Magnetic ZIF-8/cellulose/Fe3O4 nanocomposite: preparation, characterization, and enzyme immobilization
Shi-Lin Cao , Hong Xu , Lin-Hao Lai , Wei-Ming Gu , Pei Xu , Jun Xiong , Hang Yin , Xue-Hui Li , Yong-Zheng Ma , Jian Zhou , Min-Hua Zong , Wen-Yong Lou
Bioresources and Bioprocessing ›› 2017, Vol. 4 ›› Issue (1) : 56
Magnetic ZIF-8/cellulose/Fe3O4 nanocomposite: preparation, characterization, and enzyme immobilization
The ZIF-8-coated magnetic regenerated cellulose-coated nanoparticles (ZIF-8@cellu@Fe3O4) were successfully prepared and characterized. The result showed that ZIF-8 was successfully composited on to the surface of the cellulose-coated Fe3O4 nanoparticles by co-precipitation method. Moreover, the glucose oxidase (GOx, from Aspergillus niger) was efficiently immobilized by the ZIF-8@Cellu@Fe3O4 nanocarriers with enhanced catalytic activities. The enzyme loading was 94.26 mg/g and the enzyme activity recovery was more than 124.2%. This efficiently immobilized enzyme exhibits promising applications in biotechnology, diagnosis, biosensing, and biomedical devices.
A new core–shell magnetic ZIF-8/cellulose nanocomposite (ZIF-8@Cellu@Fe3O4) was fabricated and structurally characterized. Glucose oxidase (GOx) was successfully immobilized by the biocompatible ZIF-8@Cellu@Fe3O4 with high protein loading (94.26 mg/g) and enhanced relative activity recovery (124.2%).
Metal–organic frameworks / Glucose oxidase / Zeolitic imidazolate framework
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
/
| 〈 |
|
〉 |