In situ characterization of optoelectronic nanostructures and nanodevices

, , , ,

PDF(504 KB)
PDF(504 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (4) : 405-413. DOI: 10.1007/s11467-010-0131-6
MINI-REVIEW ARTICLE
MINI-REVIEW ARTICLE

In situ characterization of optoelectronic nanostructures and nanodevices

Author information +
History +

Abstract

One-dimensional (1-D) semiconductor nanostructures can effectively transport electrons and photons, and are considered to be promising building blocks for future optoelectronic nanodevices. In this review, we present our recent efforts to integrate optical techniques and in situ electron microscopy for comprehensively characterizing individual 1-D optoelectronic nanostructures and nanodevices. The technical strategies and their applications in “green” emission and optical confinement in 1-D ZnO nanostructures will be introduced. We also show in situ assembly and characterization of nanostructures for optoelectronic device purposes. Using these examples, we demonstrate that the combination of optical techniques and in situ electron microscopy can be powerful for the studies of optoelectronic nanomaterials and nanodevices.

Keywords

one-dimensional (1-D) semiconductor nanostructure / optoelectronic nanodevices / in situ electron microscopy / optical confinement / deep level emission

Cite this article

Download citation ▾
, , , , . In situ characterization of optoelectronic nanostructures and nanodevices. Front Phys Chin, 2010, 5(4): 405‒413 https://doi.org/10.1007/s11467-010-0131-6

References

[1]
X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature, 2001, 409: 66
CrossRef ADS Google scholar
[2]
R. Agarwal and C. M. Lieber, Appl. Phys. A, 2006, 85: 209
CrossRef ADS Google scholar
[3]
Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today, 2006, 9: 18
CrossRef ADS Google scholar
[4]
R. X. Yan, D. Gargas, and P. D. Yang, Nature Photonics, 2009, 3: 569
CrossRef ADS Google scholar
[5]
M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, Nano Lett., 2008, 8: 1695
CrossRef ADS Google scholar
[6]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science, 2001, 292: 1897
CrossRef ADS Google scholar
[7]
H. Kind, H. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater., 2002, 14: 158
CrossRef ADS Google scholar
[8]
M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, Science, 2004, 305: 1269
CrossRef ADS Google scholar
[9]
X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature, 2003, 421: 241
CrossRef ADS Google scholar
[10]
H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, Appl. Phys. Lett., 2007, 91: 181112
CrossRef ADS Google scholar
[11]
R. F. Oulton, V. J. Sorger, T. Zentgralf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature, 2009, 461: 629
CrossRef ADS Google scholar
[12]
C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 2007, 7: 1003
CrossRef ADS Google scholar
[13]
B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 2007, 449: 885
CrossRef ADS Google scholar
[14]
M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, Science, 2009, 324: 232
CrossRef ADS Google scholar
[15]
L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature, 2003, 426: 816
CrossRef ADS Google scholar
[16]
A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, Nano Lett., 2009, 9: 784
CrossRef ADS Google scholar
[17]
J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, Appl. Phys. Lett., 2009, 95: 241110
CrossRef ADS Google scholar
[18]
M. Gao, W. L. Li, Y. Liu, Q. Li, Q. Chen, and L. M. Peng, Appl. Phys. Lett., 2008, 92: 113112
CrossRef ADS Google scholar
[19]
C. Y. Li, M. Gao, C. Ding, X. X. Zhang, L. H. Zhang, Q. Chen, and L. M. Peng, Nanotechnology, 2009, 20: 175703
CrossRef ADS Google scholar
[20]
S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science, 1998, 280:1744
CrossRef ADS Google scholar
[21]
M. S. Wang, J. Y. Wang, Q. Chen, and L. M. Peng, Adv. Funct. Mater., 2005, 15:1825
CrossRef ADS Google scholar
[22]
L. M. Peng, Q. Chen, X. L. Liang, S. Gao, J. Y. Wang, S. Kleindiek, and S. W. Tai, MICRON, 2004, 35: 495
CrossRef ADS Google scholar
[23]
Y. Liu, S. Wang, Z. Y. Zhang, L. M. Peng, L. Shi, and Q. Li, Appl. Phys. Lett., 2008, 92: 033102
CrossRef ADS Google scholar
[24]
Q. Chen, S. Wang, and L. M. Peng, Nanotechnology, 2006, 17: 1087
CrossRef ADS Google scholar
[25]
X. L. Wei, Y. Liu, Q. Chen, and L. M. Peng, Nanotechnology, 2008, 19: 355304
CrossRef ADS Google scholar
[26]
H. Kalt, Lect. Notes Phys., 2005, 658: 51
[27]
J. C. Kim, H. Rho, L. M. Smith, H. E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, Appl. Phys. Lett., 1999, 75: 214
CrossRef ADS Google scholar
[28]
A. Gustafsson, M. E. Pistol, L. Montelius, and L. J. Samuelson, Appl. Phys., 1998, 84: 1715
[29]
D. Liu, A. L. Pan, G. Z. Xu, Y. Q. Bai, X. Zhu, and B. S. Zou, Opt. Rev., 2006, 13: 235
CrossRef ADS Google scholar
[30]
S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, Adv. Mater., 1999, 11: 1243
CrossRef ADS Google scholar
[31]
J. B. Baxter, F. Wu, and E. S. Aydil, Appl. Phys. Lett., 2003, 83: 3797
CrossRef ADS Google scholar
[32]
X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Adv. Mater., 2009, 21: 4937
CrossRef ADS Google scholar
[33]
P. M. Petroff and D. W. Lang, Appl. Phys. Lett., 1977, 31: 60
CrossRef ADS Google scholar
[34]
B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, New York: Springer-Verlag, 1990: 116
[35]
Y. Ohno and S. Takeda, Rev. Sci. Instrum., 1995, 66: 4866
CrossRef ADS Google scholar
[36]
L. J. Brillson, J. Vac. Sci. Technol. B, 2001, 19: 1762
CrossRef ADS Google scholar
[37]
M. Gao, S. T. Bradley, Y. Cao, D. Jena D, Y. Lin Y, S. A. Ringel, J. Hwang, W. J. Schaff, and L. J. Brillson, J. Appl. Phys., 2006, 100: 103512
CrossRef ADS Google scholar
[38]
A. B. Djurišić and Y. H. Leung, Small, 2006, 2: 944
CrossRef ADS Google scholar
[39]
K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 1996, 79: 7983
CrossRef ADS Google scholar
[40]
A. B. DjurišićY. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, Nanotechnology, 2007, 18: 095702
[41]
C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. I. Wen, and W. F. Pong, Appl. Phys. Lett., 2006, 88: 241905
CrossRef ADS Google scholar
[42]
P. C. Chang, C. J. Cheien, D. Stichtenoth, C. Ronning, and J. G. Lu, Appl. Phys. Lett., 2007, 90: 113101
CrossRef ADS Google scholar
[43]
D. C. Look, G. C. Farlow, S. Limpijumnong, S. B. Zhang, and K. Nordlund, Phys. Rev. Lett., 2005, 95: 225502
CrossRef ADS Google scholar
[44]
A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 2005, 87: 122102
CrossRef ADS Google scholar
[45]
M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, and P. Avouris, Phys. Rev. Lett., 2004, 93: 076803
CrossRef ADS Google scholar
[46]
J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, Science, 2001, 293: 1455
CrossRef ADS Google scholar
[47]
L. Wischmeier, T. Voss, S. Börner, and W. Schade, Appl. Phys. A, 2006, 84: 111
CrossRef ADS Google scholar
[48]
F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Liber, Nano Lett., 2005, 5: 2287
CrossRef ADS Google scholar
[49]
C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett., 2004, 4: 1981
CrossRef ADS Google scholar
[50]
L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, Phys. Rev. Lett., 2006, 97: 147401
CrossRef ADS Google scholar
[51]
S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, Nano Lett., 2008, 8: 119
CrossRef ADS Google scholar
[52]
J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, J. Phys. Chem. B, 2003, 107: 8816
CrossRef ADS Google scholar
[53]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, Nano Lett., 2007, 7: 3675
CrossRef ADS Google scholar
[54]
R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, Nano Lett., 2009, 9: 2697
CrossRef ADS Google scholar
[55]
W. L. Li, M. Gao, X. X. Zhang, D. F. Liu, L. M. Peng, and S. S. Xie, Appl. Phys. Lett., 2009, 95: 173109
CrossRef ADS Google scholar
[56]
W. L. Li, M. Gao, R. Cheng, X. X. Zhang, S. S. Xie, and L. M. Peng, Appl. Phys. Lett., 2008, 93: 023117
CrossRef ADS Google scholar
[57]
X. X. Zhang, D. F. Liu, L. H. Zhang, W. L. Li, M. Gao, W. J. Ma, Y. Ren, Q. S. Zeng, Z. Q. Niu, W. Y. Zhou, and S. S. Xie, J. Mater. Chem., 2009, 19: 962
CrossRef ADS Google scholar
[58]
J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, J. Phys. Chem. B, 2003, 107: 8816
CrossRef ADS Google scholar
[59]
J. Bao, M. A. Zimmler, and F. Capasso, Nano Lett., 2006, 6: 1719
CrossRef ADS Google scholar
[60]
Y. Yu, C. H. Jin, R. H. Wang, Q. Chen, and L. M. Peng, J. Phys. Chem. B, 2005, 109: 18772
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(504 KB)

Accesses

Citations

Detail

Sections
Recommended

/