In situ characterization of optoelectronic nanostructures and nanodevices
, , , ,
In situ characterization of optoelectronic nanostructures and nanodevices
One-dimensional (1-D) semiconductor nanostructures can effectively transport electrons and photons, and are considered to be promising building blocks for future optoelectronic nanodevices. In this review, we present our recent efforts to integrate optical techniques and in situ electron microscopy for comprehensively characterizing individual 1-D optoelectronic nanostructures and nanodevices. The technical strategies and their applications in “green” emission and optical confinement in 1-D ZnO nanostructures will be introduced. We also show in situ assembly and characterization of nanostructures for optoelectronic device purposes. Using these examples, we demonstrate that the combination of optical techniques and in situ electron microscopy can be powerful for the studies of optoelectronic nanomaterials and nanodevices.
one-dimensional (1-D) semiconductor nanostructure / optoelectronic nanodevices / in situ electron microscopy / optical confinement / deep level emission
[1] |
X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature, 2001, 409: 66
CrossRef
ADS
Google scholar
|
[2] |
R. Agarwal and C. M. Lieber, Appl. Phys. A, 2006, 85: 209
CrossRef
ADS
Google scholar
|
[3] |
Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today, 2006, 9: 18
CrossRef
ADS
Google scholar
|
[4] |
R. X. Yan, D. Gargas, and P. D. Yang, Nature Photonics, 2009, 3: 569
CrossRef
ADS
Google scholar
|
[5] |
M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, Nano Lett., 2008, 8: 1695
CrossRef
ADS
Google scholar
|
[6] |
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science, 2001, 292: 1897
CrossRef
ADS
Google scholar
|
[7] |
H. Kind, H. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater., 2002, 14: 158
CrossRef
ADS
Google scholar
|
[8] |
M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, Science, 2004, 305: 1269
CrossRef
ADS
Google scholar
|
[9] |
X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature, 2003, 421: 241
CrossRef
ADS
Google scholar
|
[10] |
H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, Appl. Phys. Lett., 2007, 91: 181112
CrossRef
ADS
Google scholar
|
[11] |
R. F. Oulton, V. J. Sorger, T. Zentgralf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature, 2009, 461: 629
CrossRef
ADS
Google scholar
|
[12] |
C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 2007, 7: 1003
CrossRef
ADS
Google scholar
|
[13] |
B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 2007, 449: 885
CrossRef
ADS
Google scholar
|
[14] |
M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, Science, 2009, 324: 232
CrossRef
ADS
Google scholar
|
[15] |
L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature, 2003, 426: 816
CrossRef
ADS
Google scholar
|
[16] |
A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, Nano Lett., 2009, 9: 784
CrossRef
ADS
Google scholar
|
[17] |
J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, Appl. Phys. Lett., 2009, 95: 241110
CrossRef
ADS
Google scholar
|
[18] |
M. Gao, W. L. Li, Y. Liu, Q. Li, Q. Chen, and L. M. Peng, Appl. Phys. Lett., 2008, 92: 113112
CrossRef
ADS
Google scholar
|
[19] |
C. Y. Li, M. Gao, C. Ding, X. X. Zhang, L. H. Zhang, Q. Chen, and L. M. Peng, Nanotechnology, 2009, 20: 175703
CrossRef
ADS
Google scholar
|
[20] |
S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science, 1998, 280:1744
CrossRef
ADS
Google scholar
|
[21] |
M. S. Wang, J. Y. Wang, Q. Chen, and L. M. Peng, Adv. Funct. Mater., 2005, 15:1825
CrossRef
ADS
Google scholar
|
[22] |
L. M. Peng, Q. Chen, X. L. Liang, S. Gao, J. Y. Wang, S. Kleindiek, and S. W. Tai, MICRON, 2004, 35: 495
CrossRef
ADS
Google scholar
|
[23] |
Y. Liu, S. Wang, Z. Y. Zhang, L. M. Peng, L. Shi, and Q. Li, Appl. Phys. Lett., 2008, 92: 033102
CrossRef
ADS
Google scholar
|
[24] |
Q. Chen, S. Wang, and L. M. Peng, Nanotechnology, 2006, 17: 1087
CrossRef
ADS
Google scholar
|
[25] |
X. L. Wei, Y. Liu, Q. Chen, and L. M. Peng, Nanotechnology, 2008, 19: 355304
CrossRef
ADS
Google scholar
|
[26] |
H. Kalt, Lect. Notes Phys., 2005, 658: 51
|
[27] |
J. C. Kim, H. Rho, L. M. Smith, H. E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, Appl. Phys. Lett., 1999, 75: 214
CrossRef
ADS
Google scholar
|
[28] |
A. Gustafsson, M. E. Pistol, L. Montelius, and L. J. Samuelson, Appl. Phys., 1998, 84: 1715
|
[29] |
D. Liu, A. L. Pan, G. Z. Xu, Y. Q. Bai, X. Zhu, and B. S. Zou, Opt. Rev., 2006, 13: 235
CrossRef
ADS
Google scholar
|
[30] |
S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, Adv. Mater., 1999, 11: 1243
CrossRef
ADS
Google scholar
|
[31] |
J. B. Baxter, F. Wu, and E. S. Aydil, Appl. Phys. Lett., 2003, 83: 3797
CrossRef
ADS
Google scholar
|
[32] |
X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Adv. Mater., 2009, 21: 4937
CrossRef
ADS
Google scholar
|
[33] |
P. M. Petroff and D. W. Lang, Appl. Phys. Lett., 1977, 31: 60
CrossRef
ADS
Google scholar
|
[34] |
B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, New York: Springer-Verlag, 1990: 116
|
[35] |
Y. Ohno and S. Takeda, Rev. Sci. Instrum., 1995, 66: 4866
CrossRef
ADS
Google scholar
|
[36] |
L. J. Brillson, J. Vac. Sci. Technol. B, 2001, 19: 1762
CrossRef
ADS
Google scholar
|
[37] |
M. Gao, S. T. Bradley, Y. Cao, D. Jena D, Y. Lin Y, S. A. Ringel, J. Hwang, W. J. Schaff, and L. J. Brillson, J. Appl. Phys., 2006, 100: 103512
CrossRef
ADS
Google scholar
|
[38] |
A. B. Djurišić and Y. H. Leung, Small, 2006, 2: 944
CrossRef
ADS
Google scholar
|
[39] |
K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 1996, 79: 7983
CrossRef
ADS
Google scholar
|
[40] |
A. B. DjurišićY. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, Nanotechnology, 2007, 18: 095702
|
[41] |
C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. I. Wen, and W. F. Pong, Appl. Phys. Lett., 2006, 88: 241905
CrossRef
ADS
Google scholar
|
[42] |
P. C. Chang, C. J. Cheien, D. Stichtenoth, C. Ronning, and J. G. Lu, Appl. Phys. Lett., 2007, 90: 113101
CrossRef
ADS
Google scholar
|
[43] |
D. C. Look, G. C. Farlow, S. Limpijumnong, S. B. Zhang, and K. Nordlund, Phys. Rev. Lett., 2005, 95: 225502
CrossRef
ADS
Google scholar
|
[44] |
A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 2005, 87: 122102
CrossRef
ADS
Google scholar
|
[45] |
M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, and P. Avouris, Phys. Rev. Lett., 2004, 93: 076803
CrossRef
ADS
Google scholar
|
[46] |
J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, Science, 2001, 293: 1455
CrossRef
ADS
Google scholar
|
[47] |
L. Wischmeier, T. Voss, S. Börner, and W. Schade, Appl. Phys. A, 2006, 84: 111
CrossRef
ADS
Google scholar
|
[48] |
F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Liber, Nano Lett., 2005, 5: 2287
CrossRef
ADS
Google scholar
|
[49] |
C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett., 2004, 4: 1981
CrossRef
ADS
Google scholar
|
[50] |
L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, Phys. Rev. Lett., 2006, 97: 147401
CrossRef
ADS
Google scholar
|
[51] |
S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, Nano Lett., 2008, 8: 119
CrossRef
ADS
Google scholar
|
[52] |
J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, J. Phys. Chem. B, 2003, 107: 8816
CrossRef
ADS
Google scholar
|
[53] |
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, Nano Lett., 2007, 7: 3675
CrossRef
ADS
Google scholar
|
[54] |
R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, Nano Lett., 2009, 9: 2697
CrossRef
ADS
Google scholar
|
[55] |
W. L. Li, M. Gao, X. X. Zhang, D. F. Liu, L. M. Peng, and S. S. Xie, Appl. Phys. Lett., 2009, 95: 173109
CrossRef
ADS
Google scholar
|
[56] |
W. L. Li, M. Gao, R. Cheng, X. X. Zhang, S. S. Xie, and L. M. Peng, Appl. Phys. Lett., 2008, 93: 023117
CrossRef
ADS
Google scholar
|
[57] |
X. X. Zhang, D. F. Liu, L. H. Zhang, W. L. Li, M. Gao, W. J. Ma, Y. Ren, Q. S. Zeng, Z. Q. Niu, W. Y. Zhou, and S. S. Xie, J. Mater. Chem., 2009, 19: 962
CrossRef
ADS
Google scholar
|
[58] |
J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, J. Phys. Chem. B, 2003, 107: 8816
CrossRef
ADS
Google scholar
|
[59] |
J. Bao, M. A. Zimmler, and F. Capasso, Nano Lett., 2006, 6: 1719
CrossRef
ADS
Google scholar
|
[60] |
Y. Yu, C. H. Jin, R. H. Wang, Q. Chen, and L. M. Peng, J. Phys. Chem. B, 2005, 109: 18772
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |