Bioresources and Bioprocessing All Journals

Mar 2025, Volume 4 Issue 1

  • Select all
  • Dissolved oxygen control strategy for improvement of TL1-1 production in submerged fermentation by Daldinia eschscholzii
    Xing-chen Wei, Liu Tang, Yan-hua Lu
    Background

    2,3-Dihydro-5-hydroxy-2-methylchromen-4-one (TL1-1) is a phenolic compound with significant anti-fungal and anti-cancer activities produced by Daldinia eschscholzii (D. eschscholzii). However, studies have rarely been reported on the fermentation process of D. eschscholzii due to the urgent demand for its pharmaceutical researches and applications.

    Results

    In this work, the optimal fermentation medium for improved TL1-1 yield was first obtained in a shake flask. As the fermentation process was scaling up, the marked effects of dissolved oxygen (DO) on cell growth and TL1-1 biosynthesis were observed and confirmed. Controlling a suitable DO level by the adjustment of agitation speed and aeration rate remarkably enhanced TL1-1 production in a lab-scale bioreactor. Moreover, the fermentation of D. eschscholzii was successfully applied in 500-L bioreactor, and TL1-1 production has achieved 873.63 mg/L, approximately 15.4-fold than its initial production (53.27 mg/L).

    Conclusions

    Dissolved oxygen control strategy for enhancing TL1-1 production was first proposed. Furthermore, control of the appropriate DO level has successfully performed for improving TL1-1 yield and scale-up of D. eschscholzii fermentation process.

  • Stereoselective biotransformation of racemic mandelic acid using immobilized laccase and (S)-mandelate dehydrogenase
    Xing Chen, Chengli Yang, Peng Wang, Xuan Zhang, Bingxin Bao, Dali Li, Ruofu Shi
    Objectives

    (S)-Mandelate dehydrogenase (SMDH) and laccase were immobilized on chitosan. The bi-enzymatic system with immobilized SMDH and immobilized laccase was taken to catalyze the stereoselective transformation of racemic mandelic acid and (R)-mandelic acid was obtained from its racemic mixture.

    Results

    Characteristics of the immobilized enzymes were valuated. The optimum pH and temperature of the immobilized SMDH were found to be pH 3.4 and 45 °C, and these of the immobilized laccase were about pH 6.0 and 55 °C, respectively. The Km value of the immobilized SMDH for racemic mandelic acid was 0.27 mM and that of the immobilized laccase for ferrocyanide was 0.99 mM. The thermal and storage stabilities of these enzymes were improved with immobilization. The enantiomeric purity of the bi-enzymatically produced (R)-mandelic acid was determined to be over 99%.

    Conclusion

    The immobilized bi-enzymatic system for the stereoselective transformation of racemic mandelic acid showed higher productivity, faster reaction velocity, and more stable catalytic ability.

  • Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775
    Doria Naila Bouchedja, Sabine Danthine, Tambi Kar, Patrick Fickers, Abdelghani Boudjellal, Frank Delvigne

    This study aims to understand and better control the main biological mechanisms and parameters modulating the various phenomena affecting Yarrowia lipolytica JMY775 and its lipids accumulation. The results obtained in this study stress forward that the use of an original tool, consisting of coupling bioreactors to online flow cytometry, is highly efficient. Throughout 48 h of culturing, this emerging process allowed an online continuous observation of the effects of pH and/or aeration on the cell growth and dimorphism and lipid accumulation by Y. lipolytica. This present study showed clearly that online flow cytometry is an advantageous tool for the real-time monitoring of microbial culture at a single-cell level. Indeed, the present investigation showed for the first time that profiling of the various phenomena and their monitoring upon culture time is now possible by coupling online cytometry with culture bioreactors.

  • Investigation of spiral-wound membrane modules for the cross-flow nanofiltration of fermentation broth obtained from a pilot plant fermentation reactor for the continuous production of lactic acid
    Hendrik Laube, Roland Schneider, Joachim Venus
    Background

    The separation performance of seven polymer membranes for the nanofiltration of sodium lactate in fermentation broth was investigated. Each module was introduced into the test stand, and the system curve was obtained by recording the permeate flow velocity at different pump head levels. Performance benchmarks were good permeate quality, as determined by high permeate flow velocity, high sodium lactic concentration, low ion impurity concentration, and low organic impurity concentration. Market research has shown that three companies, DOW (TW30, SW30, NF45), General Electric (DK73, DL73), and Microdyn-Nadir (NP30), distributed spiral-wound membrane modules for cross-flow filtration in a 2.5 by 40-in. module size, suitable for operation in the filtration test stand.

    Results

    The measured permeate flow velocity was found to vary widely between the membranes. At a pump head of 250 m, DK73, NP30, and DL73 generated more than 200, 300, and 400% higher permeate flow velocities, respectively, than TW30 and NF45. A key benchmark, lactate rejection, was also highly dependent upon membrane type. The NP30, NF45, and TW30 membranes showed a decrease in lactate permeate flow velocity of 117, 83, and 348% starting at 205, 250, and 300 m, respectively.

    Conclusions

    The DL73 had the overall best performance according to the measured fermentation broth and lactic acid permeability. The presented method for the graphical analysis of the membrane performance proofed to be a useful tool for the filtration engineer.

  • Hydrolysis of carotenoid esters from Tagetes erecta by the action of lipases from Yarrowia lipolytica
    Abraham Figueiras Abdala, Alfonso Pérez Gallardo, Lorenzo Guevara Olvera, Eleazar Máximo Escamilla Silva

    The present study was conducted to evaluate the feasibility of enzymatic hydrolysis of carotenoid esters from Tagetes erecta using lipases from the yeast of Yarrowia lipolytica, with the aim of obtaining free lutein. The optimal concentrations of seven nutrients, considering the production of lipases relative to biomass (Yp/x) as the response variable, were determined in flask fermentations. In addition, we studied the effect on hydrolysis of growing Y. lipolytica in the presence of the oleoresin of the marigold flower in flask and stirred tank. Furthermore, hydrolysis of the oleoresin using the lipases from this microorganism was compared with the hydrolysis using lipases from Rhizopus oryzae. Cultured in the presence of marigold oleoresin, Y. lipolytica showed an increase in free carotenoids of 12.41% in flask and 8.8% in stirred tank, representing a fourfold and a threefold increase compared to the initial value in the fermentation, respectively. When lipases from the supernatant from both microorganisms were used for only 14 h hydrolysis experiments, a slight increase was achieved compared to a blank. We concluded that carotenoid esters of the oleoresin could not be completely hydrolyzed in 14 h by these lipases, but that growing Y. lipolytica in the presence of marigold oleoresin gives until fourfold production of free carotenoids in 72 h fermentations.

  • Fungal pretreatment of raw digested piggery wastewater enhancing the survival of algae as biofuel feedstock
    Junying Liu, Wen Qiu, Yunpu Wang
    Background

    Understanding about the impact of white rot fungi on indigenous bacterial communities, NH4 + and turbidity in digested piggery wastewater, will allow the optimization of wastewater treatment methods and its use as a feasible medium for algal growth. Here, the white rot fungi were inoculated into undiluted and unsterilized digested piggery wastewater under different temperatures and pH regimes in order to lower the pretreatment cost. Diversity and abundance of the bacterial communities in the pretreated wastewater were assessed by PCR-denaturing gradient gel electrophoresis coupled with 16S rDNA sequencing.

    Results

    The research showed a significant reduction on the microbial diversity with the presence of white rot fungi which occur at pH 6. The distribution and presence of bacteria taxa were strongly correlated with NH4 + concentration, pH, and the presence of white rot fungi. Variance partition analysis also showed that the effect on the chlorophyll content of algae in fungi-filtered wastewater was as the following hierarchy: bacterial diversity > NH4 + > turbidity. Therefore, the algae in treated wastewater with less abundance of bacteria proliferated more successfully, indicating that bacterial community not only played an important role in algal growth but also imposed a strong top-down control on the algal population. The algae grown in wastewater treated with fungi reached the highest specific growth rate (0.033 day−1), whereas the controls displayed the negative specific growth rate. The fatty acid composition varied markedly in C16:0 and C18:0 between these treatments, with a higher content of C16:0.

    Conclusions

    This study firstly showed that Chlorella can grow as cost-effective biofuel feedstocks in undiluted and unsterilized digested wastewater with high ammonium concentration and dark brown color because the bacterial abundance of digested piggery wastewater could be reduced greatly by the white rot fungi.

  • Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review
    Adepu Kiran Kumar, Shaishav Sharma

    Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.

  • An efficient multi-stage fermentation strategy for the production of microbial oil rich in arachidonic acid in Mortierella alpina
    Wen-Jia Wu, Ai-Hui Zhang, Chao Peng, Lu-Jing Ren, Ping Song, Ya-Dong Yu, He Huang, Xiao-Jun Ji
    Background

    Fungal morphology and aeration play a significant role in the growth process of Mortierella alpina. The production of microbial oil rich in arachidonic acid (ARA) in M. alpina was enhanced by using a multi-stage fermentation strategy which combined fed-batch culture with precise control of aeration and agitation rates at proper times.

    Results

    The fermentation period was divided into four stages according to the cultivation characteristics of M. alpina. The dissolved oxygen concentration was well suited for ARA biosynthesis. Moreover, the ultimate dry cell weight (DCW), lipid, and ARA yields obtained using this strategy reached 41.4, 22.2, 13.5 g/L, respectively. The respective values represent 14.8, 25.8, and 7.8% improvements over traditional fed-batch fermentation processes.

    Conclusions

    This strategy provides promising control insights for the mass production of ARA-rich oil on an industrial scale. Pellet-like fungal morphology was transformed into rice-shaped particles which were beneficial for oxygen transfer and thus highly suitable for biomass accumulation.

  • A food-grade expression system for d-psicose 3-epimerase production in Bacillus subtilis using an alanine racemase-encoding selection marker
    Jingqi Chen, Zhaoxia Jin, Yuanming Gai, Jibin Sun, Dawei Zhang
    Background

    Food-grade expression systems require that the resultant strains should only contain materials from food-safe microorganisms, and no antibiotic resistance marker can be utilized. To develop a food-grade expression system for d-psicose 3-epimerase production, we use an alanine racemase-encoding gene as selection marker in Bacillus subtilis.

    Results

    In this study, the d-alanine racemase-encoding gene dal was deleted from the chromosome of B. subtilis 1A751 using Cre/lox system to generate the food-grade host. Subsequently, the plasmid-coded selection marker dal was complemented in the food-grade host, and RDPE was thus successfully expressed in dal deletion strain without addition of d-alanine. The selection appeared highly stringent, and the plasmid was stably maintained during culturing. The highest RDPE activity in medium reached 46 U/ml at 72 h which was comparable to RDPE production in kanamycin-based system. Finally, the capacity of the food-grade B. subtilis 1A751D2R was evaluated in a 7.5 l fermentor with a fed-batch fermentation.

    Conclusion

    The alanine racemase-encoding gene can be used as a selection marker, and the food-grade expression system was suitable for heterologous proteins production in B. subtilis.

  • Changes of membrane fatty acids and proteins of Shewanella putrefaciens treated with cinnamon oil and gamma irradiation
    Fei Lyu, Fei Gao, Qianqian Wei, Lin Liu
    Background

    In order to detect the antimicrobial mechanism of combined treatment of cinnamon oil and gamma irradiation (GI), the membrane fatty acids and proteins characteristics of Shewanella putrefaciens (S. putrefaciens) treated with cinnamon oil and GI, and the distribution of cinnamon oil in S. putrefaciens were observed in this study.

    Results

    The membrane lipid profile of S. putrefaciens was notably damaged by treatments of cinnamon oil and the combination of cinnamon oil and GI, with significantly fatty acids decrease in C14:0, C16:0, C16:1, C17:1, C18:1 (p < 0.05). The SDS-PAGE result showed that GI did not have obvious effect on membrane proteins (MP), but GI combined with cinnamon oil changed the MP subunits. Cinnamaldehyde, the main component of cinnamon oil, can not transport into S. putrefaciens obviously. It was transformed into cinnamyl alcohol in the nutrient broth with the action of S. putrefaciens. This indicated that the antimicrobial action of cinnamon oil mainly happened on the membrane of S. putrefaciens.

    Conclusion

    Cinnamon oil could act on the membrane of S. putrefaciens with the damage of fatty acids and proteins, and GI would increase the destructive capability of cinnamon oil on the membrane fatty acids and proteins of S. putrefaciens.

  • Advances in industrial microbiome based on microbial consortium for biorefinery
    Li-Li Jiang, Jin-Jie Zhou, Chun-Shan Quan, Zhi-Long Xiu

    One of the important targets of industrial biotechnology is using cheap biomass resources. The traditional strategy is microbial fermentations with single strain. However, cheap biomass normally contains so complex compositions and impurities that it is very difficult for single microorganism to utilize availably. In order to completely utilize the substrates and produce multiple products in one process, industrial microbiome based on microbial consortium draws more and more attention. In this review, we first briefly described some examples of existing industrial bioprocesses involving microbial consortia. Comparison of 1,3-propanediol production by mixed and pure cultures were then introduced, and interaction relationships between cells in microbial consortium were summarized. Finally, the outlook on how to design and apply microbial consortium in the future was also proposed.

  • Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification
    Víctor Hugo Grisales Díaz, Gerard Olivar Tost
    Background

    Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems.

    Methods

    The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements.

    Results

    Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53–0.57 and 0.81–0.84, respectively.

    Conclusions

    The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.

  • Efficient expression of sortase A from Staphylococcus aureus in Escherichia coli and its enzymatic characterizations
    Zhimeng Wu, Haofei Hong, Xinrui Zhao, Xun Wang
    Background

    Sortase A (SrtA) is a transpeptidase found in Staphylococcus aureus, which is widely used in site-specific protein modification. However, SrtA was expressed in Escherichia coli (E. coli) in rather low level (ranging from several milligrams to 76.9 mg/L at most). The present study aims to optimize fermentation conditions for improving SrtA expression in E. coli.

    Results

    Under the optimized media (0.48 g/L glycerol, 1.37 g/L tryptone, 0.51 g/L yeast extract, MOPS 0.5 g/L, PBS buffer 180 mL/L) and condition (30 °C for 8 h) in a 7-L fermentor, the enzyme activity and the yield of SrtA reached 2458.4 ± 115.9 U/mg DCW and 232.4 ± 21.1 mg/L, respectively, which were higher by 5.8- and 4.5-folds compared with initial conditions, respectively. The yield of SrtA also represented threefold increase than the previously reported maximal level. In addition, the enzymatic characterizations of SrtA (optimal temperature, optimal pH, the influence of metal irons, and tolerance to water-soluble organic solvents) were determined.

    Conclusions

    Enhanced expression of SrtA was achieved by optimization of medium and condition. This result will have potential application for production levels of SrtA on an industry scale. Moreover, the detailed enzymatic characterizations of SrtA were examined, which will provide a useful guide for its future application.

  • Puttaswamy Manjula, Govindan Srinikethan, K. Vidya Shetty
    Background

    Biodiesel production using Pongamia pinnata (P. pinnata) seeds results in large amount of unused seed hull. These seed hulls serve as a potential source for cellulose fibres which can be exploited as reinforcement in composites.

    Methods

    These seed hulls were processed using chlorination and alkaline extraction process in order to isolate cellulose fibres. Scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis demonstrated the morphological changes in the fibre structure.

    Results

    Cellulose microfibres of diameter 6–8 µm, hydrodynamic diameter of 58.4 nm and length of 535 nm were isolated. Thermal stability was enhanced by 70 °C and crystallinity index (CI) by 19.8% ensuring isolation of crystalline cellulose fibres.

    Conclusion

    The sequential chlorination and alkaline treatment stemmed to the isolation of cellulose fibres from P. pinnata seed hull. The isolated cellulose fibres possessed enhanced morphological, thermal, and crystalline properties in comparison with P. pinnata seed hull. These cellulose microfibres may potentially find application as biofillers in biodegradable composites by augmenting their properties.

  • Vinay Mohan Pathak, Navneet

    Inertness and the indiscriminate use of synthetic polymers leading to increased land and water pollution are of great concern. Plastic is the most useful synthetic polymer, employed in wide range of applications viz. the packaging industries, agriculture, household practices, etc. Unpredicted use of synthetic polymers is leading towards the accumulation of increased solid waste in the natural environment. This affects the natural system and creates various environmental hazards. Plastics are seen as an environmental threat because they are difficult to degrade. This review describes the occurrence and distribution of microbes that are involved in the degradation of both natural and synthetic polymers. Much interest is generated by the degradation of existing plastics using microorganisms. It seems that biological agents and their metabolic enzymes can be exploited as a potent tool for polymer degradation. Bacterial and fungal species are the most abundant biological agents found in nature and have distinct degradation abilities for natural and synthetic polymers. Among the huge microbial population associated with polymer degradation, Pseudomonas aeruginosa, Pseudomonas stutzeri, Streptomyces badius, Streptomyces setonii, Rhodococcus ruber, Comamonas acidovorans, Clostridium thermocellum and Butyrivibrio fibrisolvens are the dominant bacterial species. Similarly, Aspergillus niger, Aspergillus flavus, Fusarium lini, Pycnoporus cinnabarinus and Mucor rouxii are prevalent fungal species.

  • Eugene M. Obeng, Siti Nurul Nadzirah Adam, Cahyo Budiman, Clarence M. Ongkudon, Ruth Maas, Joachim Jose

    The highly acclaimed prospect of renewable lignocellulosic biocommodities as obvious replacement of their fossil-based counterparts is burgeoning within the last few years. However, the use of the abundant lignocellulosic biomass provided by nature to produce value-added products, especially bioethanol, still faces significant challenges. One of the crucial challenging factors is in association with the expression levels, stability, and cost-effectiveness of the cellulose-degrading enzymes (cellulases). Interestingly, several recommendable endeavors in the bid to curb these challenges are in pursuance. However, the existing body of literature has not well provided the updated roadmap of the advancement and key players spearheading the current success. Moreover, the description of enzyme systems and emerging paradigms with high prospects, for example, the cell-surface display system has been ill-captured in the literature. This review focuses on the lignocellulosic biocommodity pathway, with emphasis on cellulase and hemicellulase systems. The paradigm shift towards cell-surface display system and its emerging recommendable developments have also been discussed. The attempts in supplementing cellulase with other enzymes, accessory proteins, and chemical additives have also been discussed. Moreover, some of the prominent and influential discoveries in the cellulase fraternity have been discussed.

  • Qiang Zhang, Jie Bao
    Background

    Cellulase enzymes contribute to the largest portion of operation cost on production of cellulosic ethanol. The industrial cellulases available on the industrial enzyme market from different makers and sources vary significantly in hydrolysis and ethanol, and finally lead to the changes of enzyme cost. Therefore, the selection of the proper industrial cellulase enzymes for commercial-scale production of cellulosic ethanol is crucially important in terms of high performance and cost reduction.

    Results

    In this study, three major cellulase enzyme products available on the Chinese industrial enzyme market were selected and evaluated as the biocatalysts for the biorefining process of lignocellulose biomass into high-titer ethanol. The cellulase enzymes included Cellic CTec 2.0 from Novozymes (Beijing), and LLC 4 from Vland (Qingdao), as well as # 7 from an industrial enzyme maker. The detailed assays on the filter paper activity, the cellobiase activity, and the total protein contents of the enzymes were conducted according to the standard protocols. When the cellulase enzymes were applied to the practical hydrolysis and ethanol-fermentation operation under the conditions of high solids loading and low range of cellulase dosage, the hydrolysis yield shows the significant difference, and the difference was narrowed in the final ethanol yield.

    Conclusions

    The commercially available cellulase enzymes showed different performances in the activities, the cellulose hydrolysis yield, and the ethanol fermentation yields based on the protein dosage per gram of cellulose of corn stover. In general, the industrial cellulase products give satisfactory performance and can be applied for the practical cellulosic ethanol production on commercial scale.

  • Krishan Kumar, Ajar Nath Yadav, Vinod Kumar, Pritesh Vyas, Harcharan Singh Dhaliwal

    Food waste, a by-product of various industrial, agricultural, household and other food sector activities, is rising continuously due to increase in such activities. Various studies have indicated that different kind of food wastes obtained from fruits, vegetables, cereal and other food processing industries can be used as potential source of bioactive compounds and nutraceuticals which has significant application in treating various ailments. Different secondary metabolites, minerals and vitamins have been extracted from food waste, using various extraction approaches. In the next few years these approaches could provide an innovative approach to increase the production of specific compounds for use as nutraceuticals or as ingredients in the design of functional foods. In this review a comprehensive study of various techniques for extraction of bioactive components citing successful research work have been discussed. Further, their efficient utilization in development of nutraceutical products, health benefits, bioprocess development and value addition of food waste resources has also been discussed.

  • Urooj Javed, Afsheen Aman, Shah Ali Ul Qader
    Background

    Xylan is a hemicellulose polysaccharide which is composed of β-1,4-linked d-xylosyl residues. Endo-1,4-β xylanase has the ability to cleave xylan back bone chains to release xylose residues. They are produced by a number of prokaryotic and eukaryotic organisms. Among them, filamentous fungi are attracting great attention due to high secretion of xylanolytic enzymes. Endo-1,4-β xylanase has wide industrial applications such as in animal feed, bread making, food and beverages, textile, bleaching of wood pulp, and biofuel production.

    Results

    In this study, different Aspergillus species were screened for the production of endo-1,4-β xylanase, and Aspergillus niger KIBGE-IB36 was selected for optimum production of enzyme in submerged fermentation technique. Influence of various fermentation conditions was investigated to produce high titer of endo-1,4-β xylanase. The results indicated that A. niger KIBGE-IB36 showed optimum production of endo-1,4-β xylanase at 30 °C, pH 8 after 6 days of incubation. Different macro- and micronutrients were also amalgamated in the fermentation medium to increase the enzyme production. The parametric optimization of endo-1,4-β xylanase resulted in tenfold increase after hydrolysis of 20 g L−1 corncob xylan.

    Conclusions

    The use of low-cost substrate approach for high production of endo-1,4-β xylanase has been developed successfully that can be consumed in different industrial applications especially in paper and pulp industry.

  • Heterologous expression of an acidophilic multicopper oxidase in Escherichia coli and its applications in biorecovery of gold
    Shih-I Tan, I-Son Ng, You-Jin Yu
    Background

    Copper oxidase is a promising enzyme for detection of oxidation, which can function as a biosensor and in bioremediation. Previous reports have revealed that the activity of the multicopper oxidase (MCO, EC 1.10.3.2) from the Proteus hauseri ZMd44 is induced by copper ions, and has evolved to participate in the mechanism of copper transfer.

    Results

    From P. hauseri ZMd44, a full-length, 1497-base-pair gene, lacB, encoding 499 amino acids without signal peptide, was cloned into Escherichia coli (E. coli) to obtain high amounts of MCO. The use of the pET28a vector yielded better enzyme activity, which was approximately 400 and 500 U/L for the whole cell and soluble enzyme extracts, respectively. The crude enzyme showed activity at an optimal temperature of 55 °C and it remained highly active in the range of 50–65 °C. The optimal pH was 2.2 but the activity was significantly inhibited by chloride ions. This MCO has great potential for Au adsorption (i.e., 38% w/w) and the Au@NPs were directly adsorbed on enzyme’s surface.

    Conclusion

    An acidophilic MCO from bioelectricity generating bacterium, P. hauseri, is first cloned and heterologously expressed in E. coli with high amounts and activity. This MCO has great potential for Au adsorption and can be used as a biosensor or applied to bioremediation of electronic waste.

  • Taiqiang Sun, Bin Li, Yao Nie, Dong Wang, Yan Xu
    Background

    (S)-(−)-N,N-Dimethyl-3-hydroxy-3-(2-thienyl)-1-propanamine (DHTP) is a key intermediate for the preparation of (S)-duloxetine, an important antidepressant drug. However, so far, the catalytic efficiency of (S)-DHTP synthesis by asymmetric bioreduction is yet limited. The present study aims to develop an efficient system for synthesis of (S)-DHTP by bioreduction.

    Results

    Various recombinant carbonyl reductases were evaluated for asymmetric reduction of N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine (DKTP) to produce (S)-DHTP. The NADPH-dependent carbonyl reductase CR2 was identified as the suitable candidate, giving (S)-DHTP in absolute configuration. Then the fusion protein involving CR2 and glucose dehydrogenase (CR2-L-GDH) was constructed to further improve cofactor regeneration and resulted catalytic efficiency of the enzymatic reduction. By studying the effects of reaction conditions involving cofactor regeneration, suitable catalytic system was achieved for CR2-L-GDH catalyzing (S)-DHTP synthesis. Consequently, (S)-DHTP (>99.9% e.e.) with yield of 97.66% was obtained from 20 g L−1 DKTP within 8-h reaction, employing 40 g L−1 glucose and 0.1 mmol L−1 NADP+ to drive the cofactor regeneration, resulting in the space–time yield of 2.44 g L−1 h−1.

    Conclusion

    Optically pure (S)-DHTP with improved yield was obtained by fusion enzyme CR2-L-GDH. Fusion enzyme-mediated biocatalytic system would be promising to enhance reaction efficiency of enzyme-coupled system for preparation of optically active alcohols.

  • Comprehensive reconstruction and evaluation of Pichia pastoris genome-scale metabolic model that accounts for 1243 ORFs
    Rui Ye, Mingzhi Huang, Hongzhong Lu, Jiangchao Qian, Weilu Lin, Ju Chu, Yingping Zhuang, Siliang Zhang
    Background

    Pichia pastoris is one of the most important cell factories for production of industrial enzymes and heterogenous proteins. The genome-scale metabolic model of high quality is crucial for comprehensive understanding of the P. pastoris metabolism.

    Methods

    In this paper, we upgraded P. pastoris genome-scale metabolic model based on the combination of latest genome annotations and literatures. Then the performance of the new model was evaluated using the Cobra Toolbox v2.0.

    Results

    Compared with the recently published model iMT1026, the reaction number in the new model iRY1243 was increased from 2035 to 2407 and the metabolite number was increased from 1018 to 1094. Accordingly, the unique ORF number was increased from 1026 to 1243. To improve the metabolic functions of P. pastoris genome-scale metabolic model, the biosynthesis pathways of vitamins and cofactors were carefully added. iRY1243 showed good performances when predicting the growth capability on most of the reported carbon and nitrogen sources, the metabolic flux distribution with glucose as a sole carbon source, the essential and partially essential genes, and the effects of gene deletion or overexpression on cell growth and S-adenosyl-l-methionine production.

    Conclusion

    iRY1243 is an upgraded P. pastoris genome-scale metabolic model with significant improvements in the metabolic coverage and prediction ability, and thus it will be a potential platform for further systematic investigation of P. pastoris metabolism.

  • Razia Khan, M. H. Fulekar
    Background

    Reactive Red 31, applied extensively in the commercial textile industry, is a hazardous and persistent azo dye compound often present in dye manufacturing and textile industrial effluents. Aspergillus bombycis strain was isolated from dye contaminated zones of Gujarat Industrial Development Corporation, Vatva, Ahmedabad, India. The decolorization potential was monitored by the decrease in maximum absorption of the dye using UV–visible spectroscopy. Optimization of physicochemical conditions was carried out to achieve maximum decolorization of Reactive Red 31 by fungal pellets.

    Results

    Pellets of A. bombycis strain were found to decolorize this dye (20 mg/L) under aerobic conditions within 12 h. The activity of azoreductase, laccase, phenol oxidase and Manganese peroxidase in fungal culture after decolorization was about 8, 7.5, 19 and 23.7 fold more than before decolorization suggesting that these enzymes might be induced by the addition of Reactive Red 31 dye, and thus results in a higher decolorization. The lab-scale reactor was developed and mineralization of Reactive Red 31 dye by fungal pellets was studied at 6, 12 and 24 h of HRT (hydraulic retention time). At 12 h of HRT, decolorization potential, chemical oxygen demand (COD) and total organic carbon reduction (TOC) was 99.02, 94.19, and 83.97%, respectively, for 20 mg/L of dye concentration.

    Conclusions

    Dye decolorization potential of A. bombycis culture was influenced by several factors such as initial dye concentration, biomass concentration, pH, temperature, and required aerated conditions. Induction of azoreductase, laccase, phenol oxidase, and Mn-peroxidase enzymes was observed during dye decolorization phase. A. bombycis pellets showed potential in mineralization of dye in the aerobic reactor system. Isolated fungal strain A. bombycis showed better dye decolorization performance in short duration of time (12 h) as compared to other reported fungal cultures.

  • Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents
    Xiaoling Wu, Cheng Yang, Jun Ge
    Objectives

    Enzyme/metal-organic framework composites with high stability in protein denaturing solvents were reported in this study.

    Results

    Encapsulation of enzyme in metal-organic frameworks (MOFs) via co-precipitation process was realized, and the generality of the synthesis was validated by using cytochrome c, horseradish peroxidase, and Candida antarctica lipase B as model enzymes. The stability of encapsulated enzyme was greatly increased after immobilization on MOFs. Remarkably, when exposed to protein denaturing solvents including dimethyl sulfoxide, dimethyl formamide, methanol, and ethanol, the enzyme/MOF composites still preserved almost 100% of activity. In contrast, free enzymes retained no more than 20% of their original activities at the same condition. This study shows the extraordinary protecting effect of MOF shell on increasing enzyme stability at extremely harsh conditions.

    Conclusion

    The enzyme immobilized in MOF exhibited enhanced thermal stability and high tolerance towards protein denaturing organic solvents.

  • Beechwood carbohydrates for enzymatic synthesis of sustainable glycolipids
    Sascha Siebenhaller, Tatjana Hajek, Claudia Muhle-Goll, Miriam Himmelsbach, Burkhard Luy, Frank Kirschhöfer, Gerald Brenner-Weiß, Thomas Hahn, Susanne Zibek, Christoph Syldatk

    Moving away from crude oil to renewable resources for the production of a wide range of compounds is a challenge for future generations. To overcome this, the use of lignocellulose as substrate can contribute to drastically reduce the consumption of crude oil. In this study, sugars from lignocellulose were used as a starting material for the enzymatic synthesis of surface-active sugar esters. The substrates were obtained by an acid-catalyzed, beechwood pretreatment process, which resulted in a fiber fraction that is subsequently hydrolyzed to obtain the monosaccharides. After purification and drying, this glucose- and xylose-rich fraction was used to create a deep eutectic solvent, which acts both as solvent and substrate for the lipase-catalyzed reaction at the same time. Finally, the successful synthesis of glycolipids from a sustainable resource was confirmed by ESI–Q–ToF mass spectrometry and multidimensional NMR experiments. Moreover, conversion yields of 4.8% were determined by LC–MS/MS.

  • Naseer Hussain, Tasneem Abbasi, Shahid Abbas Abbasi
    Background

    Vermicompost of the toxic and allelopathic weed parthenium (Parthenium hysterophorus) was explored for its possible use as an organic fertilizer. Replicated plant growth trials were conducted using four levels of parthenium vermicompost (0, 2.5, 3.75, and 5 t/ha) to assess their effects on the germination, growth, and fruition of a typical food plant ladies finger (Abelmoschus esculentus). Additionally the role of vermicompost in reducing plant pests and disease was evaluated.

    Results

    Vermicompost encouraged the germination and growth of ladies finger at all levels of vermicompost application, with best results obtained in 5 t/ha treatments. The positive impact extended up to the fruit yield. Vermicompost application also improved the quality of fruits in terms of mineral, protein, and carbohydrate contents, and reduced the disease incidence and pest attacks.

    Conclusions

    The studies establish the fact that parthenium acquires all the qualities of a good organic fertilizer with concomitant loss of its toxic and allelopathic properties after it gets vermicomposted. The findings raise the prospects of economical and eco-friendly utilization of billions of tons of parthenium biomass which is generated annually but goes to waste at present.

  • Trung T. Nguyen, Andrew R. Barber, Kendall Corbin, Wei Zhang

    The worldwide annual production of lobster was 165,367 tons valued over 3.32billionin2004,butthisfigureroseupto304,000tonsin2012.Overhalfthevolumeoftheworldwidelobsterproductionhasbeenprocessedtomeettherisingglobaldemandindiversifiedlobsterproducts.Lobsterprocessinggeneratesalargeamountofbyproducts(heads,shells,livers,andeggs)whichaccountfor50707.5 million/year for disposal. This not only presents financial and environmental burdens to the lobster processors but also wastes a valuable bioresource. LPBs are rich in a range of high-value compounds such as proteins, chitin, lipids, minerals, and pigments. Extracts recovered from LPBs have been demonstrated to possess several functionalities and bioactivities, which are useful for numerous applications in water treatment, agriculture, food, nutraceutical, pharmaceutical products, and biomedicine. Although LPBs have been studied for recovery of valuable components, utilization of these materials for the large-scale production is still very limited. Extraction of lobster components using microwave, ultrasonic, and supercritical fluid extraction were found to be promising techniques that could be used for large-scale production. LPBs are rich in high-value compounds that are currently being underutilized. These compounds can be extracted for being used as functional ingredients, nutraceuticals, and pharmaceuticals in a wide range of commercial applications. The efficient utilization of LPBs would not only generate significant economic benefits but also reduce the problems of waste management associated with the lobster industry. This comprehensive review highlights the availability of the global LPBs, the key components in LPBs and their current applications, the limitations to the extraction techniques used, and the suggested emerging techniques which may be promising on an industrial scale for the maximized utilization of LPBs.

  • M. H. Fulekar
    Background

    Petrochemical industry is one of the fastest growing industries. This industry has immense importance in the growth of economy and manufacture of large varieties of chemicals. The petrochemical industry is a hazardous group of industry generating hazardous waste containing organic and inorganic compounds. In spite of the present treatment process, the hazardous waste compounds are found untreated to the acceptable level and found discharged at soil–water environment resulting into the persistent organic–inorganic pollutant into the environment. The bioremediation will be the innovative techniques to remove the persistent pollutants in the environment.

    Result

    Petrochemical contaminated site was found to be a rich source of microbial consortium degrading polycyclic aromatic hydrocarbons. Indigenous microbial consortiums were identified and used for bioremediation of polycyclic aromatic hydrocarbons (naphthalene and anthracene) at the concentrations of 250, 500, and 750 ppm. The potential microorganism was also identified for naphthalene and anthracene, and their bioremediation was studied at varying concentrations. The bioremediation with consortium was found to be comparatively more effective than the potential microorganism used for bioremediation of each compound. Pseudomonas aeruginosa a potential organism was identified by 16S rRNA and further studied for the gene responsible for the PAH compounds.

    Conclusion

    Indigenous microorganism as a consortium has been found effective and efficient source for remediation of organic compound—Polycyclic aromatic hydrocarbon and this will also be applicable to remediate the toxic compounds to clean up the environment.

  • Nawel Boucherba, Mohammed Gagaoua, Amel Bouanane-Darenfed, Cilia Bouiche, Khelifa Bouacem, Mohamed Yacine Kerbous, Yacine Maafa, Said Benallaoua

    The present study investigates the production and partial biochemical characterization of an extracellular thermostable xylanase from the Bacillus oceanisediminis strain SJ3 newly recovered from Algerian soil using three phase partitioning (TPP). The maximum xylanase activity recorded after 2 days of incubation at 37 °C was 20.24 U/ml in the presence of oat spelt xylan. The results indicated that the enzyme recovered in the middle phase of TPP system using the optimum parameters were determined as 50% ammonium sulfate saturation with 1.0:1.5 ratio of crude extract: t-butanol at pH and temperature of 8.0 and 10 °C, respectively. The xylanase was recovered with 3.48 purification fold and 107% activity recovery. The enzyme was optimally active at pH 7.0 and was stable over a broad pH range of 5.0–10. The optimum temperature for xylanase activity was 55 °C and the half-life time at this temperature was of 6 h. At this time point the enzyme retained 50% of its activity after incubation for 2 h at 95 °C. The crude enzyme resist to sodium dodecyl sulfate and β-mercaptoethanol, while all the tested ions do not affect the activity of the enzyme. The recovered enzyme is, at least, stable in tested organic solvents except in propanol where a reduction of 46.5% was observed. Further, the stability of the xylanase was higher in hydrophobic solvents where a maximum stability was observed with cyclohexane. These properties make this enzyme to be highly thermostable and may be suggested as a potential candidate for application in some industrial processes. To the best of our knowledge, this is the first report of xylanase activity and recoverey using three phase partitioning from B. oceanisediminis.

  • Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation
    Yusuke Asai, Morio Miyahara, Atsushi Kouzuma, Kazuya Watanabe

    Microbial fuel cells (MFCs) are devices that exploit living microbes for electricity generation coupled to organics degradation. MFCs are expected to be applied to energy-saving wastewater treatment (WWT) as alternatives to activated-sludge reactors (ASRs). Although extensive laboratory studies have been performed to develop technologies for WWT-MFCs, limited information is available for comparative evaluation of MFCs and ASRs in terms of organics removal and waste-sludge production. In the present study, laboratory WWT experiments were performed using cassette-electrode MFCs and ASRs that were continuously supplied either with artificial domestic wastewater (ADW) containing starch and peptone or with artificial industrial wastewater (AIW) containing methanol as the major organic matter. We found that these two types of WWT reactors achieved similar organics-removal efficiencies, namely, over 93% based on chemical oxygen demands for the ADW treatment and over 97% for the AIW treatment. Sludge was routinely removed from these reactors and quantified, showing that amounts of waste sludge produced in MFCs were approximately one-third or less compared to those in ASRs. During WWT, MFCs continuously generated electricity with Coulombic efficiencies of 20% or more. In reference to ASRs, MFCs are demonstrated to be attractive WWT facilities in terms of stable organics removal and low waste-sludge production. Along with the unnecessity of electric power for aeration and the generation of power during WWT, the results obtained in the present study suggest that MFCs enable substantial energy saving during WWT.

  • Chao-Qun Ding, Kun-Rong Li, Yun-Xia Duan, Shi-Ru Jia, He-Xin Lv, He Bai, Cheng Zhong
    Background

    Enrichment culture was applied to obtain microbial consortium from activated sludge samples collected from biodegradation system, a chemical fiber plant in Hebei Province, China. Bacterial composition and community dynamic variation were assessed employing denaturing gradient gel electrophoresis fingerprinting technology based on amplified 16S rRNA genes in the entire process of enrichment culture for viscose fiber wastewater.

    Results

    Four bacteria named as VF01, VF02, VF03, and VF04 were isolated from the microbial consortium adopting the spray-plate method. The DNA bands of these four bacteria were corresponded to the predominant DNA bands in the electrophoresis pattern. VF01, VF02, VF03, and VF04 were phylogenetically closed to Bacillus licheniformis, Bacillus subtilis, Paracoccus tibetensis, and Pseudomonas sp. by sequence analysis, respectively. The degradation effects for CODCr of single isolated strain, mixed strains, and microbial consortium (VF) originally screened from viscose fiber wastewater were determined. The degradation ability was as follows: microbial consortium (VF) > mixed strains > single isolated strain. Microbial consortium (VF) showed the optimum degradation rate of CODCr of 87% on 14th day. Degradation of pollutants sped up by bio-augmentation of four strains. The molecular weight distribution of organic matter showed that viscose fiber wastewater contained a certain amount of large molecular organic matter, which could be decomposed into smaller molecular substances by microbial consortium (VF).

    Conclusions

    The microbial consortium (VF) obtained from enrichment culture exhibited great potential for CODCr degradation. The screened strains had bio-augmentation functions and the addition of a mixture of four bacteria could speed up the degradation rate of pollutants.

  • Mycoremediation potential of Pleurotus species for heavy metals: a review
    Meena Kapahi, Sarita Sachdeva

    Mycoremediation is one of the biotechniques that recruits fungi to remove toxic pollutants from environment in an efficient and economical manner. Mushrooms, macro-fungi, are among the nature’s most important mycoremediators. Pleurotus species (also called oyster mushrooms) are considered to be the most popular and widely cultivated varieties worldwide and this might be attributed to their low production cost and higher yields. Apart from their nutritive and therapeutic properties, Pleurotus species have high biosorption potential due to their extensive biomass, i.e. mycelial production. The genus has been reported to accumulate high levels of heavy metals. The current state-of-the art review mainly summarises previous investigations carried out by researchers on different roles and mechanisms played by Pleurotus species on heavy metals mycoremediation.

  • Microbial transformation of artemisinin by Aspergillus terreus
    Hongchang Yu, Baowu Zhu, Yulian Zhan
    Background

    Artemisinin (1) and its derivatives are now being widely used as antimalarial drugs, and they also exhibited good antitumor activities. So there has been much interest in the structural modification of artemisinin and its derivatives because of their effective bioactivities. The microbial transformation is a promising route to obtain artemisinin derivatives. The present study focuses on the microbial transformation of artemisinin by Aspergillus terreus.

    Results

    During 6 days at 28 °C and 180 rpm, Aspergillus terreus transformed artemisinin to two products. They were identified as 1-deoxyartemisinin (2) and 4α-hydroxy-1-deoxyartemisinin (3) on the basis of their spectroscopic data.

    Conclusions

    The microbial transformation of artemisinin by Aspergillus terreus was investigated, and two products (1-deoxyartemisinin and 4α-hydroxy-1-deoxyartemisinin) were obtained. This study is the first to report on the microbial transformation of artemisinin by Aspergillus terreus.

  • Recent progress on deep eutectic solvents in biocatalysis
    Pei Xu, Gao-Wei Zheng, Min-Hua Zong, Ning Li, Wen-Yong Lou

    Deep eutectic solvents (DESs) are eutectic mixtures of salts and hydrogen bond donors with melting points low enough to be used as solvents. DESs have proved to be a good alternative to traditional organic solvents and ionic liquids (ILs) in many biocatalytic processes. Apart from the benign characteristics similar to those of ILs (e.g., low volatility, low inflammability and low melting point), DESs have their unique merits of easy preparation and low cost owing to their renewable and available raw materials. To better apply such solvents in green and sustainable chemistry, this review firstly describes some basic properties, mainly the toxicity and biodegradability of DESs. Secondly, it presents several valuable applications of DES as solvent/co-solvent in biocatalytic reactions, such as lipase-catalyzed transesterification and ester hydrolysis reactions. The roles, serving as extractive reagent for an enzymatic product and pretreatment solvent of enzymatic biomass hydrolysis, are also discussed. Further understanding how DESs affect biocatalytic reaction will facilitate the design of novel solvents and contribute to the discovery of new reactions in these solvents.

  • Daobing Yu, Yanke Shi, Qun Wang, Xin Zhang, Yuhua Zhao
    Background

    Agricultural waste is as an alternative low-cost carbon source or beneficial additives which catch most people’s eyes. In addition, methanol and sweet potato vine hydrolysate (SVH) have been reported as the efficient enhancers of fermentation according to some reports. The objective of the present study was to confirm SVH as an efficient additive in CA production and explore the synergistic effects of methanol and SVH in fermentation reactions.

    Results

    The optimal fermentation conditions resulted in a maximum citric acid concentration of 3.729 g/L. The final citric acid concentration under the optimized conditions was increased by 3.6-fold over the original conditions, 0.49-fold over the optimized conditions without methanol, and 1.8-fold over the optimized conditions in the absence of SVH. Kinetic analysis showed that Qp, Yp/s, and Yx/s in the optimized systems were significantly improved compared with those obtained in the absence of methanol or SVH. Further, scanning electron microscopy (SEM) revealed that methanol stress promoted the formation of conidiophores, while SVH could neutralize the effect and prolong Aspergillus niger vegetative growth. Cell viability analysis also showed that SVH might eliminate the harmful effects of methanol and enhance cell membrane integrity.

    Conclusions

    SVH was a superior additive for organic acid fermentation, and the combination of methanol and SVH displayed a significant synergistic effect. The research provides a preliminary theoretical basis for SVH practical application in the fermentation industry.

  • Qiao Yu, Yong Wang, Shengyun Zhao, Yuhong Ren
    Background

    Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein–protein dimerization.

    Results

    Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli. Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity.

    Conclusions

    An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.

  • Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP)
    Ying Jiang, Yue-Peng Shang, Hao Li, Chao Zhang, Jiang Pan, Yun-Peng Bai, Chun-Xiu Li, Jian-He Xu
    Objectives

    To improve the fermentation production of transglutaminase (TGase) from Streptomyces mobaraensis for applications in the food industry, the atmospheric and room-temperature plasma (ARTP) mutagenesis was applied to breed S. mobaraensis mutants with increased TGase production.

    Results

    After eight rounds of iterative ARTP mutagenesis, four genetically stable mutants, Sm5-V1, Sm6-V13, Sm2-V10, and Sm7-V12, were identified, which showed increased TGase production by 27, 24, 24, and 19%, respectively. The best mutant Sm5-V1 exhibited a maximum TGase activity of 5.85 U/mL during flask fermentation. Compared to the wild-type strain, the transcription levels of the zymogen TGase genes in the mutants increased significantly as indicated by quantitative real-time PCR, while the gene nucleotide sequences of the mutants did not change at all. It was shown that the overexpression of TGase zymogen gene in the mutants contributes to the increase in TGase production.

    Conclusions

    ARTP is a potentially efficient tool for microbial mutation breeding to bring some significant changes required for the industrial applications.

  • Ankita Juneja, Deepak Kumar, Vijay Singh

    Corn fractionation in modified dry grind processes results in low fermentation efficiency of corn grits because of nutrient deficiency. This study investigated the use of nutrient-rich water from germ soaking to improve grits fermentation in the conventional dry grind and granular starch hydrolysis (GSH) processes. Comparison of germ soak water with the use of protease and external B-vitamin addition in improving grits fermentation was conducted. Use of water from optimum soaking conditions (12 h at 30 °C) resulted in complete fermentation with 29 and 8% higher final ethanol yields compared to that of control in conventional and GSH process, respectively. Fermentation rate (4–24 h) of corn grits with germ soak water (0.492 v/v-h) was more than double than that of control (0.208 v/v-h) in case of conventional dry grind process. The soaking process also increased the oil concentration in the germ by about 36%, which would enhance its economic value.

  • Enzymatic characterization of a recombinant carbonyl reductase from Acetobacter sp. CCTCC M209061
    Ping Wei, Yu-Han Cui, Min-Hua Zong, Pei Xu, Jian Zhou, Wen-Yong Lou
    Background

    Acetobacter sp. CCTCC M209061 could catalyze carbonyl compounds to chiral alcohols following anti-Prelog rule with excellent enantioselectivity. Therefore, the enzymatic characterization of carbonyl reductase (CR) from Acetobacter sp. CCTCC M209061 needs to be investigated.

    Results

    A CR from Acetobacter sp. CCTCC M209061 (AcCR) was cloned and expressed in E. coli. AcCR was purified and characterized, finding that AcCR as a dual coenzyme-dependent short-chain dehydrogenase/reductase (SDR) was more preferred to NADH for biocatalytic reactions. The AcCR was activated and stable when the temperature was under 35 °C and the pH range was from 6.0 to 8.0 for the reduction of 4′-chloroacetophenone with NADH as coenzyme, and the optimal temperature and pH were 45 °C and 8.5, respectively, for the oxidation reaction of isopropanol with NAD+. The enzyme showed moderate thermostability with half-lives of 25.75 h at 35 °C and 13.93 h at 45 °C, respectively. Moreover, the AcCR has broad substrate specificity to a range of ketones and ketoesters, and could catalyze to produce chiral alcohol with e.e. >99% for the majority of tested substrates following the anti-Prelog rule.

    Conclusions

    The recombinant AcCR exhibited excellent enantioselectivity, broad substrate spectrum, and highly stereoselective anti-Prelog reduction of prochiral ketones. These results suggest that AcCR is a powerful catalyst for the production of anti-Prelog alcohols.

  • Miao Hou, Haotian Zhao, Yi Feng, Jun Ge
    Objectives

    This report explores the possibility of synthesizing enzyme–metal–organic framework (MOF) composites by ink-jet printing.

    Results

    This study demonstrates that the direct synthesis of patterned enzyme–metal–organic framework (MOF) composites on various substrates including paper and polymeric films can be readily achieved by ink-jet printing bio-inks containing protein molecules, metal ions, and organic ligands loaded, respectively, in different cartridges. The formed Cytochrome c (Cyt c)–MOF composites on filter paper by ink-jet printing can be used for rapid detection of hydrogen peroxide in solution.

    Conclusions

    This technique opens possibilities of scalable, controllable, and designable fabrication of functional protein–MOF hybrid surface with promising applications in future bio-related application fields such as biosensing, wearable bioelectronics, artificial biomimetic membranes, and tissue engineering.

  • Xiaolu Wang, Yu Wang, Jiao Liu, Qinggang Li, Zhidan Zhang, Ping Zheng, Fuping Lu, Jibin Sun
    Background

    Methanol is regarded as a biorenewable platform feedstock because nearly all bioresources can be converted into methanol through syngas. Biological conversion of methanol using synthetic methylotrophs has thus gained worldwide attention.

    Results

    Herein, to endow Escherichia coli with the ability to utilize methanol, an artificial linear methanol assimilation pathway was assembled in vivo for the first time. Distinct from native cyclic methanol utilization pathways, such as ribulose monophosphate cycle, the linear pathway requires no formaldehyde acceptor and only consists of two enzymatic reactions: oxidation of methanol into formaldehyde by methanol dehydrogenase and carboligation of formaldehyde into dihydroxyacetone by formolase. After pathway engineering, genome replication engineering assisted continuous evolution was applied to improve methanol utilization. 13C-methanol-labeling experiments showed that the engineered and evolved E. coli assimilated methanol into biomass.

    Conclusions

    This study demonstrates the usability of the linear methanol assimilation pathway in bioconversion of C1 resources such as methanol and methane.

  • U. Jadhav, C. Su, M. Chakankar, H. Hocheng
    Background

    The replacement of lead (Pb)-bearing solders by several Pb-free solders is a subject of intense research in these days due to the toxic effects of Pb on the environment. However, the Pb-free solders contain metals such as silver (Ag), copper (Cu), and zinc (Zn). The increasing use of these Pb-free solders again increases the risk of release of Ag, Cu, and Zn metals into the environment. The Pb-free solders can, therefore, be used as a secondary source for the metals which will not only help in environmental protection but also for the resource recovery.

    Results

    This study reports a process to leach metals from hazardous soldering materials by acetic acid. Acetic acid was found more effective for metal recovery from the tin–copper (Sn–Cu) solder than tin–copper–silver (Sn–Cu–Ag) solder. Various process parameters were optimized for recovery of metals from Sn–Cu solder. It required 30 h for 100% recovery of Cu and Sn, respectively. The metal recovery increased gradually with an increase in acid concentration approaching complete recovery at an acid concentration of 80%. Effect of shaking speed and temperature on the recovery of metals from Sn–Cu solder was studied. The metal recovery decreased with an increase in solder weight.

    Conclusion

    The present study reveals an effective process to recycle the Pb-free solders. The low concentration of acetic acid was also found significant for metal leaching from solder. The research provides basic knowledge for recovery of metals from Pb-free solders.

  • Goat dung as a feedstock for hyper-production of amylase from Glutamicibacter arilaitensis strain ALA4
    Chirom Aarti, Ameer Khusro, Paul Agastian
    Background

    In modern times, bacteria-associated products; especially enzymes are gaining immense interest among worldwide researchers. Among several enzymes, amylases are of great significance in bioprocess engineering. This investigation was aimed to optimize the amylase production from Glutamicibacter arilaitensis strain ALA4 using goat dung as an inexpensive substrate in solid-state fermentation.

    Results

    Amylase production was initially improved by optimizing physical factors and medium components by one factor at a time method. Two-level full factorial design (25 factorial matrix) was applied to screen the selected variables using first-order polynomial model. Parameters such as incubation temperature, moisture, starch, and yeast extract affected the amylase activity significantly (P < 0.05). Central composite design at N = 30 was further employed to evaluate the optimum levels of these variables by a second-order polynomial equation. Maximal amylase activity of 4572.53 ± 41.71 U/g was estimated in the goat dung medium supplemented with 100% moisture, 1% (w/w) starch, and 1% (w/w) yeast extract, being incubated at 40 °C. The optimized parameters revealed approximately twofold increment in the amylase yield (R 2 0.9169) with respect to the original medium. The amylase showed stability at high pH and temperature up to 4 h of incubation with residual activities of 52.32 ± 2.2 and 46.12 ± 3.3%, respectively. Additionally, the enzyme revealed resistant property not only towards various metal ions and organic solvents but also surfactants and inhibitors. Most importantly, the amylases obtained from strain ALA4 depicted remarkable tolerance to commercially available various detergents.

    Conclusions

    This study reports first reference on the hyper-production of amylase from G. arilaitensis using goat dung as the low-cost agro-waste medium. G. arilaitensis strain ALA4 may be utilized for wide spread applications in several bioprocess industries due to the high stability of its amylase towards diversified pH, temperature, solvents, surfactants, and detergents.

  • Yu-fei Sui, Li-ming Ouyang, Ju Chu, Wei-qiang Cao, Li-feng liang, Ying-ping Zhuang, Shu Cheng, Henk Norrman, Si-liang Zhang, Geng-yun zhang
    Background

    In the phase of oxygen limitation during Aspergillus niger fermentation, the cell growth decreased, while the yield of glucoamylase increased continuously and significantly. Explanation on the changes of transcriptome profile during this process may improve our understanding on mechanisms of cell adaption and enzyme production in A. niger.

    Results

    The transcriptomic data from 4 time points in oxygen limitation process of a glucoamylase production A. niger strain were analyzed. Hierarchical clustering of all samples showed that the strongest transcriptional response occurred between the early and middle stage of oxygen limitation. 515 differentially expressed genes (DEGs) were identified and were clustered into 12 expression patterns. Continuously down-regulated DEGs were significantly enriched in GO terms of the ribosome, translation, and aminoacyl-tRNA biosynthesis, and continuously up-regulated DEGs were mainly involved in GO terms of fatty acid catabolism, N-acetyltransferase activity, lipase activity, and carboxylesterase activity. Pyruvate kinase and asparagine synthetase which related to the biosynthesis of the main amino acid composition of the enzyme were significantly up-regulated. Sterol-regulatory element-binding proteins (SREBP) transcription factor SrbB was one of the most up-regulated proteins, indicating its important roles in hypoxia fermentation of A. niger.

    Conclusion

    Comparative transcriptome data analysis of the fermentation revealed that the overall reduced biosynthesis of translation machine and fatty acid, acceleration of fatty acid catabolism, and increased synthesis of main amino acid compositions of glucoamylase are the key transcriptional changes during the oxygen limitation fermentation process of A. niger.

  • Ionic liquid-based enzyme-assisted extraction of chlorogenic acid from Flos Lonicera Japonicae
    Yang Sun, Song Ding, He Huang, Yi Hu
    Background

    In recent years, ionic liquids and enzymes have been widely used in the separation and extraction processes of natural products. Chlorogenic acid (CGA) has important biological and pharmacological activities. It is significant to develop a green and efficient method to extract GCA from Flos Lonicera japonica (FLJ) by integrating the advantages of the ionic liquids and enzymes.

    Results

    The optimal type of enzyme and ionic liquid was screened. Pectinase in [C6mim] Br aqueous phase was demonstrated to be an ideal combination. The parameters including extraction time, extraction temperature, pH, enzyme amount, and IL concentration were optimized systematically. Scanning electronic microscopy of FLJ samples demonstrated that pectinase and ionic liquid disposal both obviously facilitated the extraction process by destroying the structure of cell wall. Circular dichroism spectroscopy showed that ionic liquid enhanced the activity of the pectinase by altering its secondary structure.

    Conclusions

    Compared with previous reported methods, ionic liquid-based enzyme-assisted extraction of GCA from FLJ was proved to be efficient and practical, offering a higher yield in a shorter time. A novel process was proposed for the extraction of active component from natural resources.

  • He Zhu, Chenba Zhu, Longyan Cheng, Zhanyou Chi
    Background

    Mixing in traditional algae culture system consumes intensive electricity. This should be replaced by nature force to reduce energy cost and, more importantly, to realize positive energy balance of algal biofuel production. This study aims to develop a horizontal photobioreactor, in which mixing can be provided with rocking movement driven by nature force.

    Results

    Simple boxes were used as small-scale horizontal photobioreactors on a rocking platform for culture of alkalihalophilic Euhalothece sp. ZM001. There was no CO2 gas bubbling since 1.0 M NaHCO3 supplied sufficient inorganic carbon in it. Effect of culture depth, rocking cycle, and light intensity to algal biomass production, pH change, and DO accumulation were investigated in this system. Biomass concentration of 2.73 g/L was achieved in culture with 2.5 cm depth, and maximum productivity of 17.06 g/m2/day was obtained in culture with 10 cm depth. kLa in PBR with different culture depths and rocking cycles was measured, and it was from 0.57 to 33.49 h−1, showing great variation. To test this system at large scale, a plastic bag with a surface area of 1 m2 was placed on a rocking platform driven by water power, and it resulted in a biomass concentration of 1.88 g/L.

    Conclusion

    These results proved feasibility of a novel photobioreactor system driven by nature force, as well as low cost of manufacturing, and easy scaling-up.

  • Characterization and overexpression of a novel keratinase from Bacillus polyfermenticus B4 in recombinant Bacillus subtilis
    Yu-Ze Dong, Wen-Shous Chang, Po Ting Chen
    Background

    Keratins, insoluble proteins with a robust structure, are a major component of epidermal tissue and appendages such as hair, feathers, nails, and walls. Keratinous waste mainly emanates from poultry and leather industries, thereby severely contaminating the environment. Keratinase can lyse proteins with robust cross-linked structures, such as keratin, and can hence be used in animal feed, fertilizer, detergent, leather, pharmaceutical, and cosmetic industries. Bacillus polyfermenticus B4, isolated from feather compost, secretes keratinase to metabolize feathers. Hence, this study aimed to investigate the enzymatic characteristics and recombinant production of keratinase from B. polyfermenticus B4.

    Methods

    A novel keratinase KerP was isolated from B. polyfermenticus B4 and overexpressed in B. subtilis PT5, via the T7 promoter.

    Results

    The highest keratinolytic activity of recombinant KerP was observed at pH 9.0 and 60 °C. Enzyme activity was enhanced with Fe2+, Mn2+, and SDS, and inhibited by Zn2+, Ni2+, EDTA, PMSF, and β-mercaptoethanol. KerP production was the highest at 473 ± 20 U/mL with B. subtilis aprE signal peptide using LB broth.

    Conclusions

    The novel keratinase KerP has potential industrial applications, particularly in the treatment of keratinous waste.

  • Identification of bacterial laccase cueO mutation from the metagenome of chemical plant sludge
    Qingxia Yue, Yunxia Yang, Jintong Zhao, Lijie Zhang, Li Xu, Xiaoyu Chu, Xiaoqing Liu, Jian Tian, Ningfeng Wu
    Background

    The metagenome contains plenty of genetic resources and can be used to search for the novel gene or mutant.

    Results

    In this study, the bacterial laccase gene (cueO) with single or multiple mutations was directly cloned based on the metagenome of a chemical plant sludge. An interesting mutation (G276R) was identified from those cloned mutants. The other mutants (G276N, G276Y, and G276K) with improved catalytic efficiency were identified by the saturation mutagenesis on residue G276. The optimal temperature for wild-type CueO enzyme activity was about 70 °C, compared to 60 °C, 50 °C, 50 °C, and 30 °C for the G276R, G276N, G276Y, and G276K mutant enzymes, respectively. The catalytic efficiency (kcat/Km) with 8 mmol Cu2+ of the G276R, G276N, G276Y, and G276K mutants was 1.2-, 2.7-, 1.3-, and 2.7-fold, respectively, compared to the wild-type enzyme. In addition, the mutants G276R, G276N, G276Y, and G276K oxidized the carcinogen benzo[α]pyrene more efficiently compared to the wild-type enzyme.

    Conclusion

    All of the results indicate that G276 of CueO plays an important role in enzyme activity, and the useful mutants can be identified based on the metagenome.

  • Li-Yang Liu, Jin-Cheng Qin, Kai Li, Muhammad Aamer Mehmood, Chen-Guang Liu
    Background

    Lignocellulose originating from renewable and sustainable biomass is a promising alternative resource to produce biofuel. However, the complex component, especially high moisture content, leads to a higher cost of transportation and processing. The instant catapult steam explosion (ICSE) pretreatment can exploit the intracellular water of lignocellulosic materials and convert into vapors leading towards the breakdown of the feedstock during the explosion process. However, it is necessary to study the impact of moisture content on the pretreatment.

    Results

    The sugar yield of wet feedstock after ICSE pretreatment reached 88.05%, which was higher when compared to dried and untreated biomass. The utilization of wet feedstock decreased the production of inhibitor and improved the carbohydrate content in ICSE-treated biomass. There occurred a shrinkage of feedstock after drying process and the mechanical breakage upon ICSE pretreatment. Moreover, not all water was converted into vapor to cause breakage in the lignocellulose.

    Conclusion

    ICSE has shown to be preferably suitable to pretreat wet sweet potato vine with high moisture content, either fresh or soaked biomass that has been dried before. By using these materials, it would have a higher sugar yield and lower inhibitor production after pretreatment. Based on these advantaged aspects of ICSE platform, two potential strategies are proposed to improve the economic and environmental impacts of pretreatment.

  • Jhe-Wei Wu, I-Son Ng
    Background

    Shewanella oneidensis MR-1 (MR-1) and Shewanella xiamenensis BC01 (SXM) are facultative anaerobic bacteria that exhibit outstanding performance in the dissimilatory reduction of metal ions. Shewanella species have been reported to produce metal nanoparticles, but the mechanism and optimization are still not extensively studied and clearly understood. Herein, the effects of pH, biomass, gold ion concentration, and photoinduction are evaluated to optimize gold nanoparticle (Au@NP) production by Shewanella.

    Results

    The highest amount of Au@NPs produced by SXM and MR-1 were 108 and 62 ppm, respectively, at pH 5 when 2.4 g/L biomass was immersed in 300 ppm gold ions and 50 mM lactate under a light intensity of 100 µmol/m2/s. By scanning election microscopy and zeta potential analysis, the proposed mechanism of Au@NP formation was that Shewanella used lactate as electron donors for the Mtr pathway, stimulated by photosensitive proteins resulting in the nucleation of NPs on the cell membrane. Besides, the resting cells retained the ability for biofabrication of nanoparticles for nearly 25 days.

    Conclusions

    The optimal conditions evaluated for Au@NPs production by Shewanella were biomass, pH, ions concentration, and photoinduction. To the best of our knowledge, this is the first attempt to explore a two-step mechanism for Au@NPs formation in Shewanella. First, the HAuCl4 solution reacted with sodium lactate to form metallic gold ions. Second, the metallic gold ions were adsorbed onto the outer membrane of cell, and the formation of Au@NPs at the surface was triggered. Shewanella-based Au@NPs production could be a potential ecofriendly solution for the recovery of Au ions from secondary resources like industrial waste.

  • Reconstruction of genome-scale metabolic model of Yarrowia lipolytica and its application in overproduction of triacylglycerol
    Songsong Wei, Xingxing Jian, Jun Chen, Cheng Zhang, Qiang Hua
    Background

    Yarrowia lipolytica is widely studied as a non-conventional model yeast owing to the high level of lipid accumulation. Therein, triacylglycerol (TAG) is a major component of liposome. In order to investigate the TAG biosynthesis mechanism at a systematic level, a novel genome-scale metabolic model of Y. lipolytica was reconstructed based on a previous model iYL619_PCP published by our lab and another model iYali4 published by Kerkhoven et al.

    Results

    The novel model iYL_2.0 contains 645 genes, 1083 metabolites, and 1471 reactions, which was validated more effective on simulations of specific growth rate. The precision of 29 carbon sources utilities reached up to 96.6% when simulated by iYL_2.0. In minimal growth medium, 111 genes were identified as essential for cell growth, whereas 66 essential genes were identified in yeast extract medium, which were verified by database of essential genes, suggesting a better prediction ability of iYL_2.0 in comparison with other existing models. In addition, potential metabolic engineering targets of improving TAG production were predicted by three in silico methods developed in-house, and the effects of amino acids supplementation were investigated based on model iYL_2.0.

    Conclusions

    The reconstructed model iYL_2.0 is a powerful platform for efficiently optimizing the metabolism of TAG and systematically understanding the physiological mechanism of Y. lipolytica.

  • Haiyue Yang, Yazhou Wang, Zhuangchao Liu, Daxin Liang, Feng Liu, Wenbo Zhang, Xin Di, Chengyu Wang, Shih-Hsin Ho, Wei-Hsin Chen
    Background

    With the current rapid economic growth, demands for energy are progressively increasing. Energy shortages have attracted significant attention due to the shrinking availability of non-renewable resources. Therefore, thermal energy storage is one of the solutions that lead to saving of fossil fuels and make systems more cost-effective by the storage of wasted thermal energy. In particular, the application of phase change materials (PCMs) is considered as an effective and efficient approach to thermal energy storage because of the high latent heat storage capacity at small temperature intervals. Nevertheless, leakage problems and low thermal conductivity limit the practical applications of PCMs. Therefore, form-stable phase change materials with high thermal conductivity are urgently needed.

    Results

    A novel form-stable composite phase change material was prepared by incorporating PEG into waste sawdust with 5% EG. In the composites, PEG served as a phase change material, while waste sawdust acted as a carrier matrix. EG was added to help increase the thermal conductivity of the composites. The melting temperature of CPCMs-4 with 5% EG was found to be 58.6 °C with a phase change enthalpy of 145.3 kJ/kg, while the solidifying temperature was 48.5 °C with a phase change enthalpy of 131.4 kJ/kg. The thermal conductivity of CPCMs-4 with 5% EG increased by 23.8% compared with that of CPCMs-4. Moreover, no obvious changes in melting, solidifying temperature, or latent heat after 200 heating–cooling cycles were detected. The supercooling extent of CPCMs-4 with 5% EG decreased by 19.2% compared with PEG. The volume change properties and wettability properties of CPCMs-4 with 5% EG are suitable for thermal energy in terms of practical application.

    Conclusions

    The prepared composites have excellent thermal and form-stable properties and they can be recognized as potential candidates for thermal energy storage as form-stable composite phase change materials. Using simple impregnation techniques with waste sawdust as a supporting material, this study demonstrates an innovative technology for practically and markedly enhancing the adsorption capacity of phase change materials.

  • Electron transport phenomena of electroactive bacteria in microbial fuel cells: a review of Proteus hauseri
    I-Son Ng, Chung-Chuan Hsueh, Bor-Yann Chen

    This review tended to decipher the expression of electron transfer capability (e.g., biofilm formation, electron shuttles, swarming motility, dye decolorization, bioelectricity generation) to microbial fuel cells (MFCs). As mixed culture were known to perform better than pure microbial cultures for optimal expression of electrochemically stable activities to pollutant degradation and bioenergy recycling, Proteus hauseri isolated as a “keystone species” to maintain such ecologically stable potential for power generation in MFCs was characterized. P. hauseri expressed outstanding performance of electron transfer (ET)-associated characteristics [e.g., reductive decolorization (RD) and bioelectricity generation (BG)] for electrochemically steered bioremediation even though it is not a nanowire-generating bacterium. This review tended to uncover taxonomic classification, genetic or genomic characteristics, enzymatic functions, and bioelectricity-generating capabilities of Proteus spp. with perspectives for electrochemical practicability. As a matter of fact, using MFCs as a tool to evaluate ET capabilities, dye decolorizer(s) could clearly express excellent performance of simultaneous bioelectricity generation and reductive decolorization (SBG and RD) due to feedback catalysis of residual decolorized metabolites (DMs) as electron shuttles (ESs). Moreover, the presence of reduced intermediates of nitroaromatics or DMs as ESs could synergistically augment efficiency of reductive decolorization and power generation. With swarming mobility, P. hauseri could own significant biofilm-forming capability to sustain ecologically stable consortia for RD and BG. This mini-review evidently provided lost episodes of great significance about bioenergy-steered applications in myriads of fields (e.g., biodegradation, biorefinery, and electro-fermentation).

  • Deepak Kumar, Ganti S. Murthy
    Background

    Cellulose is hydrolyzed to sugar monomers by the synergistic action of multiple cellulase enzymes: endo-β-1,4-glucanase, exo-β-1,4 cellobiohydrolase, and β-glucosidase. Realistic modeling of this process for various substrates, enzyme combinations, and operating conditions poses severe challenges. A mechanistic hydrolysis model was developed using stochastic molecular modeling approach. Cellulose structure was modeled as a cluster of microfibrils, where each microfibril consisted of several elementary fibrils, and each elementary fibril was represented as three-dimensional matrices of glucose molecules. Using this in-silico model of cellulose substrate, multiple enzyme actions represented by discrete hydrolysis events were modeled using Monte Carlo simulation technique. In this work, the previous model was modified, mainly to incorporate simultaneous action enzymes from multiple classes at any instant of time to account for the enzyme crowding effect, a critical phenomenon during hydrolysis process. Some other modifications were made to capture more realistic expected interactions during hydrolysis. The results were validated with experimental data of pure cellulose (Avicel, filter paper, and cotton) hydrolysis using purified enzymes from Trichoderma reesei for various hydrolysis conditions.

    Results

    Hydrolysis results predicted by model simulations showed a good fit with the experimental data under all hydrolysis conditions. Current model resulted in more accurate predictions of sugar concentrations compared to previous version of the model. Model results also successfully simulated experimentally observed trends, such as product inhibition, low cellobiohydrolase activity on high DP substrates, low endoglucanases activity on a crystalline substrate, and inverse relationship between the degree of synergism and substrate degree of polymerization emerged naturally from the model.

    Conclusions

    Model simulations were in qualitative and quantitative agreement with experimental data from hydrolysis of various pure cellulose substrates by action of individual as well as multiple cellulases.

  • Influence of initial glucose concentration on seed culture of sodium gluconate production by Aspergillus niger
    Xiu Liu, Xiwei Tian, Haifeng Hang, Wei Zhao, Yonghong Wang, Ju Chu
    Background

    In general, high-quality seed is the prerequisite of an efficient bioprocess. However, in terms of sodium gluconate production by Aspergillus niger, reports have seldom focused on seed culture with rational optimization by process analysis technology, especially for carbon source effects. In this study, based on the online physiological parameter of oxygen uptake rate (OUR), and intracellular metabolite profiling, as well as cell morphology analysis, the effects of different initial glucose concentrations on seed culture by A. niger were investigated.

    Results

    The optimum initial glucose concentration was 300 g/L, corresponding to 1900 mOsm/kg, with OUR level about 70% higher than other conditions. Besides, the cells from optimized seed culture accumulated more osmoprotectants of alanine and glutamate. Interestingly, high glucose concentration could induce glucose oxidase (GOD) activity possibly by affecting the synthesis of histidine, one key component of active site of GOD. Prominently, the fermentation yield using the optimized seed culture was up to 1.198 g/g, 99% of the theoretical value, which was the best in literature.

    Conclusion

    The initial glucose concentration appropriately 300 g/L in seed cultivation was determined to be the most optimal. Further, this study would be helpful for guiding sodium gluconate production on industrial scale.

  • Magnetic ZIF-8/cellulose/Fe3O4 nanocomposite: preparation, characterization, and enzyme immobilization
    Shi-Lin Cao, Hong Xu, Lin-Hao Lai, Wei-Ming Gu, Pei Xu, Jun Xiong, Hang Yin, Xue-Hui Li, Yong-Zheng Ma, Jian Zhou, Min-Hua Zong, Wen-Yong Lou
    Background

    The ZIF-8-coated magnetic regenerated cellulose-coated nanoparticles (ZIF-8@cellu@Fe3O4) were successfully prepared and characterized. The result showed that ZIF-8 was successfully composited on to the surface of the cellulose-coated Fe3O4 nanoparticles by co-precipitation method. Moreover, the glucose oxidase (GOx, from Aspergillus niger) was efficiently immobilized by the ZIF-8@Cellu@Fe3O4 nanocarriers with enhanced catalytic activities. The enzyme loading was 94.26 mg/g and the enzyme activity recovery was more than 124.2%. This efficiently immobilized enzyme exhibits promising applications in biotechnology, diagnosis, biosensing, and biomedical devices.

    Conclusions

    A new core–shell magnetic ZIF-8/cellulose nanocomposite (ZIF-8@Cellu@Fe3O4) was fabricated and structurally characterized. Glucose oxidase (GOx) was successfully immobilized by the biocompatible ZIF-8@Cellu@Fe3O4 with high protein loading (94.26 mg/g) and enhanced relative activity recovery (124.2%).