Constructing Escherichia coli co-display systems for biodegradation of polyethylene terephthalate
Jiayu Hu , Yijun Chen
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 91
Constructing Escherichia coli co-display systems for biodegradation of polyethylene terephthalate
The accumulation of fast-growing polyethylene terephthalate (PET) wastes has posed numerous threats to the environments and human health. Enzymatic degradation of PET is a promising approach for PET waste treatment. Currently, the efficiency of various PET biodegradation systems requires further improvements.
In this work, we engineered whole cell systems with co-display of strong adhesive proteins and the most active PETase for PET biodegradation in E. coli cells. Adhesive proteins of cp52k and mfp-3 and Fast-PETase were simultaneously displayed on the surfaces of E. coli cells, and the resulting cells displaying mfp-3 showed 50% increase of adhesion ability compared to those without adhesive proteins. Consequently, the degradation rate of E. coli cells co-displaying mfp-3 and Fast-PETase for amorphous PET exceeded 15% within 24 h, exhibiting fast and thorough PET degradation.
Through the engineering of co-display systems in E. coli cells, PET degradation efficiency was significantly increased compared to E. coli cells with sole display of Fast-PETase and free enzyme. This feasible E. coli co-display system could be served as a convenient tool for extending the treatment options for PET biodegradation.
PET biodegradation / Escherichia coli / Surface display / Adhesion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
/
| 〈 |
|
〉 |