Hydrolysis of carotenoid esters from Tagetes erecta by the action of lipases from Yarrowia lipolytica

Abraham Figueiras Abdala , Alfonso Pérez Gallardo , Lorenzo Guevara Olvera , Eleazar Máximo Escamilla Silva

Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 5

PDF
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 5 DOI: 10.1186/s40643-016-0131-7
Research

Hydrolysis of carotenoid esters from Tagetes erecta by the action of lipases from Yarrowia lipolytica

Author information +
History +
PDF

Abstract

The present study was conducted to evaluate the feasibility of enzymatic hydrolysis of carotenoid esters from Tagetes erecta using lipases from the yeast of Yarrowia lipolytica, with the aim of obtaining free lutein. The optimal concentrations of seven nutrients, considering the production of lipases relative to biomass (Yp/x) as the response variable, were determined in flask fermentations. In addition, we studied the effect on hydrolysis of growing Y. lipolytica in the presence of the oleoresin of the marigold flower in flask and stirred tank. Furthermore, hydrolysis of the oleoresin using the lipases from this microorganism was compared with the hydrolysis using lipases from Rhizopus oryzae. Cultured in the presence of marigold oleoresin, Y. lipolytica showed an increase in free carotenoids of 12.41% in flask and 8.8% in stirred tank, representing a fourfold and a threefold increase compared to the initial value in the fermentation, respectively. When lipases from the supernatant from both microorganisms were used for only 14 h hydrolysis experiments, a slight increase was achieved compared to a blank. We concluded that carotenoid esters of the oleoresin could not be completely hydrolyzed in 14 h by these lipases, but that growing Y. lipolytica in the presence of marigold oleoresin gives until fourfold production of free carotenoids in 72 h fermentations.

Keywords

Yarrowia lipolytica / Tagetes erecta / Enzymatic hydrolysis / Carotenoid esters / Free lutein

Cite this article

Download citation ▾
Abraham Figueiras Abdala, Alfonso Pérez Gallardo, Lorenzo Guevara Olvera, Eleazar Máximo Escamilla Silva. Hydrolysis of carotenoid esters from Tagetes erecta by the action of lipases from Yarrowia lipolytica. Bioresources and Bioprocessing, 2017, 4(1): 5 DOI:10.1186/s40643-016-0131-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aakermann T, Hertzberg S, Liaaen-Jensen S. Enzymatic hydrolysis of esters of alkali labile carotenols. Biocatal Biotransform, 1996, 13(3): 157-163.

[2]

Alonso FOM, Oliveira EBL, Dellamora-Ortiz GM, Pereira-Meirelles FV. Improvement of lipase production at different stirring speeds and oxygen levels. Braz J Chem Eng, 2005, 22(1): 9-18.

[3]

Barzana E, Rubio D, Santamaria RI, Garcia-Correa O, Garcia F, Ridaura Sanz VE, Lopez-Munguia A. Enzyme-mediated solvent extraction of carotenoids from marigold flower (Tagetes erecta). J Agric Food Chem, 2002, 50(16): 4491-4496.

[4]

Benitez-Garcia I, Emilio Vanegas-Espinoza P, Melendez-Martinez AJ, Heredia FJ, Paredes-Lopez O, Angelica Del Villar-Martinez A. Callus culture development of two varieties of Tagetes erecta and carotenoid production. Electron J Biotech, 2014, 17(3): 107-113.

[5]

Breithaupt DE, Bamedi A, Wirt U. Carotenol fatty acid esters: easy substrates for digestive enzymes?. Comp Biochem Physiol B Biochem Mol Biol, 2002, 132(4): 721-728.

[6]

Chitchumroonchokchai C, Failla ML. Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. J Nutr, 2006, 136(3): 588-594.

[7]

Delgado-Vargas F, Paredes-López O. Effects of enzymatic treatments on carotenoid extraction from marigold flowers (Tagetes erecta). Food Chem, 1997, 58(3): 255-258.

[8]

Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P. Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J Appl Microbiol, 2004, 96(4): 742-749.

[9]

Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res, 2005, 5(6–7): 527-543.

[10]

Fickers P, Sauveplane V, Nicaud J-M. Barth G. The lipases from Y. lipolytica: genetics, production, regulation, and biochemical characterization. Yarrowia lipolytica: biotechnological applications, 2013, Berlin: Springer, 99-119.

[11]

Flachmann R, Sauer M, Schopfer C, Klebsattel M (2005) Method for hydrolysing carotenoids esters. Method for hydrolysing carotenoids esters. US patent US20050255541 A1, 17 Nov 2005

[12]

Fletcher DL. A method for estimating the relative degree of saponification of xanthophyll sources and feedstuffs. Poult Sci, 2006, 85(5): 866-869.

[13]

Fukuda R, Ohta A. Barth G. Utilization of hydrophobic substrate by Yarrowia lipolytica. Yarrowia lipolytica, microbiology monographs, 2013, Berlin: Springer, 111-119.

[14]

Gajdos P, Nicaud J-M, Rossignol T, Certik M. Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Appl Microbiol Biot, 2015, 99(19): 8065-8074.

[15]

Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, van Dijck PW, Wyss M. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol, 2014, 40(3): 187-206.

[16]

Guevara-Olvera L, Calvo-Mendez C, Ruiz-Herrera J. The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J Gen Microbiol, 1993, 139(3): 485-493.

[17]

Hirakawa K, Kobayashi S, Inoue T, Endoh-Yamagami S, Fukuda R, Ohta A. Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem, 2009, 284(11): 7126-7137.

[18]

Howles PN, Hui DY. Mansbach CM, Tso P, Kuksis A. Cholesterol Esterase. Intestinal lipid metabolism, 2001, Boston: Springer, 119-134.

[19]

Jacobs PB, LeBoeuf RD, McCommas SA, Tauber JD. The cleavage of carotenoid esters by cholesterol esterase. Comp Biochem Physiol Part B Comp Biochem, 1982, 72(1): 157-160.

[20]

Lim TK. Tagetes erecta. Edible medicinal and non-medicinal plants, 2014, Berlin: Springer, 432-447.

[21]

Lin J-H, Lee D-J, Chang J-S. Lutein in specific marigold flowers and microalgae. J Taiwan Inst Chem Eng, 2015, 49: 90-94.

[22]

Lin J-H, Lee D-J, Chang J-S. Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol, 2015, 184: 421-428.

[23]

Liu Y, Xu MJ, Canfield LM. Enzymatic hydrolysis, extraction, and quantitation of retinol and major carotenoids in mature human milk. J Nutr Biochem, 1998, 9(3): 178-183.

[24]

Navarrete-Bolanos JL, Jimenez-Islas H, Botello-Alvarez E, Rico-Martinez R, Paredes-Lopez O. Improving xanthophyll extraction from marigold flower using cellulolytic enzymes. J Agric Food Chem, 2004, 52(11): 3394-3398.

[25]

Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol, 2002, 58(3): 308-312.

[26]

Peleg M, Corradini MG, Normand MD. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res Int, 2007, 40(7): 808-818.

[27]

Pereira-Meirelles FV, Rocha-LeãO MHM, Anna GLS. A stable lipase from Candida lipolytica. Appl Biochem Biotech, 1997, 63(1): 73.

[28]

Pereira-Meirelles F, Rocha-Leão MM, Sant’Anna G Jr. Lipase location in Yarrowia lipolytica cells. Biotechnol Lett, 2000, 22(1): 71-75.

[29]

Xie D, Jackson E, Zhu Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biot, 2015, 99(4): 1599-1610.

[30]

Zhao Y, Guan F, Wang G, Miao L, Ding J, Guan G, Li Y, Hui B. Astaxanthin preparation by lipase-catalyzed hydrolysis of its esters from Haematococcus pluvialis Algal Extracts. J Food Sci, 2011, 76(4): C643-C650.

[31]

Zorn H, DE Breithaupt, Takenberg M, Schwack W, Berger RG. Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase. Enzyme Microb Technol, 2003, 32(5): 623-628.

Funding

Tecnologico Nacional de Mexico(5539.15-P)

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/