in graphene, J. Phys. D Appl. Phys. 51(38), 383001 (2018)
CrossRef
ADS
Google scholar
|
[56] |
A. Mayorov , N. Hunter , W. Muchenje , C. D. Wood , M. Rosamond , E. H. Linfield , A. G. Davies , and J. E. Cunningham , Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate, Appl. Phys. Lett. 104(8), 083509 (2014)
CrossRef
ADS
Google scholar
|
[57] |
L. Bandhu , L. Lawton , and G. R. Nash , Macroscopic acoustoelectric charge transport in graphene, Appl. Phys. Lett. 103, 133101 (2013)
CrossRef
ADS
Google scholar
|
[58] |
L. Bandhu and G. R. Nash , Controlling the properties of surface acoustic waves using graphene, Nano Res. 9(3), 685 (2016)
CrossRef
ADS
Google scholar
|
[59] |
C. C. Tang , Y. F. Chen , D. Ling , C. Chi , and J. C. Chen , Ultra-low acoustoelectric attenuation in graphene, J. Appl. Phys. 121, 124505 (2017)
CrossRef
ADS
Google scholar
|
[60] |
T. Poole , L. Bandhu , and G. Nash , Acoustoelectric photoresponse in graphene, Appl. Phys. Lett. 106, 133107 (2015)
CrossRef
ADS
Google scholar
|
[61] |
S. Zheng , H. Zhang , Z. Feng , Y. Yu , R. Zhang , C. Sun , J. Liu , X. Duan , W. Pang , and D. Zhang , Acoustic charge transport induced by the surface acoustic wave in chemical doped graphene, Appl. Phys. Lett. 109(18), 183110 (2016)
CrossRef
ADS
Google scholar
|
[62] |
M. Costanza , L. La Spina , A. D. S. L. Moreira , D. Belharet , A. Bartasyte , and S. Margueron , Acousto-electric measurements at 2.5 GHz on graphene transferred onto YX128°-LiNbO3, Nanotechnology 34(32), 325202 (2023)
CrossRef
ADS
Google scholar
|
[63] |
C. P. Carmichael , M. S. Smith , A. R. Weeks , and D. C. Malocha , Experimental investigation of surface acoustic wave acoustoelectric effect using a graphene film on lithium niobate, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(11), 2205 (2018)
CrossRef
ADS
Google scholar
|
[64] |
D. C. Malocha , C. Carmichael , and A. Weeks , Acoustoelectric amplifier with 1.2-dB insertion gain monolithic graphene construction and continuous wave operation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(9), 1960 (2020)
CrossRef
ADS
Google scholar
|
[65] |
D. C. Malocha, Acousto-electric amplifier having insertion gain, Google Patents, 2021
|
[66] |
D. C. Malocha , Acoustoelectric amplifier model using coupling of modes and charge control analysis, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(8), 2794 (2021)
CrossRef
ADS
Google scholar
|
[67] |
K. Tynyshtykbaev and Z. Insepov , The photoacoustoelectric effect of the SAW amplification in the structure of Graphene-Piezocrystal LiNbO3, Nano Express 2(2), 020016 (2021)
CrossRef
ADS
Google scholar
|
[68] |
O. V. Kononenko , E. V. Emelin , V. N. Matveev , and D. V. Roshchupkin , Photoresponse in multilayer graphene during the passage of a surface acoustic wave, Tech. Phys. Lett. 46(3), 220 (2020)
CrossRef
ADS
Google scholar
|
[69] |
D. Roshchupkin , O. Kononenko , R. Fakhrtdinov , E. Emelin , and A. Sergeev , Acoustically Stimulated Charge Transport in Graphene Film, Nanomaterials (Basel) 12(24), 4370 (2022)
CrossRef
ADS
Google scholar
|
[70] |
R. Rimeika , J. Barkauskas , and D. Čiplys , Surface acoustic wave response to ambient humidity in graphite oxide structures, Appl. Phys. Lett. 99(5), 051915 (2011)
CrossRef
ADS
Google scholar
|
[71] |
D. Čiplys,R. Rimeika,O. Monereo,E. Xuriguera,A. Varea,A. Cirera, Sub-second humidity sensing using surface acoustic waves in electrospray-deposited carbon nanofiber and reduced graphene oxide structures, in: SENSORS, 2014 IEEE (IEEE), 2014
|
[72] |
Y. Guo , J. Zhang , C. Zhao , P. A. Hu , X. T. Zu , and Y. Q. Fu , Graphene/LiNbO3 surface acoustic wave device based relative humidity sensor, Optik (Stuttg.) 125(19), 5800 (2014)
CrossRef
ADS
Google scholar
|
[73] |
I. E. Kuznetsova , V. I. Anisimkin , S. P. Gubin , S. V. Tkachev , V. V. Kolesov , V. V. Kashin , B. D. Zaitsev , A. M. Shikhabudinov , E. Verona , and S. Sun , Super high sensitive plate acoustic wave humidity sensor based on graphene oxide film, Ultrasonics 81, 135 (2017)
CrossRef
ADS
Google scholar
|
[74] |
J. Zhou , X. Shi , D. Xiao , X. Wu , J. Zheng , J. Luo , M. Zhuo , X. Tao , H. Jin , S. Dong , R. Tao , H. Duan , and Y. Q. Fu , Surface acoustic wave devices with graphene interdigitated transducers, J. Micromech. Microeng. 29(1), 015006 (2019)
CrossRef
ADS
Google scholar
|
[75] |
J. Liang , B. H. Liu , H. X. Zhang , H. Zhang , M. L. Zhang , D. H. Zhang , and W. Pang , Monolithic acoustic graphene transistors based on lithium niobate thin film, J. Phys. D Appl. Phys. 51(20), 204001 (2018)
CrossRef
ADS
Google scholar
|
[76] |
Y. Mou , H. Chen , J. Liu , Q. Lan , J. Wang , C. Zhang , Y. Wang , J. Gu , T. Zhao , X. Jiang , W. Shi , and C. Zhang , Gate-tunable quantum acoustoelectric transport in graphene, Nano Lett. 24(15), 4625 (2024)
CrossRef
ADS
Google scholar
|
[77] |
G. Jo , M. Choe , S. Lee , W. Park , Y. H. Kahng , and T. Lee , The application of graphene as electrodes in electrical and optical devices, Nanotechnology 23(11), 112001 (2012)
CrossRef
ADS
Google scholar
|
[78] |
S. Sharma , S. Shriwastava , S. Kumar , K. Bhatt , and C. C. Tripathi , Alternative transparent conducting electrode materials for flexible optoelectronic devices, Opto-Electron. Rev. 26(3), 223 (2018)
CrossRef
ADS
Google scholar
|
[79] |
Z. Chang and K. S. Chiang , Experimental verification of optical models of graphene with multimode slab waveguides, Opt. Lett. 41(9), 2129 (2016)
CrossRef
ADS
Google scholar
|
[80] |
Z. Chang , W. Jin , and K. S. Chiang , Graphene electrodes for lithium-niobate electro-optic devices, Opt. Lett. 43(8), 1718 (2018)
CrossRef
ADS
Google scholar
|
[81] |
W. Jin and K. S. Chiang , Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings, IEEE J. Sel. Top. Quantum Electron. 26(5), 1 (2020)
CrossRef
ADS
Google scholar
|
[82] |
P. Chaudhary , H. Lu , A. Lipatov , Z. Ahmadi , J. P. V. McConville , A. Sokolov , J. E. Shield , A. Sinitskii , J. M. Gregg , and A. Gruverman , Low-voltage domain-wall LiNbO3 memristors, Nano Lett. 20(8), 5873 (2020)
CrossRef
ADS
Google scholar
|
[83] |
M. Zhang , C. Wang , P. Kharel , D. Zhu , and M. Lončar , Integrated lithium niobate electro-optic modulators: when performance meets scalability, Optica 8(5), 652 (2021)
CrossRef
ADS
Google scholar
|
[84] |
C. Wang , M. Zhang , X. Chen , M. Bertrand , A. Shams-Ansari , S. Chandrasekhar , P. Winzer , and M. Lončar , Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages, Nature 562(7725), 101 (2018)
CrossRef
ADS
Google scholar
|
[85] |
K. Luke , P. Kharel , C. Reimer , L. He , M. Loncar , and M. Zhang , Wafer-scale low-loss lithium niobate photonic integrated circuits, Opt. Express 28(17), 24452 (2020)
CrossRef
ADS
Google scholar
|
[86] |
D. Mao , C. Cheng , F. Wang , Y. Xiao , T. Li , L. Chang , A. Soman , T. Kananen , X. Zhang , M. Krainak , P. Dong , and T. Gu , Device architectures for low voltage and ultrafast graphene integrated phase modulators, IEEE J. Sel. Top. Quantum Electron. 27(2), 1 (2021)
CrossRef
ADS
Google scholar
|
[87] |
X. Zhan , C. Xu , C. Hu , and Y. Song , Dual-waveguide stacked graphene light modulator based on an MZI structure, Appl. Opt. 62(16), 4171 (2023)
CrossRef
ADS
Google scholar
|
[88] |
Q. Q. Song , Scalable and reconfigurable continuously tunable lithium niobate thin film delay line using graphene electrodes, IEEE Photonics J. 14(5), 1 (2022)
CrossRef
ADS
Google scholar
|
[89] |
R. F. Oulton,V. J. Sorger,D. Genov,D. Pile,X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photonics 2(8), 496 (2008)
|
[90] |
J. Zhang , L. Zhang , and W. Xu , Surface plasmon polaritons: physics and applications, J. Phys. D Appl. Phys. 45(11), 113001 (2012)
CrossRef
ADS
Google scholar
|
[91] |
Y. Fan , Z. Liu , F. Zhang , Q. Zhao , Z. Wei , Q. Fu , J. Li , C. Gu , and H. Li , Tunable mid-infrared coherent perfect absorption in a graphene meta-surface, Sci. Rep. 5(1), 13956 (2015)
CrossRef
ADS
Google scholar
|
[92] |
H. Wang , H. Zhao , G. Hu , S. Li , H. Su , and J. Zhang , Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate, Sci. Rep. 5(1), 18258 (2015)
CrossRef
ADS
Google scholar
|
[93] |
M. Qasymeh , Phase-matched coupling and frequency conversion of terahertz waves in a nonlinear graphene waveguide, J. Lightwave Technol. 35(9), 1654 (2017)
CrossRef
ADS
Google scholar
|
[94] |
J. Gorecki , L. Piper , A. Noual , S. Mailis , N. Papasimakis , and V. Apostolopoulos , Optically reconfigurable graphene/metal metasurface on Fe: LiNbO3 for adaptive THz optics, ACS Appl. Nano Mater. 3(9), 9494 (2020)
CrossRef
ADS
Google scholar
|
[95] |
J. Gorecki , A. Noual , S. Mailis , V. Apostolopoulos , and N. Papasimakis , Optically defined reconfigurable THz metasurfaces using graphene on iron‐doped lithium niobate, Adv. Photon. Res. 3(12), 2200233 (2022)
CrossRef
ADS
Google scholar
|
[96] |
Z. Xiong , S. Meng , X. Ma , B. Gao , and H. Zhao , Dramatic n-type doping of monolayer graphene with ferroelectric LiNbO3 crystals and bilayer two-dimensional electron gases, J. Phys. Chem. C 126(9), 4534 (2022)
CrossRef
ADS
Google scholar
|
[97] |
V. K. Sadaghiani , M. Zavvari , M. B. Tavakkoli , and A. Horri , Design of graphene-based hybrid waveguides for nonlinear applications, Opt. Quantum Electron. 51(2), 49 (2019)
CrossRef
ADS
Google scholar
|
[98] |
V. K. Sadaghiani , M. B. Tavakoli , and A. Horri , Second harmonic generation in a graphene-based plasmonic waveguide, Photonic Netw. Commun. 42(2), 117 (2021)
CrossRef
ADS
Google scholar
|
[99] |
M. Irfan , Y. Khan , A. U. Rehman , M. A. Butt , S. N. Khonina , and N. L. Kazanskiy , Plasmonic refractive index and temperature sensor based on graphene and LiNbO3, Sensors (Basel) 22(20), 7790 (2022)
CrossRef
ADS
Google scholar
|
[100] |
C. C. Lee , J. Miller , and T. Schibli , Doping-induced changes in the saturable absorption of monolayer graphene, Appl. Phys. B 108(1), 129 (2012)
CrossRef
ADS
Google scholar
|
[101] |
W. F. Rao , M. T. Zhang , and G. G. Zheng , Voltage-controlled enhancement of optical absorption in a graphene monolayer with a one-dimensional photonic crystal, Appl. Phys. B 123(9), 232 (2017)
CrossRef
ADS
Google scholar
|
[102] |
A. Rashidi , A. Namdar , and R. Abdi-Ghaleh , Absorption behavior in graphene-based one-dimensional photonic crystals containing an x-cut lithium niobate layer, Superlattices Microstruct. 105, 74 (2017)
CrossRef
ADS
Google scholar
|
[103] |
A. H. Aly , F. A. Sayed , and H. A. Elsayed , Defect mode tunability based on the electro-optical characteristics of the one-dimensional graphene photonic crystals, Appl. Opt. 59(16), 4796 (2020)
CrossRef
ADS
Google scholar
|
[104] |
M. M. A. Chowdhury,N. Mohammadd,M. K. Hasan,S. A. Imam, in: 5th International Conference on Electrical Information and Communication Technology (EICT), 2021
|
[105] |
M. M. A. Chowdhury,A. G. Priyam,M. K. Hasan,N. Mohammadd,S. A. Imam, in: IEEE International Conference on Telecommunications and Photonics (ICTP), 2021
|
[106] |
X. Chen , Q. Meng , W. Xu , J. Zhang , Z. Zhu , and S. Qin , Electrically tunable absorber based on a graphene integrated lithium niobate resonant metasurface, Opt. Express 29(21), 32796 (2021)
CrossRef
ADS
Google scholar
|
[107] |
J. Hu , L. Sun , L. Li , X. Liu , D. Ren , and J. Zhao , Dynamically tunable single-/dual-band of the graphene absorber with a resonant asymmetric grating based on lithium niobate on insulator, Opt. Commun. 541, 129554 (2023)
CrossRef
ADS
Google scholar
|
[108] |
Y. Q. Wang , M. S. Wei , M. J. Liao , J. Xu , and Y. Yang , Electrically tunable grating metamaterials polarization-independent filter based on graphene-lithium niobate, Opt. Commun. 557, 130279 (2024)
CrossRef
ADS
Google scholar
|
[109] |
A. M. Zaniewski , C. J. Trimble , and R. J. Nemanich , Modifying the chemistry of graphene with substrate selection: A study of gold nanoparticle formation, Appl. Phys. Lett. 106(12), 123104 (2015)
CrossRef
ADS
Google scholar
|
[110] |
S. Y. Yu , X. C. Sun , X. Ni , Q. Wang , X. J. Yan , C. He , X. P. Liu , L. Feng , M. H. Lu , and Y. F. Chen , Surface phononic graphene, Nat. Mater. 15(12), 1243 (2016)
CrossRef
ADS
Google scholar
|
[111] |
H. Jiang , S. Wang , B. Zhang , Y. Shao , Y. Wu , H. Zhao , Y. Lei , and X. Hao , High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match, Chem. Eng. J. 396, 125207 (2020)
CrossRef
ADS
Google scholar
|
[112] |
M. Cavallo , A. Ram , S. Pandey , T. Maroutian , E. Bossavit , N. Ledos , A. Khalili , H. Zhang , Y. Prado , D. L. Nguyen , T. H. Dang , H. Majjad , J. Biscaras , J. Avila , J. F. Dayen , E. Lhuillier , and D. Pierucci , Using wafer scale ferroelectric domains of LiNbO3 to form permanent planar p-n junction in narrow band gap nanocrystals, Appl. Phys. Lett. 123(25), 253505 (2023)
CrossRef
ADS
Google scholar
|
[113] |
Q. Jin , K. Men , G. Li , T. Ou , Z. Lian , X. Deng , H. Zhao , Q. Zhang , A. Ming , Q. Wei , F. Wei , and H. Tu , Ultrasensitive graphene field-effect biosensors based on ferroelectric polarization of lithium niobate for breast cancer marker detection, ACS Appl. Mater. Interfaces 16(22), 28896 (2024)
CrossRef
ADS
Google scholar
|
[114] |
M. Shimatani , S. Ogawa , S. Fukushima , S. Okuda , Y. Kanai , T. Ono , and K. Matsumoto , Enhanced photogating via pyroelectric effect induced by insulator layer for high-responsivity long-wavelength infrared graphene-based photodetectors operating at room temperature, Appl. Phys. Express 12(2), 025001 (2019)
CrossRef
ADS
Google scholar
|
[115] |
H. Guan , J. Hong , X. Wang , J. Ming , Z. Zhang , A. Liang , X. Han , J. Dong , W. Qiu , Z. Chen , H. Lu , and H. Zhang , Broadband, high‐sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate, Adv. Opt. Mater. 9(16), 2100245 (2021)
CrossRef
ADS
Google scholar
|
[116] |
J. Hong,J. Hong,H. Guan,H. Lu,X. Wang,J. Ming,X. Gui, High-sensitivity, fast-response broadband graphene photodetector on LiNbO3, in: IEEE 8th International Conference on Photonics (ICP), 2020
|
[117] |
S. Zhu , Y. Zhang , Y. Ren , Y. Wang , K. Zhai , H. Feng , Y. Jin , Z. Lin , J. Feng , S. Li , Q. Yang , N. H. Zhu , E. Y. B. Pun , and C. Wang , Waveguide‐integrated two‐dimensional material photodetectors in thin‐film lithium niobate, Adv. Photon. Res. 4(7), 2300045 (2023)
CrossRef
ADS
Google scholar
|
[118] |
P. Delsing , A. N. Cleland , M. J. A. Schuetz , J. Knörzer , G. Giedke , J. I. Cirac , K. Srinivasan , M. Wu , K. C. Balram , C. Bäuerle , T. Meunier , C. J. B. Ford , P. V. Santos , E. Cerda-Méndez , H. Wang , H. J. Krenner , E. D. S. Nysten , M. Weiß , G. R. Nash , L. Thevenard , C. Gourdon , P. Rovillain , M. Marangolo , J. Y. Duquesne , G. Fischerauer , W. Ruile , A. Reiner , B. Paschke , D. Denysenko , D. Volkmer , A. Wixforth , H. Bruus , M. Wiklund , J. Reboud , J. M. Cooper , Y. Q. Fu , M. S. Brugger , F. Rehfeldt , and C. Westerhausen , The 2019 surface acoustic waves roadmap, J. Phys. D Appl. Phys. 52(35), 353001 (2019)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |